Some examples of new forms

Dedicated to Professor Y. Kawada on his 60th birthday
By Hideo SHiMIZU

The purpose of the present paper is to give certain modular cusp forms
belonging to the essential part of level p™ (the space of new forms in the sense
of Atkin-Lehner [1]; we do not assume that a new form is an eigen-function of
Hecke operators). This new form is provided by a theta series defined by two
objects; one is a definite quadratic form of 4 variables which is a norm form
of a quaternion algebra X of discriminant » over @ and another is a finite-
dimensional irreducible representation of K X K&, where K ,=HXQeQ,. We note
that our example is closely related to the classical one, for, if the representa-
tion of K X K% is of the form 1Xo., we obtain a theta series ‘ with spherical
function’ discussed in Eichler [4], Hecke [6], or Schoneberg [117. For technical
reasons we assume that p is an odd prime.

§1. Some remarks on the representations of GL,(F).

1. Let F be a non-archimedean local field and let <A be either a separable
quadratic extension or a division quaternion algebra over F. Denoting by ¢ the
canonical involution of A/F, we put tr (x)=x+x¢, n(x)=xx’ for x in 4. Let
A' be the group of all x in A with n(x)=1. By Jacquet-Langlands [8], to
every finite-dimensional irreducible representation £ of <A* such that 2] A'+#1,
corresponds an absolutely cuspidal representation of GL.(F), which we denote
by £2*.

2. Let = be an admissible irreducible representation of GL,(F) and <V the
space of #. Then the restriction of = to F* defines a quasi-character % of F'™.
Write o7 and Py for the ring of integers and the prime ideal in op, respectively.

Let G, be the group of all (? ‘2) in GL,(oF) with y=ps" and <V, the space of
all v in <V such that

n((? ‘g))v:n(é)v for all ()Of §>eGn.

It can be shown that, if </, ;# {0}, then CVn:CVn_1~|—7r(((1) G?))CV,L_I (wis a

prime element in F) and if ¢ is the smallest integer=0 such that <V;= {0}, then
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dim <v,=1 (see Deligne [2, Th. 2.2.6]). In terms of automorphic forms, <V, cor-
responds to the essential part of level p*; hence we call for a moment prt the
level of m, and write CV°=CV,. '

PROPOSITION 1. Let E be a separable quadratic extension of F. Let 2 be a
character of E* such that Q| E*#1 and m the smallest integer such that Q(1+p™)
—1 (we call m the order of §2). Denote by pg® the different of E/F and by [ the
relative degree of by over pp. Then, the level of 2% is (m+g)/.

Before proving Proposition 1, let us recall that an absolutely cuspidal repre-
sentation 7 of GL,(F) is equivalent to a representation in S(F*) (the space of
all locally constant functions of compact support on F*) having the following

properties :

(& Me@=n@e@
(1.1)

(& 8)) pler=gspr0(a®

for acF*, B=F, and ¢o=S(F*). Here ¢p is a fixed additive character of F,
and we may assume that the conductor of ¢z is op. (=, S(F*)) -is called the
Kirillov model of = ([8, §21).

Put

sp=] P©uEdé
for o=S(F*) and a quasi-character p of F*. By [8, Prop. 2.10] we have

(1.2) a(w)e()=C()@(py™)  for wz<—01 (l)>

Here C(y) is a constant, and if plew™=p(e)t" with a character v of of and t=C,
|t1=1, then C(z) takes the form

C(P)chn(v)l‘" .
For simplicity we write 2u for the character x—2(x)u(n(x)) of E~

LEMMA 1. Let @ be the non-trivial character of F*/n(E*) and put )=
Q)w(a) (aeF*). Let p be a quasi-character of F* such that plog=y. If n=
Q% then C,(v)#0 if and only if n=—(m+g)f, m being the order of Qn 'p™'.

