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1. Introduction. Throughout the paper, p will denote a fixed prime num-
ber and G the cyclic group of the pth roots of unity. Let M be a compact,
connected smooth manifold. In case p is odd, M is assumed oriented. Suppose
that the group G acts on M smoothly. Then, the fixed point set F of the
action is a compact submanifold of M. We do nof exclude the case where the
manifold M has a boundary dM. Thus, the boundary oF of F is contained in
dM and F intersects dM transversally along 0F. The purpose of this note is to
present a new fixed point theorem which relates the characteristic classes of M
* to those of I and its normal bundle in M. The cohomology and the charac-
teristic classes are taken with coefficients in Z,, the group of integers mod p.

To show the nature of the theorem in its simplest form, we shall state it
here only in the case p=2. We consider the mixed cohomology class

Sq i w(F)e H(M),

where w(F) is the total Stiefel-Whitney class of F and j, denotes the Gysin
homomorphism of the inclusion map j: FCM. j, is defined to be the composi-
tion

19*}

8F ]* M
HXF) —> Hx(F, 0F ) —> Hx(M, M) —> H*(M),

where 97 and J, are the Poincaré.Lefschetz duality isomorphisms. Let u;&
HY(M) be the i dimensional component of the above cohomology class;

> u=5¢7j(w(F)), m=dimM.
=0
THEOREM. Under the situation stated above, we have
uZ:O f07" i>—72n— .

For the details and the corresponding results for odd p, see Theorems 3.3,
3.16, 3.18 and Corollaries 3.4, 4.11, 4.12, 4.14, 4.17.

COROLLARY. Under the situation above, assume moreover that the dimensions
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of the components of F are all smaller than m/2. Then
D Jw(F)=0.

Note that, if the manifold M is without boundary, the top dimensional com-
ponent of the relation (1.1) implies that the Euler-Poincaré characteristic %(F)
of F must be even. This result was flirst proved by Conner and Floyd [4]
using the cobordism theory.

It is well-known that

L(FYy=x(M) mod 2.

When M has no boundary, this can also be deduced from the folowing

PROPOSITION. Assume M hds no boundary. Then,
AMT, Wmp)>=2(M)  mod 2,

where we understand that un,=0 when m is odd, and the lefi-hand side denotes
the Kronecker product on the mod 2 fundamental class [M].

The idea of the proof can be explained as follows. We let the group G
act on the p-fold cartesian product M? by

(12) w(xlv Y xp):(XZy Tty Xpy xl) ;

where w=¢2*¥?, This action can be regarded as a universal one with respect
to actions of G on the given manifold M. In fact, if there is given an action
of G on M, then we can define an equivariant mapping 4: M—M? by

(1.3) A(D)=(x, wx, w’x, -+, ®*"x).

The mapping 4 embeds the manifold pair (M, dM) in (M?, 0M?) equivariantly.
Thus, the equivariant Gysin homomorphism

4y: HY(M) —> HE™7 (M)

is induced, where the equivariant cohomology Hg(X) is defined for a G-space
X by
Heg(X)=H*(EGX X)),

using a universal G-bundle EG—BG. Recall that the manifold M is oriented if
b is odd and that the cohomology is taken with coefficient in the integers mod p.
Now, it turns out that the class 4,()e Hg»=P(MP) is particularly important.
For instance, it is successfully used by Nakaoka in his investigations of equi-
variant point set with respect to involutions on manifolds (cf. [10]).
By the structure theorem due to Steenrod, the cohomology HE(M?) can be
completely described using the Steenrod operation

P H¥(M) — HEM?).
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Thus, it is natural to seek a formula for 4,(1).

In this paper, we give an explicit formula relating 4,(1) to the characteristic
classes of the fixed point set F and its normal bundle. It is deduced using the
localization theorem. The desired fixed point theorem is a by-product of our
procedure and is obtained as a sort of integrality theorem.

The deduction of the formula will be given in Section 3. Section 2 is
devoted to preparing the necessary machinaries such as the Steenrod operation,
the structure theorem and so on. It is mainly expository. In Section 4, we
shall give slightly different expressions of 4,(1) and some of applications.

Part of the results of the present paper were announced in [6]. In a
subsequent paper, further applications will be discussed.

2. Preliminaries. First, we shall recall basic facts concerning the Steenrod
operation (cf. [12]). - For a nmioment, G will be a compact group. The equivari-
ant cohomology of a G-space X is defined by

HE(X)=H*EGX X)),

where EG—BG is a universal G-bundle. We shall denote the space EG>G<X by

Xz If f: X—Y is a G-map between G-spaces, then id X f: EGX X—EGXY passes
to the quotient and yields fg: X;—Y, The induced homomorphism HE(f):
Hi(Y)—H%X) is defined to be f¥: H¥V;)—H*(Xy). Instead of HE(S), we
shall denote it simply by f*.

Thus, we have a cohomology theory defined on the category of G-spaces
and G-maps. This theory is a multiplicative theory and has a cross-product
and cup product. In particular, H}(X) is a module over the ring H¥(pf) and
7* is an HF(pH-module homomorphism.

Since EG is a contractible space, EGx X is homotopically equivalent to X.
We identify H*¥(EGx X) with H*(X). Thus, the projection = : EGXX—»EG%;X
=X; induces =n*: HH(X)—H*(X). If G is a finite group, then the projection
7: EGXX—X; is a covering map. Therefore, the transfer homomorphism
7 H¥(X)—H#X) is defined. It is induced by the chain map 7:S«(Xg—
S«(EGX X) defined by

t(o)y= 2 ¢

Tof=¢g
for each singular simplex ¢ in Xg.
The following lemma is immediate, the cohomology being taken with co-
efficients in the integers mod p.

LEMMA 2.1. Let G be a finite group and X a G-space. Then, the equality
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holds. If, moreover, p divides the order of G, then we have
miom*=0.
Hereafter, G will be the cyclic group of the pth roots of unity, p being a
prime number. Let G act on the p-fold cartesian product X? of a space X by
the formula (1.2). We also let G act on é)S*(X) by

0(0,& -+ ®‘7p):0'2® ®0'p®01 .
Then, the Alexander-Whitney chain homotopy equivalence S*(Xp)aés*()() is
G-equivariant. Let ¢:S«(EG)—Z be the usual augmentation. ¢ is equivariant

with respect to the trivial G-action on Z. Hence, if uceHom (Sx(X), Z,), then
the composition

(Qu)(c@1) : Se(EGC)R(QSx(X)) —> BS:(X) —> @ Z,=7Z,

is equivariant. Thus, P(u):((pX)u)o(s(X)l) belongs to the cochain complex
HomG(S*(EG)(X)(&)S*(X)), Z,). Note that the cohomology of this cochain com-
plex is canonically identified with HX(X?)=H*(X%).

