On the decomposition of Boolean polynomials

Dedicated to Professor Y. Kawada on his 60th birthday

By Curtis GREENE* and Gaisi TAKEUTT*™*

1. Introduction.

In this paper, we will prove the following theorem:

THEOREM 1. Let M=(m,;) be a rectangular matrix with entries in a set X,
satisfying:
(i) If i#V and j#j/, and my=m, =z, then m =m;=z.
(ii) If SE€X and S meets every row of M, then S contains a column of M.
(iii) If S€ X and S meets every column of M, then S contains a row of M.
(iv) M contains at least two distinct entries.
Then M can be partitioned into two disjoint nonempty rectangular submatrices.

Condition (i) says that the elements of X form rectangular submatrices of
M. It can be shown without great difficulty that (ii) and (iii) are equivalent
(see Lemma 2.6).

Aside from its own interest as a combinatorial result, Theorem 1 has appli-
cation to other areas, and in fact arose in connection with the following situa-
tion. Let p(x, x,, ---, x,) be a Boolean polynomial which involves the variables
Xy, X5y -+, X, and the symbols vV and A (but no negations). We ask: when can
D be expressed in a form in which each variable occurs only once? Polynomials
with this property will be called completely decomposable. For example, if p,=
(xvz2)AN{(yV2)Aw, then p, is completely decomposable, since we can write p,—
{(xAy)VZYAw. On the other hand, if p,=(xVIA(XV2ZIA(¥VZ2), then p, cannot
be expressed without multiple occurrences of variables, and hence is not com-
pletely decomposable.

We will answer this question by restating it in a purely combinatorial
fashion, making use of the canonical conjunctive and disjunctive forms for poly-
nomials p of the type considered here (i. e. without negations). This leads to a
purely set-theoretic problem, which can in turn be solved by proving Theorem 1.

If p(x,, %, -+, %,) is a Boolean polynomial without negations, we can write

p=A i(\/xEAix)
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and

p=V A zepX)
for suitable families {A4;} and {B;} of subsets of variables. If we assume that
both expressions are minimal, in the sense that A;DA; and B, B; for i#j,
then this correspondence uniquely associates polynomials with pairs of families
of sets. Our main result about polynomials can be stated as follows:

THEOREM 2. Let p be a Boolean polynomial, and let {A;} and {B;} be the
Sfamilies of sets determined from p as above. Then p is completely decomposable
if and only if |A,N\B;|1=1 for all i, j.

For example, consider the polynomials p, and p, defined earlier. We have
Di=(xAYAW)V EAW)=(xV2IN(YV ) AW

Po=(XANV (Y A2V (xNZ)=(xV YNV )N (xV Z) .
Then p, satisfies the conditions of Theorem 1, while p, does not.

REMARK. For an-arbitrary polynomial p, it is always true that [A;NB;]
=1, for all 7, j. Thus Theorem 2 is a characterization of the extreme cases of

this inequality.

2. Notation: Systems of choice sets.

In this section, we will develop the notation required to treat the problems
described in section 1 from a purely set-theoretic point of view. Most of the
ideas introduced here are elementary or well-known, and almost no proofs have
been included. Although we will ultimately be concerned with finite sets ex-
clusively, no finiteness assumptions are made at the outset.

DErFINITION 2.1. Let A be a family of subsets of X, and let USX. We
say that U is a choice set for A if UNA=D for all Ac .

DEFINITION 2.2. Let A and B be families of subsets of X. The triple
{A, 8, X> is said to be a mutual choice system (abbreviated MCS) if the fol-
lowing conditions hold :

(i) A consists of all minimal choice sets for 3.

(ii) B consists of all minimal choice sets for A.

(iii) VA=UsB=X.

Clearly, this definition implies that each of the families .4 and % must be
an antichain (i.e. AD A’ for all 4, A’ 4, and similarly for 9).

LEMMA 2.3, When X is finite, each of the conditions (i) and (ii) in Defini-
tion 2.2 implies the other.
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A direct proof can be constructed without difficulty, but we will not do so.
The lemma follows immediately from the fact that, when X is finite, A and &
correspond to the families induced by the dual canonical forms of a Boolean
polynomial. In the notation of section 1, if A={A;}, then #={B,}, and con-
versely.