PrOOF. Let S(E, Q) be the space of all locally constant functions M of
compact support on E such that M(xx)=02(x)""M(x) for x,€E%. Set G,=
{g=GL,(F)|det gen(E*)}. We obtain a representation 7o of G, in S(E, 2) by

setting
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rao((§ L)) M) =wla)|al M),
ro((§ ) Meo=ge(anie)Ms),
ro((%] D) MO)=7(E/F, pr)M (),
m((g ?))M(x):1h|EI/ZQ<h>M(x/z), a=n(h), heE*.

Here y(E/F, ¢r) is a certain constant, and M’ is the Fourier transform of M (F
is identified with its dual by the pairing (x, ¥)—¢(xy), ¢z=¢rotr).

£* is by definition the representation of GL,(F) induced by 7, Hence the
representation space of w=£% is

=@ : GL(F)—~S(E, )| 0(hg)=ro(h)D(g)) for heG,}
and
(g)P(g")=P(g'g).
For éeF*, D=y, put

[0 D).
If heE*, a=n{h), then

(1.3) il zam[o((G 1) ]w
=[r((§ DG D

=[o((% M) ]W=ralas).

We see that if =0, then @( g (1) ):0 for all a=F*, so that @=0 (note

that M(0)=0 for MeS(E, £2), since £|E'+#1). It is easy to see that the image
of the mapping @—¢g is S(F*). Therefore = may be viewed as a representa-
tion of GL,(F) in S(F*); then it satisfles (1.1) with p(a)=(a)w(a).

Write F*=n(E*)Uen(E*) (disjoint). For M<S(E, £2), define an element @

in ¢V by
oG5 D=0, (5 D)=m.

Then ¢=¢p has a support within #n(£*) and, by (1.3),
o(&)=| x| g2 2(x)M()

for &=u(x), x=E*. Hence we have
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A= _ |zl 2" QD)pn()M@)d"x.
Let ¥ be a quasi-character of E*, and M=S(FE). It is well known that
20, My={ xHM(nd*x
EX

is a meromorphic function of ¥ (in the sense that if y=y,! |z’ with a fixed
character X,, then it is a meromorphic function of s) and satisfies a functional
equation of the form

2, My=WQZ(| |ex™", M) .

If dx denotes a self-dual measure of E, then
W= 2 1~ ou(@s"Du(dx.

In this notation we can write $(u)=2Z(| | z"*2u, M), whence follows immediately
that C(e)=7(E/F, om)W{| | 2227 'p")"". Note that 27 'x (05 +#1, so that the
order of 27 'p™! is positive. Hence

f ok Gu(w ")y~ (x)dx#0

if and only if n=—m—g. Therefore, up to a non-zero factor depending on
zlop, Clp) equals p(n(wg)) ™ 8=u(wyp) ™*®7, This proves Lemma 1.

We can now prove Proposition 1. Put W=8(F*) and define &V, as bhefore.
Let ¢ be in &V,. Set ¢'=n(w)p. Then

(& B))pl@)=n(0)ps(86-)p(ab™e)

=7(9)p(§)
for «, 0=y, B=op; hence

(1.4) supp ¢Cor and @(ag)=¢(&) for a<oy.
On the other hand,
(G o=@
for all S=ps"; so we have
(1.5) supp ¢'Cpr " and ¢ (af)=nla)e’ (&) for aeos.

Conversely, (1.4) and (1.5) imply that peV,.

It follows from (1.4) that o(wr*)=0 for £<0. Write plewp™)=v(e)t*, n(ew ")
=y(e)t" for e=op and C(p)=C_x{(»)i ™. Applying (1.2) to the case wvy,=1, we
get

;fk?'(@/Fk):C—M(Vo—l)t—MZ;(tl‘o)‘k@(@Fk>
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or equivalently
o (W p ) =C_ vy Vi, F(Wr") .

Hence supp ¢’Cdr"" if and only if ¢(wz*)=0 for all & with —k—M=-—n. Here
M is an integer such that C_,(v,"9)+0; by Lemma 1 M=(m-+g)/f if m is the
order of 2. We see that &V,= {0} if and only if n=3, and dim V,=n—M-+1.
This completes the proof of Proposition 1.

COROLLARY. The notation being as above, we have Vy=Cq,, where @, is
the characteristic function of op.