Now, it can be shown that, if ueHom (S«(X), Z,) is a cocycle, then 6P(u)
=0. Furthermore, if u and v are cohomologous cocycles, then P(u) and P(v)
are also cohomologous. Hence, P passes to the cohomology, vielding a natural

transformation
P: H(X) — HP(X?)

which is called the Steenrod operation. Note that P is not additive. In fact,
we have

LEMMA 2.2. The following equalities hold.

(i) Plu+v)=Pu)+P(v) mod w-image, where n,: H¥(X?)—-H%X?) and u,
ve HY(X).

(ii) Pluv)=(—1)2@-22e2 p(y) P(v), ue HY(X), ve H¥(X).

(iii) #w*Pu)=uX --- Xu (p-fold cross-product), uc H¥(X).

Let d: X—X? denote the diagonal map.
LEMMA 2.3. The composition
d¥omry: H¥(XP) —> HEX?) —> H¥X)
1s a trivial homomorphism. In particular,

d¥+ P: H¥(X) — H}(X?) —> H%X)
is additive,

In Lemma 2.3, H¥(X) is the equivariant cohomology of a space X with the
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trivial G-action. Since EG>éX:BG><X for a trivial G-space X, it follows that

24 HEX)=HEpHQH*(X) .

In particular, H}(X) is a free HE(p{)-module.
As is well-known, the cohomology ring H}(pH)=H*(BG) is given by

ZZ[a] H aEHGl(pt) ’ for p:2 ’
M)QRZ,LB], asHKpt), B=HKpy), for odd p,

where A(@) denotes the exterior algebra on one generator a. If J: H{(X)—
Het'(X) denotes the Bockstein operator, then

B=d(a).

Hi(p0)=]

We define w,= HE(pt) by
[ wy=a*  for p=2,
wy=F, Wy =af for odd p.

The Steenrod operation P is related to the cyclic recuced power operations
Pt H(X)—H**® DY X) (or to the squaring operations S¢°: HY(X)—H*"*(X)
when p=2) by the formula

1e/21 ; {a/21 ;
igow(zrzi)(p—l)x &P (u)-+ g)w(q—zi)(p-l)—xxaei@ ()

(2.5) % P(1)= for odd p,
f_,(‘)wq_iXSqi(u) for p=2,

where us HY(X). Here ¢, is given by
(2.6) e;i=(—1)(rH™*

where r=(p—1)/2 and s=it+r(g*+q)/2. We note the following relations for
ue HY(X). :

@7 PYu)=u, PU:y)=uP if ¢ is even.
(2.8) Sq*(w)=u and Sq¥u)=u.

Moreover, the total operations ®= 3 @' and Sg¢g= 3} S¢* satisfy the Cartan
i=¢ i=0
formula

2.9) { Pluv)=L(w)P (),

Sq(uvy=Sq(u)Sq(v) .

In the present paper, we are only interested in even dimensional cohomology
classes when p is odd. In that case, the coefficients ¢; in (2.5) are much sim-
plified. To see this, we apply the following lemma, which is also needed for
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later purposes.

LEMMA 2.10. Let p be an odd prime number. If 0,(x;, -+, x,) denotes the ith
Ffundamental symmelric function of the variables x, -+, x;, ¥=(p—1)/2, then we
have the equalities

o1, 2%, 3% -, rD)=0,(1,27% 373 -, r7F)

{ 0 for 1=<i<r,

=== for i=r,
which hold in Z,.

In fact, 1%, 22, ---, r? are mutually distinct #th root of unity in Z,. Thus,

mﬂ

(x—=1®)=x"—1.

~
Il

1
Similarly, we have

m‘l

L (x—I"H=x"—1.

I

1

Hence we obtain the desired equalities.
Assume now ¢=2k. From (2.6) and Lemma 2.10, we obtain

(2.11) g;=(—1)"**%.

In particular, if ue HYX) is such that §2*(u)=0 for all 7, then the formula
(2.5) for odd p reduces to

BWig-ririp-p X (1P w) if g=0 mod 4,
=P Weqopirep-n X (= 1)@ u) if g=0 mod4.

(2.12) d*P(u)=

Next, we shall state the structure theorem for H#(X?) in the following way.

THEOREM 2.13 (Steenrod). Let X be a finite CW complex. Then, m-image
of H*(X?) in HXXP) coincides precisely with the H¥(pt)-submodule consisting of
those elements which are annihilated by the ideal HE{(pt)= ; HY(pt). The quotient

>0

module HE(X?)/r,-image is a free HE(pt)-module. Itsrank is equal to dim H*(X)
and it is generated by poP(H*(X)), where p: H¥{X?)—H¥(X?)/z,-image denotes
the canonical projection.

REMARK 2.14. Since the quotient module is free, the extension is split. Note
that the map poP is additive. We can restate the theorem in the following
way. Take a homogeneous basis {x;} of H*(X). Then, the module H&X?) is
a direct sum of w.-image and the free HZ(pt)-module on the generators {P(x,)}.
r-image is spanned over Z, by {m(x; X -~ Xx;,)} where (i, -+, 1,) ranges over
the sequences such that 7,< --- =i, with at least one inequality 7,<t,s.

The proof of Theorem 2.13 can be found in [127. However, some comments
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would be worth mentioning. First, using (2.5), it can be shown that d*P: H¥*(X)
—~HEX)=H§pt)YQH*(X) is injective. From this, it follows that {P(x,)} are
linearly independent over HE(pt), and, hence, H4(X?) contains a direct sum A
of m-image and the free H#(pt-module on {P(x,)}. Next, in the spectral
sequence associated with the p-fold covering EGXXPHEG>G< X?, the dimension

of E4 can be computed easily for each ¢. On the other hand, the dimension of
EZ is bounded from below by that of A% the component of 4 in degree ¢. But
it can be shown that dim F3=dim A% It follows that the spectral sequence
must collapse and, hence, HE(X?)=A, proving Theorem 2.13. Thus, the con-
clusion of the theorem holds under the hypothesis that dim H*(X) is finite,
without assuming that X is a finite complex.

