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In the previous paper [4], we have determined a generator system of the
spinor group Spin (@) for isotropic quadratic form (V, Q) over a field K whose
characteristic is different from two. The purpose of this paper is to construct
some representations of Spin (Q) into certain associative algebras, and to discuss
the relation between the spin representation of Spin (Q) and these ones.

1. Preliminary.

Let (V, Q) be a non-degenerate quadratic form with positive index over a
field K whose characteristic is different from two. We assume dim V=3. We
take an orthogonal basis {e;, e, -+, ¢,} such that Q(e,)=1, Qe,)=-—1, and Qe;)
=a; (3=j=n). Put a=e,+¢,, and b=27"(¢,—e,), then the pair {q, b} is a hyper-
bolic pair, that is, Q(@)=Q(b)=0 and Q(q, b)=1. We denote by H the hyper-
bolic plane {a, by={e,, ¢,> spanned by @ and b, and by U the orthogonal com-
plement of H. So we have U=<{e, -, ¢,>. In the even Clifford algebra C,(V)
of (V, @), we put, for xe U,

) E(x)=1+ax, and F(xy=1+bx.

Then E(x) and F(x) are contained in Spin{(Q). Moreover, €§={E(x); xc U} and
F={F(x); xeU} which are isomorphic to the additive group of U generate the
spinor group Spin(Q) ([4], §4).

For AeK*, we put

(2) PA=2"{(1+)+(1—2e},

where e=ee,. It is shown in [4] that PQ)el (@) (the even Clifford group)
and »(P(2))=4, where »(P(2)) means the norm P(A)-J(P(A) of P(R), ] being the
main involution of C(V). It is easy to see that B={P(1); 1= K>} is isomor-
phic to K* and I'|(Q) is the semi-direct product of Spin{Q) and P in which
Spin (@) is normal.

In the subspace U, we denote by U* the set of all non-isotropic vectors.
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For xeU*, we put

3 w(x)=E(x)F(xE(x),

where £=(2Q(x))". Then we have

@ w(w(y)=—Qx) " P(Qx)/Q)xy,

for x, yeU*. Putting x=y in this formula, we have w(x)'=—w(x)=w(—x).
It follows from (4) that

(5 wx)w(xg) - w(xzh—x)w(x2h>:2P(ﬂ>x1x2 ©t Xon s

where x;eU* and 2, ¢ are the scalars determined by these vectors. We denote
by W the subgroup of Spin(Q) generated by w(x)w(y) (x, yeU*). Our main
result in [4] is the following decomposition:

(6) Spin (Q)=FEFU.

In this decomposition, there is a uniqueness theorem in a certain sense (see [471.
Prop. 8).

2. 0Odd dimensional case.

Let W be an odd dimensional vector space over the field K with non-
degenerate quadratic form @. We take an orthogonal basis {e, ¢, -+, en} such
that Q(e;)=a;. We put ¢=ep=e, - ¢,. Then ¢ is central in the Clifford alge-
bra C(W) and *=(—1)"™D2qg ... ¢, =0 is equal to the modified discriminant
4y of the quadratic space (W, Q). For x= W, we put

“

) f=xc=cx,

then we have #2=0Q(x) and Z-9y=0dxy in C,(W). Thus we have a linear isomor-
phism of W into the subspace W of Co(W) which may be called a similitude.
Putting f=e,_, and g=e,, and U=<e,, -+, ¢,_,», we have the following isomor-

phism of algebras:
C0<W)ECO(U>®<17 _fy g, fg> .

Because f2=0Q(f), °=0Q(g) and f-g=0fg=—g-f, the algebra {1, f, g, fg> is
isomorphic to the quaternion algebra [6Q(f), 00Q(g)] over K defined by the
scalars 6Q(f) and 6Q(g).

Now we assume that (W, Q) is isotropic. So we may take f and g such
that Q(f)=1 and Q(g=—1. In this case, the quaternion [§, —d] is isomorphic
to the total matrix algebra MK). We fix the isomorphism ¢ of <1,f, g, feg>
onto M,(K) in the following way :
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A0 0 R 0 o -1 0
®) H=G o) «@=(_7 ) «wa=("5 1)
We denote also by ¢ the isomorphism
9 ColWH=Co(UNQM(K)=M,(A),
where A=Cy(U). For x=U, we have £=xc,fg=X%-fg, where c,=e, -+ ¢,_, and
10) I=cpx=xc,eCo(UY=U.
It follows that z(a&):—(_g g) and c(2f+ygf):<z_0‘u 50(—;#)). Thus the space
W is identified with {Q:]/i 5&;#)); xeU, 2, /,zeK}. For x, yeU, we have
:(xy):(%y }g}) For P(W)el'(Q), it is easy to see that

() «p=(5 ).
For E(x) and F(x), from 1+ax=1+8"(f+8)%, it follows that
(12) =@ ), ara=(_L, 9.

Note that, for example,
WF~on=( o) (7o D=2 -

For an element of U, putting X=AP(u)X, in (5), with X;=1x, - X;5, we have the

following formula;
o=(¢ D& =" %)

In this way, the group Spin () is represented in M), for an odd dimensional
quadratic space.

