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Introduction. Let us consider the following questions on abelian varieties:

QUESTION 1. Given an abelian variety A and its abelian subvarieties B, and
B,, is it true that
Bi=B, > A/B,=A/B,?

QUESTION 2. Let A and A’ be abelian varieties of the same dimension defined
over an algebraic number field K, and let A(p) (resp. A'(p)) denote the reduction
of A modyp for a prime ideal p in K. Assume that A=A’ over an algebraic
closure of K. Then, does it follow that A(p)x A/(p) for all but a finite number
of prime ideals p?

In this note we shall show that the answer to both questions is NO! More
specifically, we are mainly concerned with 2-dimensional abelian varieties of
the form A=FEXE’, and consider the following “ cancellation problems” for
elliptic curves. Let E, E/ and E” be elliptic curves defined over an algebrai-
cally closed field k.

QUESTION 3. EXE'=EXE" > E'=E"?
QUESTION 4. ExXE =ExXE" > E =E"?

Obviously any counterexample to Question 3 or 4 will give one to Question 1.
The answer to these questions is summarized in the table:

char (k) Question 3 Question 4
0 (k=0C) No Yes
>0 No No

As for Question 2, we can also find a counterexample in which A and A4’ are
abelian surfaces of product type. We remark that Question 2 is affirmative in
1.dimensional case (by looking at the absolute invariant), and would be so for
higher dimensional case too if there were a nice moduli space for unpolarized
abelian varieties. Thus the non-validity of Question 2 reflects the fact that
there exists no such moduli space, but of course, is not a consequence of this
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fact.

The contents of this paper are as follows. In §1 we show that Question 3
is “generically ” true, ie. under the additional assumption that the Picard
number o(EXE’) of EXE’ is less than 4. Note that we have (cf. [7] Appendix)

2 ExE
[ E~E', End(E)=Z
E~E', End(E)=Z°

(EXE) ’
p X =

l 4

6 E~E’', End(E)=Z*.

In §2 and §3, we shall construct a counterexample to Question 4 in character-
istic p>>0 by means of supersingular elliptic curves and also one to Question 2.
In §4 we study Question 3 in the complex case by using the theory of
singular abelian surfaces [8], and obtain a complete answer (Theorem 4.1). In
particular, we show that Question 4 is affirmative in the complex case. Finally
we discuss in §5 a related question on Kummer surfaces, which has motivated
the present work.

The author wishes to thank Y. Ihara and T. Katsura for helpful conversa-
tions.

Notation. For abelian varieties, we use more or less standard notation (see
e.g. [6]): in particular, = for isomorphisms, and ~ for isogenies. A/<v>
denotes the quotient abelian variety of an abelian variety A by the subgroup
generated by a point v of finite order on A. p(A) denotes the Picard number
of A (considered over an algebraically closed field).

§1. First we shall show that Question 3 is “ generically ” true:

ProrosiTION 1.1. Let E, E' and E" be elliptic curves such that EXE =
EXE". If p(EXENZS, then E' is isomorphic to E”.

Proor. We distinguish the two cases: (i) p(EXE)=2 and (ii) p(Ex E)=3.
In case (i), £ and E’ are not isogenous to each other. Then it is easy to see
that any elliptic curve lying on EXE’ is isomorphic either to E or to E’. Hence,
if EXE'=EXE”, then E” must be isomorphic to E'.

In case (i), E, E’ and E” are mutually isogenous and have no complex
multiplications. Let ¢ : E—~E” be a fundamental homomorphism, i.e., a generator
of Hom (E, E")=Z. Similarly we fix fundamental homomorphisms ¢ E—E" and
p: E'—FE”  Denoting by g’ etc. the transpose of x etc., we can find a unique
integer 7 such that
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®
(1.1) plop=n¢ , ie. E— E"

¢l N l//
£ — FE
n

Considering the degrees of both sides, we have
(1.2) deg p-deg p=n"deg ¢ .