COROLLARY 2.15. Let X be a finite CW complex. Then,
d*Pr* . HE(X?) — HEX)QH*(X?)

18 mjective,

In fact, d*-kernel coincides with z-image. But, =*|z-image is injective by
Lemma 2.1. Hence, &*@=z* is injective.

We turn to the Gysin homomorphism. Let X and Y be compact G-manifolds
and f:(X,0X)—(Y,8Y) a G-map. When p is odd, we assume X and Y are
oriented. Then, we introduce the Gysin homomorphism f, : HY(X )~ Hgrdim¥-dimx ()

as foilows. Let G acts on S***' by scalar multiplications. Passing to the limit,
we may take S¥= lim S?#*L ag a universal G-bundle. Since f is equivariant, it

induces f&: S””>é(X, 8X)—>S““>G§(Y, 9Y). Thus, we have the ordinary Gysin

homomorphism
(fé;k)>|l Hq<52k+1><X) - s Hq+dimY~dimX<S2k+1>< Y) A
) G G

Taking % large enough, this defines the desired Gysin homomorphism. It can
be shown that the definition does not depend on the choice of k. f, is an
H¥(pH-module homomorphism. Moreover, if ueH%(X) and ve H¥Y), then the
relation

(2.16) Suwf*w))=rfi(wyv

holds.

If E—~X is a G-vector bundle, we take a G-invariant metric in £ and denote
by D(E) and S(E) the unit disk bundle and the sphere bundle of E respectively.
Jj(E) will denote the union S(EY)JD(E|9X), which is precisely the boundary of
the manifold D(E). The zero cross-section 7: X—FE maps (X, dX) into (D(E),
[3(E)). When p is odd, we assume the manifold X and the bundle £ are both
oriented; we then orient the manifold D(E) concordantly., Then, the Gysin
homomorphism {,: HE(X)—HE(D(E)) is defined. Actually, ¢, coincides with the
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composition of the Thom isomorphism ¢: HE(X)—HED(E), S(E)) and the restric-
tion homomorphism H(D(E), S(E))—HED(E)) and, hence, the orientability
assumption of the manifold X in the definition is redundant. *i,(1)e H{X) will
be called equivariant Euler class of the G-vector bundle E. We shall denote
#3,(1) by e(E). The equivariant Euler classes satisfy the product formula

o EDF)=e(E)e(F).

By a G-module we mean a vector space with a linear G-action. According
as p is odd or p=2, the basic field will be the complex number field or the real
number field. A G-module V can be regarded as a vector bundle over a point.
Hence its Euler class e(V)eHE(pt) is defined. 1f V is a G-module, then the
submodule

Vé={veVigv=v for all g&G}
is called the trivial factor of V. Let S denote the set of the Euler classes of
G.modules V such that V&=0. It is well-known that S coincides with {aB*la+0,
k=1} if p is odd and with {a®|k=1} if p=2. Since S is multiplicatively closed
in H%(pt), the localization S™'L of any H§(pt)-module L is defined.

LeEMMA 2.17. Let E—X be a G-vector boundle over a compact trivial G-space

X. Assume that the trivial factor ES reduces to the zero section X. Then, the
Euler class e(E) is invertible in ST HEX).

THEOREM 2.18 (the localization theorem). Let M be a compact smooth mani-
fold with a smooth G-action. If F denotes the fixed point set of the action, then
the inclusion j induces an isomorphism

¥ STTHEM) — STHEF) .
Moreover, if V—F denotes the normal bundle of F in M, then the inverse of j*
is given by

(0 w=i Gy ), wSSTHEE).

For the proof of Lemma 2.17 and Theorem 2.18, see [2] or [5]; cf. also
Lemmas 3.5 and 3.6.

As a special case of Theorem 2.18, we consider the diagonal map d: M—M?.
It can be regarded as the inclusion map of the fixed point set of the standard
G-action (1.2) on M?. Thus, d*: STTHE(MP)—~S*H#M) is an isomorphism. This
can also be seen from the structure theorem (Theorem 2.13). In what follows,
we shall give a formalism by which we express d*~' using the Steenrod opera-
tion.

We first define a ring homomorphism

Py: H¥(X) —> STHHX")  (p=2)
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Py Hoven(X) ——» STUHE(XP) (p odd)
by
Py(u)y=p"24P(y), we H(X),
where S=a® when p=2 and He*(X)=3H*(X). From (25) it follows that P,
is injective.
First, assume p=2. Given a sequence {x:}, x;€e H(X), we set

(2.19) x=Xa e STTHEX)

and define v, H¥X) by

(2.20) ve= 2, Qx,
ifi=k

where Q’: HY(X)—H%(X) are the operations defined by
{ 1 for k=0,
0 for £>0.

2 S¢Qi=

i1k

Next, assume p is odd. Given a sequence {x;}, x;€ H¥(X), we set

2.21) x=X8" x, e STHE(X)

and define v, H**(X) by

(2.22) = % Qix,
i+ (p—-1)j=k

where §7: H*( X)—H*"+2®-Dj( X} are the operations defined by
{ (=D  for k=0,

3 (D' Qi (w)=
pri=k for £>0,
for ue H*®(X).
LEMMA 2.23. Let X be a finite CW complex. If p=2, for a given sequence
{x}, x;€ HY(X), the relation
x:d*Po(gvk)

holds, where x and vy are given by (2.19) and (2.20). If p is odd, for a given
sequence {x;}, x,= H¥(X), which satisfies

0PIx,=0  for all j,
the relation
x:d*Po(§} V)

holds, where x and v, are given by (2.21) and (2.22).

PrOOF. We shall give a proof only for odd p, the case for p=2 being
entirely similar,
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We have
x= B x
=38"*% X (="ew; by (222)

(w—1n+j=k
= Z,: R E; BEDUD(1)ri@iy,
=3 § PR d*P(v;) by (2.12)
=3 d*Py(v))
=d*Py(3v,).

REMARK 2.24. Let E—X be a complex vector bundle. Then, the ith Chern
class ¢{E)e H*(X) satisfies

(2.25) 0P e (E)=0

for all j. In fact, the Chern classes come from the complex Grassmann mani-
folds whose odd dimensional cohomology groups vanish. Thus, the relation
(2.25) holds universally.