DEFINITION 24. An MCS (A, 8, X) is said to be unitary if |ANB|=1 for
all Ae A, Be 3.

Given a unitary MCS (A, 8, X> we define its infersection mairix to be the
array M=(m;;) of elements of X defined as follows : if A={A4,} and B={B;} then
m;; is the unique element of A;N\B;. The rows of M represent the A,s (with
possible repetitions) and the columns represent the B;’s. The following lemma
follows immediately from the definition of M and the properties of an MCS.

LEMMA 25. The intersection matrix M of a unitary MCS satisfies

(1) If it and j#j', and my=m,; =z, then m,;=my;=2z.

(ii) If a collection of entries meets every row of M, then it contains a
column of M.

(iii) If a collection of entries meets every column of M, then it contains a
row of M.
Conversely, 1f M ts any malrix which satisfies (1)~(iil), then the rows and columns
of M form a unitary MCS.

We have immediately the following analog of Lemma 2.3 for intersection
matrices :

LeMMaA 2.6, If M is any matrix such that condition (ii) of Lemma 2.5 holds,
then condition (iii) also holds, and conversely.

(We omit the proof. Interestingly, it is not necessary to assume that (i)
holds.)

By a subrectangle of M we mean any rectangular submatrix of M. Two
subrectangles are said to be disjoint if no element of X appears in both.

DEFINITION 2.7. A unitary MCS 1is said to be separable if ifs intersection
matrix can be partitioned into two disjoint subrectangles.

Our main theorem (expressed in set-theoretic language) is the following :
THEOREM 3. If (A, 8, X is a unitary MCS such that 1<|X|<oco, then
(A, B, X> is separable.

We will give a proof of Theorem 3 in the next section. First, however,
we indicate how our characterization theorem for Boolean polynomials (Theorem
2) follows as a corollary.
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Suppose that {4, @, X> is a unitary MCS, whose intersection matrix M
can be separated into subrectangles M; and M,. We may suppose that M, and
M, consist of disjoint sets of columns of M, whose entries partition X into two
disjoint subsets X, and X,. It is easy to see that M, and M, each satisfy con-
ditions (i) and (ii) of Lemma 2.5, and hence, by Lemma 2.6, also condition (iii).
Thus M, and M, determine systems (A, B, X;> and (A, B,, X,», each of
which is a unitary MCS.

Clearly the process of separating a unitary MCS into two disjoint parts
corresponds to decomposing the corresponding Boolean polynomial p as p=
p.Vp, or p=p,Ap, where p, and p, involve disjoint sets of variables. The
above remarks show that this process can be repeated, until p has been decom-
posed into singleton sets. Thus p is completely decomposable if the corre-
sponding MCS is unitary. The converse is easy to verify by induction, and
this completes the proof of Theorem 2.

3. Proof of Theorem 3.

DEFINITION 3.1. A homomorphism of a unitary MCS (A, B, X is a map
¢ X=X such that {¢[A], oL 2], JLXT> is a unitary MCS. A homomorphism
¢ 1s proper if 1<l X1 < X].

LEMMA 3.2. If (A, 8, X)> is a unitary MCS with intersection matrix M,
then a map ¢: X—X' is a homomorphism if and only if for every yeg[ X],
6 [y] is a subrectangle of M.

The proof of Lemma 3.2 is straightforward and left to the reader. The
main step in the proof of Theorem 2 is contained in the next lemma:

LEMMA 3.3. Every finite unitary MCS (A, 8, X) with | X|>2 possesses a
proper homomorphic image.

ProOF. By Lemma 3.2, it will be sufficient to show that if M is the inter-
section matrix of (4, 8, X), then there exists a subset US X satisfying 1<{U]|
<|X| whose elements form a subrectangle of M. Identifying the elements of
U provides the desired homomorphic image. We construct such a subrectangle
as follows:

Assume that the first two rows of M agree in the largest number of
columns, among all pairs of rows in M. Denote these rows by A, and A,
(We may identify rows with sets in 4, and columns with sets in 8.) Also
denote the columns in which A, and A, agree by B,, B,, ---, B, and those in
which they disagree by Bnsy, B, - . We write BoNA,=B:NA,={c}, 1=1,2,
.-, m, and define C={cy, ¢y, =+, ). Let A;, A, -+, A, denote the list of all
rows containing C, and let U=\}(A,—C). Note that the sets 4,—C are pair-
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wise disjoint, by the maximality of m.