On the other hand, there is an isomorphism f: EXE'XEXE”, and f and f*
can be expressed as follows:

(& —1_ {0 ﬁl
(13) =G 5. =C5)
where «, B, vy and 0 are respectively homomorphisms E—E, E'—E, E—E” and
E'—E” and similarly for a,, ---, §,. From the relation f'of=1, it follows tkat
(1.4) 7:18+0,0=1.

Writing 7, B, 6, and J in terms of the fundamental homomorphisms ¢, ¢ and
their transpose, we have from (1.4) that

(1.5) (deg ¢, deg p)=1.

Hence deg ¢ divides deg ¢ by (1.2). Interchanging the role of ¢ and ¢, we have
then

(1.6) deg ¢p=deg ¢, deg p=n*.

Assume for a moment that the characteristic is 0. We claim that Ker ¢
CKer ¢. In fact, take an element x=Ker ¢ and let m be the order of x. Then
¢(x) is a point of E’ of order dividing m. Moreover (1.1) shows n-¢(x)=
plop(x)=0. But since m and n are relatively prime by (1.5) and (1.6), we con-
clude that ¢(x)=0, i.e., xreKer ¢, proving our claim. Therefore it follows from
(1.6) that Ker ¢y==Ker ¢, which proves E'=FE” (in characteristic 0 case).

In the general case, the above argument shows

(Ker Qb)red:(Ker @)red .

Then, replacing E by E/(this subgroup) in the diagram (1.1), we may assume
that both ¢ and ¢ are purely inseparable homomorphisms. Note that n and p¢
are separable by (1.5) and (1.6). Hence, by the uniqueness of the separable
closure in the extension of function fields k(E)/(n¢)*k(E"), we conclude that
E’=FE”, This completes the proof.

§2. Our first construction of counterexamples to Question 3 or 4 is based
on the following observation. Suppose that we have an elliptic curve £ and
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two points v, w of E of finite order. Assume that
(i) there exists an automorphism of the abelian surface EXE, sending the
point (v, 0) to the point (0, w);
(i) E/{vyx=E/w).
Then we obtain a counterexample to Question 3:
(EKv))X E=ZEX(E/{w)) but E/{(vdEE/NLw).

Moreover, if we have E/{v)=E, then this gives a counterexample to Question 4.
In what follows, we shall show that the above condition (i) is satisfied when

E is a supersingular elliptic curve in characteristic p>0 with suitably chosen

points v and w. By definition, we have

2.1 End (E)=Z*.

Fix a prime number /#p, and denote by E; the subgroup of points of order [

on E. Then E, can be considered as a vector space of dimension 2 over the
finite field Z/I(Z :

(2.2) E=(Z/1Z)>.

Since any endomorphism of E induces by restriction one of E,, we have a
natural homomorphism :

2.3) 7: End(E) — End (E)).
LEMMA 2.1. 7 is a surjective homomorphism.

PrOoF. The kernel of » consists of those endomorphisms ¢ of E which
vanish at all points of order / on E. As is well-known, ¢ has this property if

and only if ¢ is of the form ¢=I¢ for some ¢=End (E). Hence » induces an
injective homomorphism :

7: End (E)/[-End(E) —. End (E)).

By (2.1) and (2.2), both groups are vector spaces over Z//Z of the same dimen-
sion 4. Thus 7 is an isomorphism, and hence 7 is surjective, q.e.d.

LEMMA 2.2, Let v, w be a basis of E, over Z/IZ. Then there exist ¢ and
¢<=End (E) such that
(vV)=w p(v)=0
@.4) [" {?
o(w)=0 Plw)y=v.

PrOOF. Obviously we can find endomorphisms ¢ and ¢ of E; satisfying
(24). Then we apply Lemma 2.1, q.e.d.