§2. Characters of absolutely cuspidal representations.

1. In the notation in §1, No. 2, we assume that = is absolutely cuspidal
and 7 is a character of F*, Then = is pre-unitary. More precisely, assuming
that 7« is realized in the Kirillov model, we set

(g o=[ o&)e @

for ¢, ¢’ €S(F*); then (#(Q)e, ¢)=(p, z{g ¢’) ([8, Prop. 2.21.2]). Furthermore,
if ¢ is any element in S(F*) with (¢, ¢)=1, the character X. of = is given by

(2.1) t@=d@f (g, o)k

for all g in GL,(F) whose eigenvalues are distinct and do not belong to F ({8,
Prop. 7.5]). If #=8£% an explicit formula for X. will be obtained by (2.1). We
shall state it here in the case where the residue class field of F is not of
characteristic 2. The proof will be published elsewhere. Also refer to Sally
and Shalika [10], in which we find the characters of irreducible unitary repre-
sentations of SL,(F).

We assume in the rest of this paragraph that the residue class field of F is
not of characteristic 2. Let ¢ be the number of elements in the residue class
field of F. There exist three quadratic extensions E,, E,, E, over F. Fixing a
prime element @ and a non-square unit & in F, we have E,=F(+s&), E.=
F(~/—w), E,=F(~/—ws,). Put Ej¥=E,—F. Embedding E; into M,(F), we re-
gard E;* as a subset of GL,(F). Then EXJUEXUE,* contains a representative
‘'system of conjugacy classes in GL,(F) whose eigenvalues do not belong to F.
For geGL,(F), we set d(g)=|(g—g)n(g) " r.

PROPOSITION 2. Let £ be a character of a quadratic extension E of F such
that 2\E'=1. Write y for the character of the absolutely cuspidal representation
Q*. Put n(a)=w(a)2(a) for acF*, w being the non-trivial character of F*/n(E*).
Put
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{ EN(1+p2 ) if E is ramified,
E'N+p™) if E is unramified,
and let | be the smallest integer =0 such that 2(U)=1.
Case I) E is vamified; we may assume that E=E,.
1 geE* x(9=0 if n(g) is not a square in F. If n(g) is a square in F,
take a 6€F™ such that g=07'g is of norm 1 and tr (g)=2 (modpr) (in case
dlgy<l). If [>9,

—(g+D)g70)  dg=|w s
x(g)Z{
d(g)>w|s".
If =0,
—21(8) d(g)<1
z(g>={

20(tr (&) —2)7(0)  d(g=1.

2) geE* 1(9)=0 if n(g) is not a square in F. If n(g) is a square in F,
take a O€F™ such that gy7=307'g is of norm 1 and tr(g)=2 (modpp). If I>0,

—(g+1q"7(3) A< ||
WD={ 0% Qelu(g—2)  dg=|wl
0 dg)> o,

If 1=0,
1g=—27().

3) geEF. If d(@<], then n(g) is a square in F; in this case take a S=F*
such that g,=07'g is of norm 1 and tr (g)=2 (modor). If (>0,

—(g4+Dg" '7(0) dg)<|w|z*?
z(g>={ g "1n(d) IEUZZ_I/UlQ(X)w(tr (g—x) d@=lw|/"
xELy 8¢

U2)d(9 ™ w(2(g—g)/ vV =TN29+o(—1)2(g)

aQ)>w|s,
where

(D=0 B 0+ V=T 1 V=) el

If =0,

—27(8)  d(g<1
0 dgz=l.
Case 1) E is unramified; E=E,.

1) geEXVEX 2(9=0if n(g) is not a square in F. If n(g) is a square
in F, take a 6= F* such that n(g)=§* and tr (g)/6=2 (mod pz).

z(g)z{
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~2gG)  dDS T
K=

d(g)>|w .
2) geEX* Write \n(@)lr=|w|"
—2¢"(—=D"2(g) d(g) < |w] %
(=D'd(g) "w((g—g)/Ve)(R2(g)+2(gY)  dg)>|w]|s.
REMARK. We have [#{2)]|=1.

o=

2. Let X be a division quaternion algebra over F. For every absolutely
cuspidal representation @ of GL,(F), there exists a unique irreducible finite-
dimensional representation ¢ of X* such that z=¢* ([8, Th. 15.17).