3. The class 6(¢). Let M be a compact connected smooth manifold with
a given G-action ¢. We define an equivariant embedding 4: M—M? by the
formula (1.3). When p is odd, we assume M is oriented, so that M? is oriented
accordingly. In this section we shall give an explicit formula for the class
0(d)=4,(1)e HP>™(M?), where m=dim M. Note that it is sufficient for that
purpose to give formulas for d*0(¢) and n*6(¢) by virtue of Corollary 2.15.

Assuming 7 is odd, let E—>X be a complex vector bundle of complex dimen-
sion n over a CW complex X. For any non-zero [eZ,, we define

CRY; W(E)= 3 QUre(E)eHMX),

t+(p—1)j=%
and set
v(E)= ; vP(E).

When p=2 and E—X is a real vector bundle, we define

(3:2) v(B)= 3 QwiE)

and set
WE)= S viB),

where w;(E) is the ith Stiefel-Whitney class so that v,(E) the kth Wu class.
We simply write v(M) instead of v(z(M)) where z(M) denotes the tangent
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bundle of M.

Let M be a compact, connected, smooth manifold of dimension m, and ¢ a
smooth G-action on M, where G is the cyclic group of the pth roots of unity.
Let F be the fixed point set of the action ¢. Asis well-known [ is a union of
compact, connected submanifolds F;. Put f;=dim F;. Let V; denote the normal
bundle of F; in M.

If p is odd, then V,; decomposes into a direct sum of vector bundles

(p—1)/2
Vi= 3 Ve

i=1

in such a way that each V{ has a structure of complex vector bundle such
that
Hgv=gv, geG, veVP,

where the right-hand side means the scalar multiplication of g'eGCS' with

respect to the complex structure. The vector bundle V; is in particular oriented

as a complex vector bundle. We orient the manifold F; so that its orientation

together with the orientation of the normal bundle V,; gives the orientation of M.
The main goal of this section is to prove the following theorem.

THEEOREM 3.3. Under the situation stated above, the class d*6(¢)e ST HE V™M)
1s given by the following formula.

Py (S (— DT o ((FIRC) TLv (V)
a*g(¢)= (p:0dd, r=(p—1)/2)
amd*Poj { B ((F) vV (p=2),
where j: FCM is the inclusion aﬁd Jv: H¥(FY—H*(M) is the ordinary Gysin homo-
morphism of J.

Before proceeding to the proof of Theorem 3.3, we shall derive an import-
ant consequence from it.

COROLLARY 3.4. In the situation of Theorem 3.1, if p is odd, we set
S (DI s ((FIQC)/ T vV PN} = oty -+ ik,
where u, = HY(M) and u;=0 for odd i. If p=2, we set
j!{Z(v(Fi)/v(Vi))}:uo—i— U, w,e H(M).
Then, we have ~

=0 for i> p;l m.

PrOOF OF COROLLARY 3.4. Assume first p is odd. By the structure theorem
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(Theorem 2.13) together with Lemma 2.2, (i), we can write 8(¢) in the form
0(¢)= 2(J§Pi) B7P(uz:) + > B P(us;_;) mod m-image,

2(7+p0—(p—1)
=(p—-1)m =(p—1im

where u,e H¥(M). Then,
d*0(d)= > BEOMRGP(u)+ Za S d* Py ) .
J

2pig(p—10m

Comparing this with the expression of d*8(¢) in Theorem 3.1, we obtain

AFP()=d*P( > 1),

2pis(p—1dm
where
x=j { (=D (T 0P (2 (FHRQC)/ TLv(VEN} .
Since d*P, is injective, we must have

A= 2 Uy
2ip<(p—-1)m

This proves the assertion for odd p. The proof for p=2 is entirely similar.
We now proceed to the proof of Theorem 3.3.

LeEMMA 3.5. Let p be an odd prime and X a finite CW complex on which G
acts trivially. Let V—X be a complex k-vector bundle with a G-action given by

(g v)y—glv, wveV,

where | is a number prime to p and the right-hand side denotes the scalar multi-
plication by g'=eGCS:. Then, we have

e(V)=a*P(v(V))- p*e H¥(X),
(V) l=d*Py(vP(V) ). *eSTHHX) .
PRrOOF. VG=EG>G§ VQX(;:EG?X is a complex k-vector bundle. Since the

action of G on X is trivial, X; is canonically homeomorphic to BGXX. Then,
it can be easily seen that V; is isomorphic to the exterior tensor product E‘@ v,
where £ is the canonical complex line bundle over BG=L*(p), the infinite dimen-
sional lens space (cf. [9]). Moreover, ¢(V) is equal to the Euler class of Vg in
the usual sense. Hence, if we write the total Chern class ¢(V) formally as

&
(V)= (L),
then we have

o(V)= I (tp+x)

=[RBEF IR (V)4 - (V).
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We apply Lemma 2.23 to this expression and, using (3.1), we obtain
(V) =d*Py(vP(V)) B*.
Similarly to Lemma 3.5, we have

LEMMA 3.6. Assume p=2. Let X be a finite CW complex on which G acts
trivially. Let V—X be a veal k-vecior bundle with the G-action given by

(=1, v)—— —v.
Then, we have
e(V)=d*Py(v(V))-a* e HYX),

(V) r=d*P,(v(V) )-a *eSTHEX).

Now, in the situation of Theorem 3.3, we consider the following commuta-
tive diagram.

F——j———> M
3.7) a| . |4
Ly

where d’ is the diagonal map for F. Let F=\UF; be the decomposition of F
into connected components and let f;=dim F..

LEMMA 3.8. For any component F; and any us H*(F,), we have

JPP(w)=P(j(w)).
Hence

proronp () (b odd),
@ IOP(jw)  (p=2).

Proor. First, we note that the Steenrod operation is also defined in the
relative cohomology and the commutativity holds in the diagram

jepsi=|

P
HY(X, A) — HB((X, A)P)

i* l » l(ip)*
H(X) HE(X?).

Let N be a closed tubular neighborhood of F; in M. Let N denote the cor-
responding sphere bundle. Then, the pair (N, N)p can be identified with the
pair of normal disk bundle and sphere bundle of F? in M?. Since j,=1*¢ and
jP=(iP)*g, where 61 H¥(F)—H*(N, N) and ¢g: HEFF)—HS(N, N)?) are the
Thom isomorphisms, it suffices to prove the commutativity of the diagram
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H*(F)) HEFD)
ol 0 e
H*(N, N) —> HE(N, N)?).

