Commensurability classes of arithmetic triangle groups

Dedicated to Professor Y. Kawada on his 60th birthday

By Kisao TAKEUCHI

§1. Introduction.

In the previous paper [13] we obtained a complete list of arithmetic tri-
angle groups, i e. the triangular Fuchsian groups which are commensurable
with the unit groups of quaternion algebras. The next task is to determine
1) the explicit description of each group as the unit group of the quaternion alge-
bra, 2) all inclusion relations between these groups. In §2 we shall determine
the quaternion algebra associated with each arithmetic triangle group. From
this we obtain the classification of all arithmetic triangle groups into the com-
mensurability classes in the wide sense. In § 3 we shall determine the signatures
of some arithmetic Fuchsian groups I'(4, 0)), I'*(A4, 0,) and I'**(A, 0,), where
0, is a maximal order of each quaternion algebra A which we are concerned
with. This gives a partial solution of 1). As to 2) more generally, Singerman
[11] had already determined all inclusion relations among the triangle groups
by the group-theoretical method. As a special case of this result we obtain a
complete solution of 2). However, by making use of the results in [12] and
[13] we can also obtain most of the inclusion relations between arithmetic tri-
angle groups independently. We want to note that some of the inclusion rela-
tions listed in [11] are realized by arithmetic triangle groups. From the number-
theoretical point of view it may not be worthless to give the complete diagrams
of inclusion among the arithmetic triangle groups.

§2. Quaternion algebras associated with arithmetic triangle groups.

We recall the definition of arithmetic Fuchsian groups. Let 2 be a totally
real algebraic number fleld of degree n. Then there exist n distinct Q-isomor-
phisms {¢;|1=i<n} of £ into the real number field R, where we assume that
¢,=the identity. Let A be a quaternion algebra over % unramified at ¢, and
ramified at all other ¢, (2<i=n). Then there exists an R-isomorphism p of
AReR onto M,(RYCH® --- GH, where H is Hamilton’s quaternion algebra over
R. Let p, be the composite of pl, with the projection to M(R). Then p, is
a k-isomorphism of A into AM(R). p, is uniquely determined up to GL,(R)-
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conjugation. Let O be an order of A. Put U®={ee0]|n(s)=1}, where n( ) is
the reduced norm of A over k. Then I'¥(A, O)=p,(U®) is a discrete subgroup
of SL(R). It is well-known that I'®(A4, O) is a discontinuous group on the
upper half plane H such that vol (H/I (4, 0)) is finite, where vol{ ) is the
non-Euclidean volume on A.

DEFINITION 1. Let I” be a discrete subgroup of SL,(R) such that vol (H/I")
<o, If I’ is commensurable with I'®(A4, 0), then I" is called an arithmetic
Fuchsian group. Since A is uniquely determined by I" up to isomorphism, we
call A the quaternion algebra associated with I'.

DEFINITION 2. Let I’y and ', be discrete subgroups of SL,(R) such that
vol (H/I'))<oo (1=i<2). If there exists g&GL,(R) such that [, is commensur-
able with gl’,g7%, then we say that [, is commensurable with I’y in the wide
sense,

It is easy to see that this is an equivalence relation.

PrROPOSITION 1. Let I’y and I, be arithmetic Fuchsian groups and let A; and
A, be the quaternion algebras associated with I'y and I', respectively. Then I’
is commensurable with I', in the wide sense if and only if A, is isomorphic to A,.

PrOOF. Let k; be the center of A; (1=i=<2). Suppose that ['; is commen-
surable with I', in the wide sense. Then I'®(A4, O,) is commensurable with
I'®(A4,, 0,) in the wide sense, where O; (1=<i<2) is an order of A;. By a suit-
able choice of the embeddings p, and pi of A, and A, respectively we may
assume that these groups are commensurable with each other. Put I'=
TOA, OYNT (A, 0,). By a result in [12] both of p(A4;) and pi(4,) are
spanned by I, over Q. Hence p,(4,)=pi(A4,). This shows that A, is isomor-
phic to A,.

Conversely, let ¢ be an isomorphism of A4, onto A, We shall show that
o}y, =the identity. Assume that of, =¢; (2<i=[k,: Q). Let p; be an embed-
ding of A into H such that p;|k,=¢;. Then piooop! is a ky-isomorphism of
0:(4,) onto pi(4,). Since the former is definite and the latter is indefinite, this
is a contradiction. This shows that z,=Fk, and that ¢ is a k,-isomorphism. Since
0:(A) and p{(A,) are indefinite, by Skolem-Noether’s theorem there exists g
GL,(R) such that p,(4)=gpi(A)g. Thus p,(0,) and g~'pi(0;)g are orders in
the same quaternion algebra. It is well-known that the unit groups of orders
in a quaternion algebra are commensurable witt each other. This shows that
I', and I's are commensurable with each other in the wide sense. gq.e.d.