PROPOSITION 3. Let §2 be a character of a quadratic extension E of F such
that 21E'#1 and o an irreducible representation of K* such that o*=0Q% Denote
by %o the character of 0. Embed E; (1=0,1,2) in K. Then we have

—x(x) Jor xe E¥UEXUE*
xﬁOc):{
dim o 7(x) for xeF*,
If E is ramified, then
(g+Dg"t  I>0
dim 0:{

2 [=0.

If E is unrvamified, then dim o=2¢'"%,

Proor. This follows from [8, Prop. 155] and Proposition 2. Note that
FAUEMJEMJE® contains a representative system of the conjugacy classes in

. This proposition may be proved also in the way stated in Gel'fand and
Graev [5].

PROPOSITION 4. [n the notation in Proposition 3, ¢| XK' decomposes with multi-
plicity 1 into the irreducible representations of K* of the same dimension, except
for the following cases:

1) E is ramified and [=0.
2) E is unramified and 21E' is of order 2 (hence I1=1).

PrROOF. We begin with a simple lemma.

LEvMMA 2. Set G=K" and H=F"X*. If there exists a g&= H such that y.{g)
+0, then the assertion of Proposition 4 is true.

Proor. H is a normal subgroup of index 4. Let © be an irreducible
character of H and 7 an irreducible character of G contained in Indg o, We
bhave
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> o(ghg™ if heH,

Indg,Hp(h):{ geerH

0 otherwise.

Suppose that x|H contains ¢ with multiplicity n=2. Indgr¢ contains ¥ with

multiplicity »n (Frobenius reciprocity law) so that Indezpl|H contains ¢ with

multiplicity =n2 This happens only if Indgxo! H=4¢, Indgzp=2%. It follows

that x(g)=0 for g< H, contradictory to our assumption. Lemma 2 is then

obvious, since | H is a sum of distinct characters of the form h—¢(ghg™).
Let us see that we have %.(2)=0 (for all g& H) only in the case 1) or 2).

Suppose that E=F,. If g=1++/—ww " with k>0, <o}, then n(g)& (F*)* and

d(g)=1. We have

1o 9)=—1(2)w(e)(2(g)+(—-1)2(g")=0
and so

2.2) A —(1— Tt e Y1+ v~ ot e ) = —a(—1).

Since U,={(1—vV=ww")(1++/—ww"E) | oy}, (2.2) implies that £(—1) =
—w(—1) and 2(U,)=1. Hence [=0.

Assume next that E=E,. Let g be an element in E such that n(g) is a
non-square unit. Then d(g)<1. But if d(g)<1, then tr(g)*—4n(g)=0 (modpr)
and hence n{g) is a square. Since this contradicts the assumption, we must
have d(g)=1. Therefore

(2.3) 1o 8)=—(—DHR(g+2(gN=0.

For every x€E? we can find a y=E such that x=y~'y". It is immediate to see
that xe(ED? if and only if n(y)e(F*)%. It follows from (2.3) that £(x)=—1
for all xe E*—(EY2. Since 2{E's#1, we have
..Q = _Q b +*
j(Elﬂ (x)dx f (x)dx#0

E1-(ED?
so that 2[(EY)?=1. Hence £|E"is the unique character of E* of order 2, q.e.d.

ReMARK. The representations excepted in Proposition 4 can be charac-
terized as follows. Let E be unramified and £ a character of E* such that
Q|E' is the unique character of E' of order 2. If © and P are the maximal
order of X and the maximal ideal in 9, respectively, then O°/(1+$B)=o0z/(1+9z).
Extend 2,=2]0} (viewed as a character of ) to a character ¢, of F*O* by

@ olax)=2a)2,(x) asF*, xeD°.

Then the excepted representations are the induced representations of ¢ (for
some £ with the above property).
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§ 3. Theta series which is a new form.