For ue H¥(F,), we have @¢(u)=¢(1)p*u, where p: N—F, is the projection.
Then, by Lemma 2.2, (ii),

Po(u)y=PH(1)Po*(u)
=Po(1)(p")*P(u),

since the fiber dimension of N is even when p is odd as we shall see soon. On
the other hand,

PeP()=¢e(L)(p")*P(u) .

Thus, it is sufficient to prove the equality Po(1)=gd(1).

Since the fiber dimension of N is even when p is odd, the orientation of
the normal bundle of F? in M? coincides with the product orientation of the
vector bundle N?. Thus, the Thom isomorphism ¢¢ is defined with respect to
the product orientation of the vector bundle 1VP:EG>(§1VP—>F zZ’G:EG?F P,

Let =z(y, x) be a point of F¥, where n: EGXF?—FZ, denotes the projec-
tion. The fiber over % of the bundle NE—FF, is identified via = with f[Nz 5
Jj=1

where x=(xy, -+, Xp) and N, is the fiber over x;=F; of the bundle N—F,. Let

LS H*(IIN,, (Hz\.fzj)) denote the cofundamental class. Then, ¢4(1) is charac-
terized by the property that

inde()=p;
for all X=FE,. Since F; is connected, we have only to check this property for
some point X. Now, if x is of the form x=(z, ---, z) for z€F, it is clear from
the definition of P that
inPo(L=(1,)"=p..

It follows that ¢4(1)=P¢(l). This completes the former half of Lemma 3.8.
The proof of latter half is easy and is left to the reader.

REMARK. Lemma 3.8 holds for submanifolds F of M of even codimension
such that dFCdM. The naturality of P with respect to the Gysin homomor-
phism is extended to the maps of manifold pairs (M,, IM,)—(M,, 0M,) of even
codimension. In the case of odd codimension it should be modified by the pres-
ence of a sign.

Note that, when p is odd, each component of F? is given the product
orientation with respect to which the Gysin homomorphism J? is defined. Let
N, denote the normal bundle of the diagonal embedding d;: F;—F2?. The group
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G acts on the tangent bundle z(F®)=7(F,)X --- Xz(F;) by

w(”h Tty up>:(u2y "ty upy ul) .
This induces an action of G on N,.

LEMMA 3.9. Assume p is odd. The normal bundle N; decomposes into a
divect sum of complex vector bundles
(3.10) N;=2P@ --- PrPpv/2,
where tP=1(F)RC on which G acts by

(g, v) — g'v (scalar multiplication) .

Moreover, the orientation of N; induced from that of FP and F; is equal to
(=1 pimes the orientation of Ny as a complex vecior bundle defined by
(3.10).

When p=2, N; is isomorphic to =(F;) and G acts on N; by

(=1, 0)—> —v,

ProoF. Let V be a vector bundle. Then, the p fold Whitney sum pV is
equivariantly isomorphic to VXR? where G acts on R? in the standard way.
In the complexification C?= R?*QC, set

vj:(li (Uja T, wj(p—l)) ’ Oé_]é;b“l 3

where w=¢*"?, Then, the vectors

€=U,

1 , ) . —
e;= *2*<Uj+7/p—j) , e; :‘;'@j—'vp—j) , 1=5/= L 5 1 ’

are real and they form a basis of R?. For 1=<j=(»p—1)/2, let B, be the sub-
space spanned by ¢; and ¢;. We define a complex structure in B; by
fé'j:ej’ .

Then, G acts on B; by complex linear automorphisms in B; and the effect of
the action of @ in B, is given by
we;=wle;,

where the right-hand side means the scalar multiplication by ®’ in B,.
Thus, setting V=V B,, we obtain an isomorphism

(3.11) PVRVORVOD ... Hye-ne

where V"=V¢=V&e, Applying this to V=2(F,), we see that
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(p-12

Niy= > .
i=1

Assume now that V is oriented. Let dim V=% We set

s:(_l)(k(k—l)/Z)r(Sign A)k ,

where
1, 1, e 1
o+t WP @ P D
1, 5 e, 5
Cw—w ! . WP l—g~ @D
0,1 2 el d 5
d=det
1 (1)2-*'(1)_2 wz(p—l)+w—2(p—1)
2] 2 y "7t 2
T —w T L@t PD gD
O) Z 1 M b 1’
2 2

and r=(p—1)/2. It is easy to see that the orientation of pV is equal to e times
the orientation of the complex vector bundle given by the right-hand side of
(3.11). By a simple calculation, we have

1, 1, -1

1, o, -, 0t
—(_ Y
A—(_T) det 1, @, - @D

—132
1, w??, w®™
i r b a
=3 I (=0
0=Za<b=p—-1
But,
H (wb_wa>: H e:ri(b+a)/p H (e:i(b-a)/p_e—z:i(b—a)/p) .
0Za<b=p—1 0=a<b=p—1 0=a<b=p—1
Furthermore,
H e:i(b+a)/p:e(zi/2)(p-l>2
0fa<bsp—1
=1 since p is odd.
Also,
I (eFi@-o/p_ pmmit-ayp)—p(p-12 24in _wlb—a) .
g=a<dbEp—1 0Za<bsEp—1 p
Hence

1y . wlb—a)
A—< 2 ) o§a<12:£p—12 st b
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and
sign 4=(—1)".
Therefore
s:(__1)(k(k<x~1>/2>r .

Applying the above fact to V=N,, we obtain the desired assertion concern-
ing orientations of N;. This completes the proof of Lemma 3.9, the statement
for p=2 being trivial.

We are now in a position to prove Theorem 3.3. From the diagram (3.7),
we obtain the following commutative diagram

Ji
SUHH(F) > STTHEM)

a | ],p |4

STUHE(F?) —> STHE(MP).
By the localization theorem (Theorem 2.18), we have

jz(Zi)e(Vi)‘l):l eSTHEM).

Hence,

0($)=4,1)
:A;j!(gje(Vi)‘l)
=j? d's(;e( V.