ProrosITION 2.3. Let E be a supersingular elliptic curve in characteristic p.
Let v, w be a basis of E,, [ being a prime number =p. Then there exists an
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automorphism f of EXE such that

(2.5) A, 0)=(0, w).
Furthermore f induces an isomorphism:
(2.6 F1 E{v)XE ~, EXE/w).

PrOOF. Let us denote by (x, ¥) a general point of A=EXE. We consider
the automorphisms f; and f, of A defined by

Jilx, »)=(x, y+o(x))
fz(x; y):<x+¢<y>y y) »

¢ and ¢ being as in Lemma 2.2. Since we have
filv, )=, w)=1,0, w),

the automorphism f=j3'f; of A satisfies (2.5). Consequently we also have
(2.6), q.e.d.

REMARK 24. For the later use, we remark the following fact. With the
same notation as in Proposition 2.3, we assume further that E is defined over
a field % such that

(i) the ring Endu(E) of k-rational endomorphisms of E is of rank 4, and

(i1) the points v and w are k-rational.

Then the automorphism f of EXE can be chosen to be k-rational. Hence the
induced isomorphism f of (2.6) is also defined over k.

Indeed, since an element ¢<=End,(E) vanishing on E; is of the form o=I¢
with some ¢€End,(E), Lemma 2.1 holds good if we replace End (E) by End(E).
Thus our assertion is clear from the construction of f in the proof of Proposi-
tion 2.3.

§3. Now we consider the elliptic curve
3.1 E: YV =X-X

over a field & of characteristic p+2, containing a primitive 4-th root of unity

i=+/—1. We take the point at infinity as the origin of group law on E. Then
the points

(3.2) v=(0, 0}, w=(1, 0)

form a basis of the group F, of points of order 2. The translation on E by
the point v or w is expressed as follows:

(X, Y) —(=1/X%, Y/X*
X, Y) — (X+1)/(X—-1), —2Y/(X—1)")

(3.3
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(cf. [6] p. 147). Hence the quotient E/<v) and E/{w) can be easily determined:

(34) Evy =E': 9"=£(&*+4)
(35) Ef(wy=FE": p*=(E+1)(E—46—4),
together with 2-isogenies of £ to £ or to E”:
{ E=X—-X" { E=(X"+1(X-D™
=Y+ X% p=Y({1—-2(X—1)"%).

Moreover the coordinate transformation £=2iX, and »=2(i—1)Y; gives an iso-
morphism of E’ to E over k (since £2>7):

(3.6) E'=E/v>=E (over k).
Looking at the absolute invariants of £ and E"=E/{w)
3.7 H(EYy=2°-3", J(E"=(2-3-11)%,
we have

(3.8) E=E” (over k) & p=3 or 7,

where £ denotes an algebraic closure of k.
On the other hand, it is known (cf. [2]) that

3.9 E: supersingular & p=3 (mod4).

In this case, k contains the field F2=F,(+/—1), and the zeta-function of the

elliptic curve E over F,, is given as follows:

(3.10) Z(E/F 2, T)=(1+pT)*/(1-T)1—-pT).
In view of a result of Tate ([9] Theorem 2 (d)), we have then
(3.11) End(E)DEndr,.(E)=Z* .

Hence, by applying Proposition 2.3 (with [=2), Remark 2.4 and (3.6), we obtain
the following counterexample to Question 4 (in a somewhat refined form):

Example 1. Let E and E” be respectively the elliptic curves (3.1) and (3.5),
defined over a field & of characteristic p with p=3 (mod4), p>7 and k= —1.
Then we have

(3.12) EXE=EXE"” (over k)
(3.13) ExE" (over E).
Next we give a counterexample to Question 2:

Example 1I. Consider the same elliptic curves EF and E” as above over the
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quadratic field K=@(+/—1), and put

A=EXFE, A'=EXE",
Then we claim
(3.14) Ax A (over C),
(3.15) A mod p= A’ modp (over F )

for every p with p=3 (mod 4).