1. Let X be a definite quaternion algebra over Q. For a place v in Q, we
set Hpy=H Qs (@, is the completion of Q@ with respect to v). The set of all
places ramified in X is denoted by S. Suppose that {o,},cs is a set of finite-
dimensional irreducible representations ¢, of X with the following properties.

i) Identifying X% with the group of all (_a[; 2) in GL,(C), we have

o g ={(det g)"*p, (2,

where p, is the n-th symmetric tensor representation of GL,(C).
ii) If 7, is the restriction of o, to the center, the character Ns= ®S77v of
rE

EISQ; is extended to a character » of A*/Q” such that 7,(Z,)=1 for p&S (here

A is the adele ring of Q).
In the following we use the notation in [12]. For a maximal order © in
K, we set
Die=11 O, x IL K5,
=8 TES

I
Hi=\U K xD%s ,

1=1
i -1
di=K" NxDhex; 7t

Let us see if there exists an irreducible admissible representation t=Q,
of #(X}) such that

3.1 7 is contained in Ay, X)), my=0, (for v&S), and
7|9, contains the identity representation (for pe&S).

Assuming that this is the case, let 9 be the sum of all irreducible subspaces
Y in Ay, K3) such that the representation of H(J}) in O satisfies (3.1).

By definition U contains a non-zero vector invariant under [ID;. We see
=S

that the space of HSD; -invariant vectors in U is the space H of functions ¢
=
on J left KA *.invariant, right T Oj-invariant, and transforming according to
p=8
US:®SU,, by the action of Hs=TI K; (i.e. the representation of s in the

e TES
space spanned by the right translates of ¢ is equivalent to a direct sum of os).
Conversely, if H+# {0}, then there exists a representation 7 of 4 (X}) satisfying
(3.1).

For o= H and g=X}, put u(g)=v(x,g). u, is then a linear combination of
the coefficients of s, and u,(0g)=u,(g) for d=4,. Hence H+ {0} if and only if
there is an ¢ such that og|4; contains the identity representation. This is equiva-
lent to saying that
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ili) there exists an i such that ) > . Xog(0)#=0.
sS4y 3,06
We further assume that o

iv) every finite place p in S is odd,

v) for every peS, there exists a quadratic extension E, of @, and a
character @, of E} such that ¢,*=0,* and the restriction of ¢, to KX, decom-
poses with multiplicity 1.

Put KI:IUIK},, Ki=xt (wvel), Ki=XIND, (veS). If 7 is a representation

satisfying (3.1) and <V is the space of = contained in Ay, X%), then we have

cwNH=3>(d).
b
Here »>=®b, runs through all irreducible representation of K' with the property

3.2) by=1 for all v&S,

and V() is the space of elements in <V transforming, by the action of K7
according to b. It follows from v) that if <¥/(b)= {0}, then b appears in w|K*
with multiplicity 1. So we are in a position to apply [12, Th. 1] to the func-
tion defined by [12, (4.10)].

2. Define a function M in S(X ) by
M(x)=TIM(x,),

M,=the characteristic function of £,  (p€S),

M (0=

X, (x7h) xeZy X}
{ "o ’ (p<S).

otherwise
M (x)=e %" @ tr p,(x).
Put GL(A),={seGL,(4)detsen(X;)} and for s€GL,(4), write s=
(deots (1))31’ det s=n(h) with hexy. For geX and ¢<H, define a function
o 0n GL,(A). by

(33) op(=1det sl 1, 10(ha)[ S r(s)M(g " Eaihe)1de:

T RC geX?
and extend it to a function on GL,(A) invariant under the left translation of
GL,(Q). Here 7 is a Weil representation of SL,(A4) in S(K,); it depends on a

choice of an additive character ¢ of A/Q, which we assume to be of the form
D) =TId.(x,) With ¢(x)=¢>"" (a standard additive character of 4/Q). Put

(3.4) f¢.g<5>:E€ ¢prg<s (8 (]D) ’
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¢ running through a representative system of (IISZ )/ HSZ; ). Then [12, Th.
e pe

1] asserts that if p=V(d), then f,, is in the space <V* of n* contained in
Ay(n, GL,(A)), where ©* is the representation of #(GL,(A4)) corresponding to =:

(35) = Q 7wy Q) wo*

&S PES

(note that ¢, ,=(dim d)"'¢(g)$s in the notation in [12, (410)] and dimz>1 by
the assumption v)).