Applying Lemmas 35 and 3.6 to the last expression of 6(¢) and, tien, using
(2.16), we obtain
{ DB IRRdDP I (VN (b 0dd)

(3.12) 0(¢)=1 N
L S IR DP(V)) (r=2),

where d;: F;—F? denotes the diagonal map.
On tke other hand, by Lemma 3.9 we have

di*diy(1)=e(N;)
= (1)U T ¢(2®)
i=1

if p is odd, and
di*dy(D=e(N;)

=e(z(Fy)

if p=2. Therefore, by Lemmas 3.5 and 3.6, we have
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a1 P T IREISTT (p 0dd)
drdi(1)=] s
&P F e (r=2).

Since d*{ STIHHFP)—S'HX(F,) istan isomorphism by Theorem 2.18, we obtain

(=D i“’“”Po(lI:{ v ((FIRONEE (P odd)

dz"!<1):
{ Py(u(F))at (p=2).

Putting this in the expression (3.12), we obtain

S gemeron(— st P [ (FIRC) T v (V)
0<¢>={ (p 0dd)
SHa ™ Pu(F) (V) (p=2).

3

Finally, using Lemma 3.8, we obtain the expression of 6(¢) in Theorem 3.3.
This completes the proof of Theorem 3.3.

THEOREM 3.13. We continue with the situation described at the beginning of
this section. The class m*8(¢)e HP V™(MP) is given by

m*0(@)=4y1),
where 4,: H¥(M)—H*(MP) is the ordinary Gysin homomorphism.

Proor. Consider the commutative diagram

idx 4
SPXM ———> S"XM?
”'l idx 4 l”
Stx M ——— S"XM?P,
G G

Since the map 7 is a covering projection, id>G<A and 7 are transversal. It fol-
lows that the commutativity

T*o (id?d)!:(idxd), o /¥

holds; cf. [11, Proposition 1.7]. Passing to the limit, this implies the commuta-
tivity of the diagram

4,
H*(M) —> H*(M?)

rid T 4, T ¥
Hi(AM)Y — H}MP).
Hence,
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m*0(¢)=n*4,(1)
=4,7*(1)
=4,(1).

This completes the proof of Theorem 3.13.

REMARK. 4,(1) is equal to the Poincaré dual of 4«[M]eH,(M?, oM7),
where [M1e H,(M, 9M) is the fundamental class of M. In case M has no
boundary, we have a well-known cohomological expression of 4(1) as is given
in the following theorem.

THEOREM 3.14. Let M be a compact, connected G-manifold of dimension m
without boundary. When p is odd, we assume M is oriented. Let Xy, -+, Xa be a
homogeneous basis of H¥M). We set

bij:<[M]y inxj>
and
Cipip—=S[MJ, x M w*xg S Ueaw? x>,

where w=e>""?=G. If we write 4,(1) as

4Q)= 2 Gyt X o XXy,
4. Ty

then the coefficients a; are characterized by

ip
il,z-,)ipe(i“ R SR L ,jp)ai1»~-ipbi1j1 bipjp:Cfl"'jp
where
T A S i
d;=dim x;.

Proor. By the Poincaré duality, 4,(1) is determined by the function
Xy, X oo X &gy > (CMPT, 4DV (3, X e X Zap))
Since w,(1)=1, using (2.16) we see that
o(e*(y)=o(l)y=y
for any y= H*(M). It follows that
4, DIy, X -+ Xyp)
=(AXwX - XoP ) (d(DVAXeX - Xo?P HEy, X - Xyp)

for vy, <+, ¥y, H¥(M), since 4,=(1XwX -+ X )d,.
Hence, we get
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CMPT, 4D X - X3)=(MP], d()\U(p X 0¥y, X -+ X 0P 5y,)>
=([MPINd(L), y X 0*p,X -+ X@P 7 5y,)
={dx[M], 31X 0¥y, X -+ X 0P ¥y,)

= M7, y,\w*y,\J - Uwp_l*yz) .
Writing 4,(1) as
A(D)=2a5,5 %, X 0 Xy,
and applying the formula above for y,=xj, we obtain the desired result.
REMARK 3.15. When p=2, the coefficients a,; are also characterized by
206, =04 (Kronecker's delta).
J
The proof is left to the reader.
We can summarize Theorem 3.3 and Theorem 3.13 in the following way.

THEOREM 3.16. Assume p is odd. As in Corollary 3.4 we write
J's{211(~—1>‘”<”“’/2”(;1’IIv”’(T(Fi)®C)/ £v<l)(V§"))}
=uytu,+ - iy, uys HHM) .
Then, 0(¢) is of the form
(3.17) 6= _ 3 B PP (ug)+0,

E=((p-To/2p)m
where 0, is characterized by the following two conditions (1) and (2).

(1) 6,=r-image,
2) 70+ ucp-prpmX - Xip-rymmn=41).

Here, if m is not a multiple of p, then we understand that uy ypmm=0.
THEOREM 3.18. Let p=2. We wriie
JHZVEN UV =ttty o Hilm, we HY(M) .

Then, 6(¢) is of the form
8(¢)= Emma”‘“”P(ukH@u

0s
where 0, is characterized by the two conditions:
(1) 8,=m-image,
<2> ’T*ﬁl“!—um/zxumﬂ:AE(l)'

ProoF oF THEOREM 3.16, Since d*-kernel equals z-image, 8(¢) must be of
the form (3.17) with 6, belonging to #,-image, by virtue of Theorem 3.3. More-
over #, is determined by #*f,. But, since 7*3=0 and x*P(u)=uX .-+ Xu, apply-
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ing 7* on both sides of (3.17) and using Theorem 3.13, we get the condition 2.
This completes the proof of Theorem 3.16. The proof of Theorem 3.18 is
entirely similar.

4. The class 6(¢) bis. The purpose of this section is to give a slightly
different expression of the class 6(¢). We begin with recalling a procedure due
to Atiyah and Hirzebruch [1] for defining characteristic classes using cohomo-

logy operations.

Let 1: H¥(X)—H*(X) be a natural ring homomorphism defined on the cate-
gory of finite CW complexes such that A=1 on X=S*. Cohomology is taken
with coefficients in Z,. For a real vector bundle E—X, which is assumed
oriented when p is odd, we define a characteristic class A(E)e H*(X) by

AE)=¢7"2¢(1)

where ¢ : H¥(X)—H*(D(E), S(E)) is the Thom isomorphism. 4 satisfies the prod-

uct formula
AEDF)=AE)AF).