Proor. First we note that the elliptic curve E is isomorphic over C to the
complex torus C/Z-+Z~/—1. In view of (3.6), we have

(3.16) E'=E/ {wy=C/Z+Z2+/—1.
v-—1

0 w 1

Therefore A and A’ are singular abelian surfaces, which correspond, in the
sense of [&] §3, to the matrices

(3.17) Q=G 9 ana @.=(} 9.

This implies the assertion (3.14). On the other hand, (3.15) was proved in (3.12)
of the previous example, because we could take k=F_ there, q.e.d.

§4. In this section we shall consider Question 3 more closely in the com-
plex case. In view of Proposition 1.1, we can assume that EXE’ has Picard
number 4. Then E and E’ are mutually isogenous elliptic curves, whose endo-
morphism rings End(F) and End(E’) are orders of one and the same imaginary
quadratic field K :

(4.1 K=End(E)YQQ=End(E)QQ .

We fix some notation. For what follows, we refer to [3] 81 or [1]. We
denote by © the principal order of K, and by £; the order with conductor f
(i.e. the unique subring of © with index f). A submodule M of K of rank 2
is called 2 module of conductor f, or a proper O;-ideal, if {xeK; xMCM}=9,.
The set of proper ©;-ideal classes forms a finite abelian group Iy its order
h(D;) is the class number of O,. For two modules M and M’ of conductor f
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and [/, the product module MM’ is defined and of conductor (f, //). Moreover
the map M—OM induces a surjective homomorphism of J; to J,, whose kernel
has the order

(4.2) RO /W) =Ff0r : D317 1T (1_%> .
fan
Here O (resp. 07 ) denotes the group of units of £, (resp. Oy), and X(ﬁ)=(§>

is the Legendre symbol of K.
Now let f (or f') be the conductor of End (E) (or End (E"):

4.3) End (F)=9;, End(E)=D,,
and put d=g.c.d.(f, /). With these notation, we have

THEOREM 4.1. Given E and E' as above, the number N of the isomorphism
classes of elliptic curves E” such that

4.4 EXE"=ExXFE

is finite, and is given by the formula:
_— — 7 . X . x -1, o X(p)
45) N=h©)/HO)=(F/d)-[05: 251+ T (1--550).

Proor. This follows immediately from the theory of singular abelian sur-
faces [8], combined with the facts on quadratic fields recalled above. In fact,
we can write

E=C/M, E=C/M and Er=C/M"

with some modules M, M’ and M” in K. By Proposition 4.5 of [8], E” satisfies
(4.4) if and only if

MM?'~MM'  and  f7=F,
/7 being the conductor of M”. Therefore the number N of E” satisfyiug (4.4)
is equal to the number of proper ©,-ideal classes {M”} <=3, such that {MM”"}

coincides with the given {MM'}<J, Hence N=A(D,)/h(0D,), and the other
expression of (4.5) follows from (4.2), q.e.d.

COROLLARY 4.2. Let K be an imaginary quadratic field with discriminant D.
Let E and E' be elliptic curves with complex multiplications in K, and let f or f
be the conductor of End(E) or End (E’). Then the cancellation

EXE=EXE"> E'=F"
holds if and only if one of the following conditions is satisfied :
@ f1r,
by f=2(f,f) and D=1 (mod 8



Some remarks on abelien varieties 19

© K=Q(v=D), =2 and (f,f)=1,
@ K=Qu#), f=3 and (f, f)=1.

PROOF. We have only to determine the case where N=1 in (45), and the
verification is immediate, g.e.d.

THEOREM 4.3. Question 4 is true in the complex case. Namely, for any

elliptic curves E and E' over C, we have
EXE=EXE > E=E.

ProOOF. If E has no complex multiplications (End(E)=Z%), the assertion
follows from Proposition 1.1. If E has complex multiplications, this is a special
case of Corollary 42 (a). In fact, replacing E’ and E” there by E and E', we
have f=f'=d, q.e.d.