We now prove that f,, is 2 ‘new form’ in the space <V*. To be more
precise, let €V,* be the space of m,* (we set m,*=n, for v&S); let (V,*)° be as
in §1, No. 2 for v#co and (V..*)® the space of f in &/..* such that

cosf) sinf ; 9
72700*< { ) _ pitnen
—sinfl cosf f /s

and set (CU¥)'=R, (V5"

THEOREM 1. Let m be an irreducible admissible representation of H(K}) satis-
Sying (3.1) and VAL, K5) the space of =. Let d be an irreducible representa-
tion of K' such that <v(t)#{0} and db,=1 for v&S. If oe(d) and ge K3,
then f,,(cV*)°. Here V* is the space of n* defined by (3.5).

PrOOF. Recall that, if

we=[, 1G5 Dept—axda,

then f—W(f) gives an H(GL,(A))-isomorphism of </* onto the Whittaker space
W* of n*, By [12, §5, No. 11, W{d,.,) is of the form

(36) W, 5)=(dim D) p()@W>) ,
Wo($)=det slauf s n(@h)ro(s)Mu(g:)dey

for seGL,(Q,) with detsen(X}), and

Wo(s)=0 otherwise.

Here we write s:<deots (1)>Sl’ det s=n(h), he X as before, and denote by w,,

the spherical function of =, of type b, It follows that W(f,,=
(dim 9) () (QW,"), W, =W, for v&S or v=o00, and
0
Wv/(s): > Wv N :
eczlizH? <<0 1>)

for veS, v#co. Hence, in order to prove the theorem, it is enough to show
that W, e(,*)° for all v. If v&S or v=oo, this has been done in No. 4 or
No. 11, respectively, of [12, §5]; so we assume veS, v#co and write v=p.
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To every Wew,* we associate a function W<<g 2)) of £in Q. By [§
Th. 2.14], W*—>W<(g ?)) gives an isomorphism from % ,* onto the Kirillov space
of z,* It follows from Corollary of Proposition 1 that W,/ (% ,*)° if and only
if W;((g ?)) is a constant multiple of the characteristic function of Z;. So

the proof is complete if we show that Wp<<§ g)) is a constant multiple of the
characteristic function of (Z;)%. We have

W(§ D=1 L] ponlamMande,

with §=n(k), hedc;. By the definition of M, W,((5 ¥))=0 if sz 1
£e(Z;), we may assume that heZy'; then w,,(8.1)=7,(M)w,,(g), and M,(g.h)
=1,(h"YM(g). Hence Wp<(§ g)) is independent of & (it is also easy to see

that Wp<<(l) (1))):1), q.e. d.

3. If & runs through all the irreducible subspaces (in a direct sum decom-
position of Ay, X)) such that the representation of (X)) in <V satisfies
(3.1) and if b runs through all the irreducible representations satisfying (3.2),
then the direct sum of (b) is the space H. On the other hand, f,, is linear
in ¢ so that for every ¢ H, f,, is contained in the space H* of all f in
ALy, GL,(A)) with the following properties.

1) By the action of 1@% H(GL(Q.)), f transforms according to gE@Sav*.

2) f(s<_cosﬁ sin 6>>:ei(n+2)&f(s).

sinf cosé
3) fis right pl;[SGLZ(Zp)-invariant.
9 7 B)=nofts) tor (¢ 5)SGLIZ,), r=0 (modp'n),

where p'7 is the level of o,*.
Every feH* can be regarded as a function on the upper half plane in the

0 >ESL2(R) and z=b+a%, we put

usual way. Namely, for 3—_—((1) 1{)(8 a!