We claim that the elements of U determine a subrectangle of M (which is
obviously nontrivial). Suppose that this is not the case. Then there exist ele-
ments a; and a,eU and peU, together with appropriate rows and columns of
M whose intersections have the form

B, B,
A{ ...... ql ............ q ......
AL e provreneen Ggreee

(Here ¢ is unrestricted). After suitable renumbering of rows, we may assume
that a, occurs in A, and a, occurs in A, (if both occur in the same row, choose
a different a,). Furthermore, we may assume that A,=Aj since A, has the
same properties as A]. Finally, since a,, ¢,&C we may assume that B;=DB,;
and B;=B,.,. In other words, we have

BpoNA,={a;} B,..nA=1{q}
Bm+1mA£: {9} Bm+2ﬂA§:Bm+2mA2: 1a,}

Next define B;N\Aj={¢;}, i=1,2, -, m, and let C=1{2,, 2y, -+, &n}.

Consider the set A:éU(A1~C). Clearly A meets every column, since ¢
meets columns 1, 2, ---, m and A,—C meets columns m+1, m+4-2, ---. Hence, by
Lemma 2.5 (ii), there exists a row A,SA4. Our next step will be to show that
A,=A. This will be done by computing the intersection of A, with each column
of M. We define A,N\B;={a;}, 1=1, 2, ---.

(1) First, we have a,=¢& for i=1,2, -, m. For if a,=C, then this follows
from Lemma 2.5 (). On the other hand, if a;=a=A,—C, then aeB,NA,=C,
which is a contradiction.

(2) Next, we have @p,,=a,. For if a,,,€ A,—C, this follows from Lemma
25 (i). On the other hand, if @n.,=C, then @m.;=p by a similar argument.
But this implies that A, and A} agree in columns 1, 2, ---, m+1. By the maxi-
mality of m, we must have A,=Aj But this is impossible, since a,= A4} but
a, A,—C and azeE(N?. (This last statement follows from Lemma 2.5 (i) and the
fact that a,€ A,—C.)

(3) Finally, we have {a;}=A,NB, for j>m+1. This follows from Lemma
25 () if a;=A,—C. On the other hand, if ajzfeé, then Asn\B;={¢}, which
means that 4, and A, agree in columns 1,2, ---,m and j but not m+1. (We
have already shown that a,.,—a,#p.) This contradicts the maximality of m.

Thus every element of €U(A1—C) appears as some &, and we have proved
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that A,=CU(A,—C).

Now let A’:éU(Az—C). Clearly A’ meets every column of J, and hence

must contain a row A Again we will show that Ay=A’, by calculating
iNB=1{a} for all 1.

An argument identical to (1) above shows that «/=¢; for 1=1,2, -, m.
When i>m, we have {«j}=A,"\B; as long as a;c A4,—C, by Lemma 2.5 (i). On
the other hand, if angeé, i>m, then comparing Aj with 4, and applying
Lemma 2.5 (i) shows that «;=¢, which we have already shown to be impossible
(in steps (2) and (3) above). This completes the proof that Aj=C\U(A4,—C).

Now compare the rows A, and Aj. We have shown that they agree in
columns 1, 2, .-, m and also m+2. Furthermore A=+ A}, since A} contains p in
column m-1, while A§ contains aj,.,.€ A,—CZU. But this contradicts the maxi-
mality of m, which shows that in fact U must be a subrectangle of M. The
elements of U can thus be identified to yield a proper homomorphic image of
{A, B, X>. This completes the proof of Lemma 3.3.

The proof of Theorem 3 can now be completed easily by induction on the
number of elements in X. By Lemma 3.3, {4, 8, X)> has a nontrivial homo-
morphic image (A, ', X’> which we may assume to be separable. If we
denote the incidence matrix of the former by M and that of the latter by M,
then M’ is obtained from M by identifying certain subrectangles (and removing
duplicate rows and columns if necessary). Hence it is clear that any partition
of M’ into two subrectangles leads immediately to a similar partition of M.
Hence (4, 8, X is separable.
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