3. Even dimensional case.

Let (V, Q) be an even dimensional quadratic space with positive index over
the fleld K. We put dim V=n. We fix an orthogonal basis {e,, ¢, -, ¢y_s, /> 8}
such that Qe)=a, Qle,)=a; (1=7n—3), Q()=1, and Q(g=—1. We denote
by W the subspace {ey, -+, ¢,_s, /, &>, and by U the subspace {e,, ey, -, €y_s,
and by U, the subspace <{e,, ¢,, -, ¢,_,>. Thus W is an odd dimensional iso-
tropic quadratic space, and from the argument in §2, it follows that C(WW)=
M) with U=Cy(U,). It is easy to see that

{ C(V)=<1, e, ¢, ey >RC(W),

(13)
Co(V) =<1, er>QC(W),
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where c=e, -+ ¢,_,fg as in §2, and ey=¢,c=—ce,. So ¢*=0 is the modified dis-
criminant of (W, Q) and ey’=—ad=4 is the modified discriminant of (V, Q).
The algebra <1, e, ¢, ey is isomorphic to the quaternion algebra [a, é]=[«, 43,
and the algebra (1, ¢,) is isomorphic to the quadratic (ring) extension [4] of
K defined by the scalar 4. Note that [4]=K+Ki is the commutative algebra
over K defined by ?=4. Identifying e, with 7, we have

(14) Co(V)=[4IQM (W)= My(U+1%) .

So we can extend the isomorphism ¢ defined in §2 to the isomorphism of Co(V)
onto M,(W-+1%U) which we denote also by ¢. Especially, [(éy):(6 (D

For xeU={e,>+U,, we shall calculate ((E(x)) and «(F(x)). If x is contained
in U, the same formulas as (12) hold for these expressions. If x=1¢, from
fey=fcey=—=0fe, and gey=—1age,, we have E(Ae))=1+A(f+ge,=1—12-07(f+8)ey.
Thus it follows

(EGen=(} THY) and aFGen=(_,3.; 1)
We define a linear mapping = of U into A+ by
(15) (% Aeg) =%+ 1

where x,=U, and %,=c,x, as in §2. We extend the non-trivial automorphism
of [4] over K to the automorphism of ¥-+iA which we denote by —. Thus
we have a linear mapping # of U into A+ conjugate to =. Easy calculation
shows that 7(x)7(x)=00Q(x). Combining (12) and the above results, we have

(16) z(E(x)):((l) 2”1(")), z(F(x))=<_5-11ﬂ<x> ? ;

for xelU. From x,e,=—0"'eycx,=—0 ey fgX,, it follows
5% 0
((x400)=0 Z(O —fo>
and ¢(ex,)=—c(x.,). Thus, for x, yeU, we have

_ s-(m(07n(y) 0

17 (=57 R L

If the discriminant 4 of (V, @) has a square root +/4 in K, the quadratic
(ring) extension [4] is isomorphic to the direct sum Ku,+Ku, where u,=
271+ /7 %) and u,=27(1—+/4 ~*) are orthogonal idempotents, and u,+u,=1,
u—uy=~/4 4. Similarly C,(V) is isomorphic to the direct sum M,(W)u,-+
M,(u,. Denoting by p, and p, the projection from C(V) to the first com-
ponent and to the second component, respectively, we define ¢;=p,o¢ and ¢,=p,o¢.
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Thus the isomorphism (representation) ¢ of Co(V) (Spin (Q)) is decomposed into
the sum of two representations ¢, and ¢,, which are inequivalent to each other.
The linear mapping = of U into A+ =Au,+Wu, is also decomposed intc the
sum of m,=p,orw and m,=p,on. For xeU, we write x=x,+A¢, with x,&U, Then

(18) () =x+4 A, m(X)=x— /4 2,

and #(x)=m,(xX)u,+7,(x)u,.

4. Spin representation.

In odd dimensional case, spin representation is the restriction of an abso-
lutely irreducible representation of the algebra Co(W) to Spin(Q). As C(W)=
M,(0), an absolutely irreducible representation p of U (p: A—End(S)) induces
an absolutely irreducible representation p, of A(3);

021 M) —> End (S+S),

and spin representation is obtained as the restriction of pge¢ to Spin(Q). By
the operations of elements of % on S, we can describe the operations of Spin (@)
on S-+S.

In even dimensional case, spin representation of Spin(Q) is the restriction
of an absolutely irreducible representation of the algebra C(V) to Spin (). As
stated in (13), we have C(V)=[a, 4IQC(W) and C(V)=[4IRQC,(W). If we
consider the scalar multiple (V, aQ) of (V, Q), then we have C(V, aQ)=[e?, 4]
QRCAW, aQu)=My(C(W)) and C(V, aQ)=[4IRQC,(W). Note that [a’ 4=
MyK) and Cy (W, aQu)=C{W, Qw)=Cy(W). The absolutely irreducible repre-
sentation o of A=Cy(U,) induces that of Co(W), denoted by p,, and p. induces
that of C(V, aQ), denoted by p,. One can see easily that the restriction of an
absolutely irreducible representation of C(V, @)=C(V) to C(V) is the same as
that of p,. Thus spin representation of Spin(Q) is obtained as the restriction
of p,o¢ to Spin(Q). If the modified discriminant 4 has a square root 4/4 in
K, the half-spin representations are obtained as the restrictions of p.or; and
20t to Spin (Q).

In low dimensional cases, one can construct the absolutely irreducible repre-
sentation of U=Co(U) concretely. Thus the spin representations of low dimen-
sional isotropic quadratic spaces can be also described concretely.

References

[1] Artin, E., Geometric Algebra, Interscience, 1957.
[2] Chevalley, C., Algebraic Theory of Spinors, Columbia University Press, 1954.
[ 3] Takahashi, R., Série discrete pour les groupes de Lorentz SC,(n, 1). Colloque



60 Takashi TAsAKA

sur les fonctions sphériques et la théorie des groupes, Nancy, 1971.
[4] Tasaka, T., On the structure of spinor groups with positive index, Sci. Papers
College Gen. Ed., Univ. Tokyo, 25 (1975), 7-14.

(Received June 16, 1976)

Department of Mathematics
College of General Education
University of Tokyo
Komaba, Meguro-ku, Tokyo
153 Japan