Ff(z>:a—(ﬂ+2)f(s) .
Set N=II p*?, nle)=1II7,(a) for acZ,
DPES pesS

rn={(% 3)eSLZ)1r=0 (mod M}

Let S(n+2, 7%, I'y(N)) be the space of holomorphic cusp forms F satisfying



Some examples of new forms 109

(L2 =F@)r2+0y+70)

for (;‘f g)emm. It is well known that the image of H* by foF; is just
the essential part of S(n+2, n7%, I'{(N)).

4. In the rest of this paragraph we shall discuss some sufficient conditione
under which we get F,;#0 for f=/,,. In the notation in No. 1 of this para-
graph, suppose that

vi) > Yas(8)#0

sed/ane®
with 4d=4,, and that
vii) for every peS, there exists a d= 4 with n{d)=p.
Define a function ¢ on X as follows: ¢(g)=0 if g&X"Ofs.

(@)= X Ass(0hs)

5€4/40Q*

if g=7h, yeX*, heOjs, where hg denotes the S-component of 4. Then we
have o= H and ¢(1)+0 by vi).

Write F=F, for f=f,,, g=1. We are going to show that, up to a constant
factor depending only on og, we have

3.7 F(Z>:§ 55A§mxXGS@{:~1)n(5)n/2ez:in(g>z ’

& running over all elements in £ such that £, for peS.
LEMMA 3. The assumption vii) implies that

KANHE Dho=Ke(K4MDlie) -

Proor. Put Z(5)= ﬂS(QmZp) and denote by Z(S), the group of all positive
PE.
units in Z(S). vii) is the same as to say that n(4)=Z2(S),. Let g=rk be any
element in JiNK; Dk (FEKS, kEDhw). Then n(y)=nk)*€Z(S),. If § is
an element in 4 such that n(8)=n(y), then g can be written as g=y0 0k with
rolexl, ke X inDis, aq.e.d.
1 b 0
Let s:(o 1)(8 a_l)eSLZ(R). By (3.3) and (3.4) we have

Fork=Zf 3 0(&hIL T r(OM(Egih)ldg:,
ev @\ 4 [ L=k )

where A, is an element in X3 with n{h.)=¢. By Lemma 3 we have JHN(KiN

K Ohis) =EN(K N if E=KiND%s. Note that E is a finite group. Put

K= HSJC},. Since ¢ and M are invariant under the right translations by ele-
rTE.

ments in TI KL, we obtain
LN .
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For =T S J 4 ¢RRIISrOM(EkR) 1k

:EE_{U T3 { 1y Xos(ORRIP(S)M(Ekh)dE .

If peS, then o¢,|K% is the sum of inequivalent irreducible representations of
the same dimension d, (Proposition 4). It follows at once that
[ 1 2o gL (k) dl= 5 205(2)
‘D
for geX,;. Hence

B[ 1 2oy OkhIM (kb )dr

{ dp'Xe (067 if £€9D;,
B 0 otherwise .
On the other hand, we have

700(5)Mm(x) :an+2n<x>n/2xdw(x—l)ezzin(z)z
for xeAZ so that

[ i tolobra(IMAER) R
’—"(ﬂ—i— 1)—1an+2n($)n/222:in(5)zxﬂw(5$—1) .

This proves (3.7). It must be noted that the first Fourier coefficient of F is not
0 in virtue of vi).

REMARK. A similar kind of new forms, also associated with a definite
quaternion algebra over @, is introduced in Pizer [9]. It must be connected
with ours. For the present we can not make it clear what exact relation holds
between them.

5. We discuss a special case where S={p, oo} and #=0. To examine the
conditions we have been assuming, the expression of X and O given in Ibuki-
vama [7] is convenient. We quote it here limiting ourselves to the definite
quaternion algebras of discriminant p.

¢ K=Q+Qa+Qb+Qab, a*=—p, b*=—q, ab=—ba
Q=Z+Z(1+b)/2+Za(1+b)/2+Z(r+a)b/q.