We close this section by writing down an explicit counterexample to Ques-
tion 3 in characteristic O:

Example 1II. Denoting by C(z) the elliptic curve C/Z+Zr, we put

E=C(v=1), E'=C@3+/—1) and Eﬂ:C(:_li?é:/_—i>

Then we have
ExXE'=ExE" but FxE".

We note however that the following holds:

EXE =EXC>C=E" or E"..

§5. We shall discuss in this section a related question on Kummer sur-
faces, which has motivated the present work. In general, let A denote an
abelian variety of dimension g=2, defined over an algebraically closed field of
characteristic #£2. The inversion automorphism ¢, of A, defined by ¢, ()=—1u,
has the 2%¢ fixed points which are exactly the points of order 2 of A. The
minimal resolution of the quotient variety A/<¢,> will be called the (desingu-
larized) Kummer variety of A, and denoted by Km(A). Let D, denote the 2°¢
exceptional divisors (all isomorphic to P#7) arising from the resolution. Then
the Kummer variety X=Km(A4) has a unique effective canonical divisor Ky for
g even:

429
(5.1 ’ Ky=(g/2—1)D (D= X Dy,
=1
and a unique effective bicanonical divisor K% for any g:
(5.2) Ki=(g—2)D (D same)
(cf. [10] Lemma 16.11.1). Note that, for g=2, the Kummer surface Km (A) is
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a K3 surface.
QUESTION 5. Does the Kummer variety Km(A) uniquely determine the
abelian variety A (up to isomorphisms), i.e.,

(5.3) Km(A)=Km(A") > A=A'?

The answer is YES for g=3, but is not completely known for g=2 (even
in the complex case 2=C)! Indeed, given a Kummer variety X=Km(A) of
dimension g=3, we can uniquely identify the exceptional divisors D, from (5.1)
or (5.2), and then the assertion follows from the following proposition:

PROPOSITION 5.1. Given abelian varieties A and A’ of dimension g=2 (char.
#2), we have

(5.4) A=A/t > A=A,
The proof is based on the fact that the morphism

mult, by 2 can.
(5.5) A A A D

can be uniquely characterized as the maximal abelian covering of A/{¢,> of
exponent 2, which is ramified exactly at the singular points of A/<{¢>. We

omit the detail.

In case g=2, the above proof breaks down, because a Kummer surface
Km(A) contains in general an infinite number of non-singular rational curves
and hence the exceptional divisors D, corresponding to the singular points of
AJ{¢ 4> cannot be identified. Moreover Km(A4) has in general infinitely many
automorphisms which are not induced by that of A. (More precisely, the natural
inclusion Aut (A4)/{¢>GAut (Km(A)) has in general an infinite index.) At any
rate, it is known in the complex case that Question 5 is true in the following
cases:

(i) p(A)=1 and A has a principal polarization (Inose),

(i) p(A)=4 ([8] Theorem 5.1).

Therefore we expect a positive answer to Question 5 at least for 2=C.
On the other hand, we suspected that Question 5 might be false in charac-
teristic p>0. We knew the following :
(a) The Kummer surface Km(EXE), E as in (3.1), is isomorphic to the
elliptic modular surface of level 4, B, for any p#2 (7] Theorem 1).
(b) The Kummer surface Km(EXE?), E” as in (3.5), is isomorphic to the
4
Fermat quartic surface F: X x{=0, for any p+#2 (cf. [4]).
i=1
(¢) When p=3 (mod4), B and F are isomorphic ([7] Theorem 3).
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Thus, if Question 4 or 2 in the introduction were affirmative, we would have
had a “counterexample” of Question 5 in characteristic #>>0. This observation
has motivated our work. In view of Example I in § 3, Question 5 (g=2) looks
plausible even in characteristic p>0 (p+2).

L9l
(10]
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