When p is odd, we write the Pontrjagin class p(E) formally as

(41 PEY=TI(L+xD).
Then,

(42) apy=1 459
When p=2, we have

43) apy=1AEL

where the Stiefel-Whitney class w(E) of; E is written as
(4.4 w(E)=TI(1+x;).
Next, we define a characteristic class Wu(4, E) by
Wu(l, E)=2""AE)).

Wu(4, E) also satisfies the product formula

Wu(2, EDF)=Wu{, EYWu(, F).
When p is odd, we have

Xi

under (4.1). Similarly, when p=2, we have

(4.6) Wu(2, E):Hz—j‘(i;CT
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under (4.4).
For a compact smooth manifold M, which is assumed oriented when p is

odd, we set
Wu(d, M)=Wu(4, <(M)).

The following proposition follows essentially from the property (2.16), cf. [11.
PROPOSITION 4.7. Let M and N be compact smooth manifolds, f: (M, oM)—
(N, dN) a continuous map. Then,
FQOWuA™, M)=2f())Wu(A™!, N)
for xe H¥(M). In particular, when M has no boundary, taking N=point, we have
EMT, xWu(d, MYy=Ax)[M].
We are particularly interested in the operation F=3)(—1)'®". For a 2

dimensional cohomology class, we have

Pr=x—x?,
so that
Fly= x4+ xPL .- +xpf+
Thus,
x/F x=1— (x4 xP - FxP )Pt

=1—(F )P = (1 —xP1).
Hence, we obtain

(4.8) Wuw(&, E)y=T1(1—(&% 'x)P =& TI(1—x¢")
under (4.1).
When p=2, Wu(Sq, E) is nothing but the Wu class v(£) and we have
(4.9) Wu(Sq, E)=T1(1+4Sq " x;)
under (4.4).

Now, when p is odd, for a real vector bundle E—X, we define
(p—-1)/2
v(E)Y="3 vP(ERC).
(=1
LeMMmA 4.10. Let E—X be an oviented k-vector bundle. Then,
V(EY= ) Wu(® E).
PrOOF. We define a cohomology operation & defined on He**(X) by
P=3°,
where $*u)=(—1)*72"(u) for ucH¥(X). We have
Flwy=Pu) if ue H™MX)
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and
P(u)y=—P(u) if ue H*42(X)
By definition,
VO(ERC)=IHXQ7 1" ci( EQC))

=[F (I, (ERC)) .

Hence
(p—1)/2

~ (p=1)/2
W E)= l:]:[l k. Pt tl;[l IO+ 2=,
where ¢((EQC)=TI(1+x)(1—x;), so that

P(E)=TI1+x7) .
Thus,

W(E)=(r)*& T 1T (1~
=(r !)kg”'ll}(l—x?) by Lemma 2.10,
=( P TI(—x)
=(r ) TI(—x7)
=(r)*Wu(B, E) by (4.8).

This proves Lemma 4.10.

COROLLARY 4.11. In the statement of Theorem 3.3, Corollary 3.4 and Theorem
3.16, we can replace gl He(FYRC) by (r )W, Fy).

From Proposition 4.7 and Corollary 4.11, we obtain

COROLLARY 4.12. Assume p is odd. In the situation of Theorem 3.3 or
Theorem 3.16, if we write

W8, M) S (D007 T3 (BT (Y 9))
7 i=1
=gttt ot U, w,e H(M),

then u;=0 for odd i or for i>((p—1)/p)m. Moreover, 0(¢) is described by (3.17)
with the u; given as above.

REMARK. In the above formula, we have
(413) S?Lf_g v(l)( V§L)): Lfll (Zlki,l—f(___l)jcj( Vz)) ,
= =1 J

where k;,=dimcV{". In fact,
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PV O)=BHE e (V)
J
=R (=1) e (V).
J
When p=2, we have similarly

COROLLARY 4.14. Let p=2. In the situation of Theorem 3.3, Corollary 3.4

or Theorem 3.18, if we write

(4.15) o) S (Vi) D=tk -+t

then u;=0 for i>m/2, and 6(¢) is described as in Theorem 3.18 with the u; given

above.

We can transform (4.15) further in the following way.

V(M) ZSq™ji(w(V)™)=v(M) BSqH i Fw)™} by (2.16)

=Sq7* 2 ji(w(Fy)) .
Thus,
COROLLARY 4.16. [In Corollary 4.14, we can replace (4.15) by
Sq7 TiwFD)=tgt = +itm.

Another expression of 8(¢) for p=2 is the following.
COROLLARY 4.17. Let p=2. The cohomology class in the formula (4.15)

coincides with
{Eilj;(v(Fi)z)}/v(M) .
PROOF.
S WEFEN (V)= j(u(Fy) - v(F)j*v(M)™)
={Zj(wF)?/v(M) by (2.16).
By way of explanation we shall derive some consequences from the general
formulas in certain simple cases. We continue with the basic situation and the

notations.

PROPOSITION 4.18. Assume that the dimensions f;=dim F,; are smaller than
(dim M)/p for all i, then, when p is odd,

(=D irvT(y l)fi]'g(g)f[ POV IYH=(
i i=1

and when p=2,
X (w(F)=0,

Si(F))=0.
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PROOF.  Since j,: H*(F,)—H*(M) increases the degree by m-—f;, where
m=dim M, the class u, in Corollary 4.12 or 4.14 must be 0 for 2=Z((p—1)/p)m
under the assumption that f;<m/p for all i. On the other hand, u,=0 for
E>({(p—1)/p)ym. Thus, u,=0 for all .. Assume p is odd. Then, the result follows
from Corollary 4.12, observing that the class Wu(%, M) is invertible. The case
p=2 is proved similarly, using Corollaries 4.14, 4.16 and 4.17.

LEMMA 4.19. Let p=2. Assume M has no boundary. Then the top dimen-
sional term of 27 (w(Fy)) equals (ZA(F:))pty, where X denotes the Euler-Poincaré

characteristic and py denotes the cofundamental class of M.

Proor. Each component F; of F has also no boundary. Therefore, w, (F;)

=x(F))pr,. Hence, .
lE]z(wfi(Fi)):<E X tar -

COROLLARY 4.20 (Conner and Floyd [3]). Let p=2. Assume M has no

boundary and f;<m/2 for all i. Then,
x(F)=0 mod 2.
It is well-known that
SrFy=aM)  mod2.

We can also deduce this from the following

PRrROPOSITION 4.21. Assume M has no boundary. Then,

LM, Ump)®>=x(M)  mod2.