Here ¢ is a prime number such that ¢=3 (mod8), (—¢/p)=—1 and r is an
integer such that »*=—p (mod q).
(ID) If p=3 (mod 4),

K=Q+Qa+Qb+Qab, a*=—p, b>=—1, ab=—ba
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O=Z+-Zb+Z(1+0a)/2+Z(1+a)b/2.

(I If p=7 (mod 8),
H=Q+Qa+Qb+Qab, a®>=—p, b*=—2, ab=—ba
O=Z+2Zb+Z(1+a)/2+Z(1+a)b/4.

(The case (IIl) is not stated in [7], but can be obtained in the same way.)

For small values of p, all the types (isomorphism classes) of orders in X
are found among (I), (II), (Ill). For instance, the followings are the representa-
tives. p=3, O,=(1D); p=5, O,=) with ¢=3 and r=1; p=7, O,=(1); p=11, O,
=(I) with ¢=3 and r=1, 0,=D); p=13, ©,=) with ¢=7 and r=1; p=17, O,
=(I) with ¢=3 and r=1, 9,=() with ¢=11 and r=4; =19, 0,=() with ¢g=11
and r=>5, 0,=(1D); p=23, ©,=() with ¢=3 and r=1, 0,=(1), O,=II); p=29,
,=1) with ¢=3 and r=1, O,=(1) with ¢=11 and =2, O,=() with ¢=19 and
r=3,

If O is as given in (I), (II), (III), then ¢=9O so that the condition vii) is
satisfied. Then we have 4/4N\@*=5*/{+1}\JaD*/{x£1}. If p=3,

O/ {x1=1{1,b, 1+a)/2, 1+a)b/2} .

If p>3, the number of units in © is 6, 4 or 2. An order with 6 units exists if

and only if p=2 (mod 3); the type of such orders is unique and is represented
by O=(I) with ¢=3 (cf. Eichler [3]). We have

O /{11 ={1, A=*b)/2} .

An order with 4 units exists if and only if =3 (mod4); the type of such
orders is unique and is represented by O=(II) (ibid.). We have

O /{1 ={1, b} .

THEOREM 2. Let KX be a definite quaternion algebra over Q@ of odd prime
discriminant p and O one of the orders given in (), (1), ({1I). Let E be a quadratic
extension of Q, and 2 a character of E* such that 2{E*+1. Let p* be the level
of 2% and let 3, | be the same as in Proposition 2. Assume that n(+p)=1, [=1
if E is ramified, and 2|E* is not of order 2 if E is unramified. In each of the
Jollowing cases, the function F defined by (3.7) with 6,=2% and o.=1 is a non-
zero element in the essential part of S@2, 7%, I'y(p"h).

1) O={x1}.

2) p=3, O=I.

23) E=Q,(~/=3). =1 (the following two cases are excepted: =2, 2((—1
+v=3)/2)=1, )2V —=3)=1; =1, 2(—1+—3)/2+1, (D2(~v=3)=1).

2b) E=Q,(~/3). I>1.
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2¢) E=Qy~/—1). (=1

3) p=3 (mod4), p>3. O=(I).

3a) FE is ramified.

3b) E=Q,(v—1). [>1; or I=1 and 2(~/—1D)=1.

4) p=2 (mod 3). O=(I) with ¢=3.

43) E=Q,(~/—p). (=1 and p>5; or [>1 and p=5.

4b) E=Q,(~ —pe,) with a non-square unit g, in Zp.

4¢) E=Q,(~/=3). [>1; or I=1 and 2(—1+~=3)/2)=1.

ProOF. The theorem can be proved simply by checking vi) case "y case.
example, if ©*={+1} and E=Q,(~/—p), then, by Proposition 2, we have

e Hor D= Lop(DH2o,(0)
=(1+p)p' "+ —2(DR(V/~D)#0,

since |{(D)|=1.

REMARK. 1) Replacing 2 by £2(uen) for a character ¢ of @7, we may

assume that t=2[+1 if E is ramified and =2/ if F is unramified. 2) The theo-

rem

at the end of [13] is not correct; we have to exclude the case stated in

Proposition 4 of the present paper.
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