In fact, from Corollaries 4.14 and 4.16, we get

2 w(F))=S5q(uo+ - +tmsp) .

Comparing the top dimensional term, we have

Z].!(wfi(Fi)): S U 57 (Umy)®

PROOF OF PROPOSITION 4.21. Observing that d*z*z,(xXy)=0, we get
(Umse)*=a*4,(1)

by Theorem 3.18. If {x, -, x;,} is a homogeneous basis of H*(M), then 4,(1)
=>a;;%;Xx; and

M, (ye)®>= EJJ a; KCMJ, xax
- g‘_} aijbij
=trace AB,

where A=(a;;) and B=(b;;) are matrices given in Theorem 3.14. Note that
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these are all symmetric, non-singular matrices with entries in Z,, In particular,
trace AB is equal mod 2 to its degree, that is, to dim H*(M). Thus,
MY, (mp)ty=dim H¥(M)=x(M)  mod2.
The following corollary, which is due to Bredon [3], can also be deduced
in our framework.

COROLLARY 4.22. Let p=2. Assume M has no boundary. If fi<m/2 for
all 1, then
(M, uJoruy=0

for all ue H™ (M), where w=—1&2Z,.

ProoF. Let {x, ---, x;} be a homogeneous basis of H*(M). It is sufficient

to show that
¢;=<IM7, x;\Vw*x;)=0

for all j. If f;=dim F;<m/2 for all i, then u,,=0 and, consequently,
4 ()= a;,;x;X x;En*r,-image.
Thus, a;=0 for all . But, by Theorem 3.14,
c;= ;} as;b504 5
= ;‘, 3305045
=0.
In an entirely similar manner, we can prove the following, cf. [3L

COROLLARY 4.23. Assume M is oriented and has no boundary. If fi=
dim F,<m/p for all i, then

(M, uJo*u\J - U up>=0
for all ue H*(M).

We shall give two examples in which the dimension of the fixed point set
is small.

EXAMPLE 4.24. We assume p=2, m=5, f;=<2 for all 1, and M has no
boundary. Let F%,---,F{, be the components of F with dim Fi=gq, ¢=0, 1, 2.
For any 2-dimensional component F3, let x(F)e H\(F3) denote the Poincaré dual
of w(F%. Thus, x(F)=0 when F} is orientable, and x(F}) is the unique element
of order 2 in H{(F?) when F} is non-orientable. Let l; be the number of the F}
such that Y(F)#0 mod 2. Then,

0) IL+i:=0 mod 2,
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M FsCFD=0,
W F i F=0,
@ BiFD=0.
ProoF. By Proposition 4.18,
Zz}fz(w(Fi)):O .
Writing down this relation in terms of homology classes, we obtain (0) in codi-
mension 0, (2) in codimension 2 and
SHCFD+ Dina(FD)=0
in codimension 1. Similarly, from
SH(F))=0

we obtain

2=(LF =0
in codimension 1. Hence (1) and (1) follow.

EXAMPLES 4.25. We assume p=2, dim M=m=4, [,=<2 for all i, and M has
no boundary. Using the same notations as in Example 4.24, we have

0) LAl ZjlFe [ Fi1=0,
(1) Biea(D=w,(M) Tjpn(D),
O ZipD+Zipnws(ED)=Sq (L irn(L)
where o in (0) denotes the intersection number and ng:F;?aM is the inclusion.
If M is orientable, then (1) and (1) reduce io
2 (fFiD=0

and
E]’Fg!(wl(F%)F‘(Squpizs(l)) .

The proof is similar to that of Example 4.24, u ing the following facts (4.26)
and (4.27). In general if we assume f;=m/2 for all ¢, then

Sqg? Eij;(w(Fi))zv(M)" Zi)jz(v(Fi)Z)=um/2 .
Comparing the terms of dimension m/2, we see that

Umip= ;ﬁ:(l) s
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where the F* are the components of dimension m/2 and j;: F7*—M denotes
the inclusion. Thus, under the assumption that f;<m/2 for all i, we have

(4.26) @jz(zv(F =592 ja(1))
and
(4.27) Zi:j!(v(Fi)z):U(szji!(l)) .

Finally, we give an application to the cohomological structure of taut sub-
manifolds. Let N be a compact connected oriented n-dimensional manifold with-
out boundary. A compact oriented submanifold /¥ without boundary of codi-
mension 2 is said to be taut if #(E, 0E)=0 for i<[(n—2)/2], where E is the
complement of an open tubular neighborhood of F in N. If F is a taut sub-

manifold of N, then
Jut Ho(F) —> Hy(N)

is an isomorphism (for any coefficients) for ¢<[(n—2)/2]. Hence
ji: H(F) —= H"™*N)

is an isomorphism for i>n—2—[(n—2)/2]=[(n—1)/2]. Kato and Matsumoto [ 8]
showed that, for any ye HYN; Z), there exists a taut submanifold F represent-

ing y provided n=7.

PROPOSITION 4.28. Let FCN be a taut submanifold. Suppose that the co-
homology class ye HX(N ; Z) represented by F is such that y=dx, d>1, x€ H¥N; Z).
Let p be a prime number dividing d. The reduction mod p of j*xeH¥F ; Z) is
also denoted by x. Then, in the cohomology with coefficients in Zy, the terms of
dimension greater than

e )

of the mixed class

Wu(B, F)/(1l—x—xP— - —xP — .yes H¥(F)
must vanish.

Note. In almost all cases, [(n—1)/21=({(p—1)/p)n—2.

PrOOF. By [7], there exists a d-fold ramified covering M of N with branch-
ing locus F. Thus, Z; acts on M in such a way that M/Z,=N and the fixed
point set is canonically identified with F by the projection 7 : M—N. Moreover,
the normal bundle V of F in M has a structure of complex vector bundle such
that the action of geZ,CS*' on veV is given by the scalar multiplication gv.

Therefore, we can apply Theorem 3.16 to the restricted action of Z, on M.
Note that V=V and
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pO(V )= F(14-2)

&k

1
1

x—xP— ... _xp]_. e,

Thus, using Corollary 4.11, we see that the terms of dimension greater than

((p—=1D)/p)n of

TAWW@, F)/(l—x—xP— --)}

must vanish, where f FCM is the inclusion. Since (ﬂof)!:jz is an isomorphism
above dimension [(n—1)/2], j, is injective in the same range. Hence the results

follow.
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