In view of Proposition 1 the classification of arithmetic triangle groups with
respect to commensurability in the wide sense is equivalent to the determina-

. . . . . a, b
tion of the quaternion algebra associated with each triangle group. Let (—k4>
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be the quaternion algebra over % defined as follows: B=kl+ka+kfS+ka-B, a®
=q, f*=b, a-f+5-a=0 (a+0, b+0<k).

For any &é=z,l+z,a+2z,5+z,af we have n(f)=z—az*—bz,"+abz’. Now
we have the following '

PROPOSITION 2. Let I' be. an arithmetic triangle group of type (ey, ¢, e5)
(2=<e,=e,<e,<oo). Let A be the quaternion algebra associated with I'. Put t;=

2cos(mw/e;) (1=7=3). Then A is isomorphic to ( a,kb ), where k=Q 2 1,5 1,75

filyte), a=1"(t,2—4), b=t"t,*(1*+1,2 1>+ 1itpt,—4).

ProOF. We may assume that ['>—1,. Then I" has the following presenta-
tion: I'={yy, 70 733 7:0=72=r:"=71"72"7s=—1,). Moreover, we may assume
that tr (y;)=¢; (1==3) (cf. [7]). A is given explicitly in the following way.
Let I'® be the subgroup of [’ generated by {y*[ysl}. Let A(I'®) be the
vector space spanned by I'® over @ in M,(R). Then we see that the center %
of A coincides with Q(tr (N ye I ®)=Q(t 2 1,5 1% t,t,1;) and that A is isomorphic
to A(I®) (cf. [13]). Moreover, we may take {1, 7. 755 7.>°7s°t as a basis of
A(I’®) over k. For any E=x,1,+ 27"+ %7+ X7 75" the reduced norm n(§) is
given by n{(€)=(x,, x, Xy, %) D-(xo, %1, Ko, %), where

1 ¢y Cy Cs

¢y 1 Cs Cy
D= ,

Cy Cs 1 ¢

\ C3 Co Cy 1
6 =1/2+tr (7,2, ¢,=1/2-tr (75*), ¢;=1/2-tr (1.%-75%), c.=1/2-tr (2*- 7572,
By the transformation
Vo= Xot X CpXy T35,
y1:1/<2‘2512>' {(14012)951*{’(0152‘“Cz)x2+(C2_Clcs)x3} s
l y2:1/2'x3 3
y3:1/(4—4c12) (xFeaxs)
we have
72(’:‘):y02+(4—4512>3’12—4<012+022+032_251C253_1))’22
—16(1—c.)(c 2 H et ¢ —2¢,6,05— 1)ys" .
Put
a=4c,*—4, b=4(c .2+ c."—2¢icc,—1) .

By an elementary calculation we see that

a=12(1,2—=4),  b=t,212(1 1 A 4
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Thus we have n(&)=y,°—ay,*~by,*+aby®>. It follows that A is isomorphic to
a, b
( 7 ) g.e.d.

Let 2, be the completion of £ at a finite prime spot p of 2. By the calcula-
tion of the Hilbert symbol (%b—> we know whether A,= ARk is a division
algebra or not. Since all fields # which we are concerned with are cyclotomic,
it is a straightforward work to calculate (—agb—> Let D(A) be the product of

all p such that A, is a division quaternion algebra. D(A) is called the discrimi-
nant of A. Now we obtain the following table:

(ey, e, €,) k D(A)
(2,3, 00) (2,4,00) (2,6,00) (2, 00,00) (3 3,00)
L 1 (86, 00) (£.4,50) (6.6,00) (on, b, o0) < w
I 12,46 (266 (344 (36,6 Q (2)(3)
(2,3,8 (2,4,8 (2,68 (2,838 (3,34
Il | (3% 8) 54, y 4% §4, o8 &% 85 Qv2) Pe
V | (2,4,12) (2,12,12) (4,4,6) (6,12,12) - Q(/3) Ds
2,45 2,4,10) (2,5,5 2,10,10) (4,4,5
VI | & 15, @8 @59 | ) WS s |
VII | (2,5,6) (3,55 QVv5) Dy
Vi | (2,3,10) (2,5,100 (3,35 (55,5 Q/5) s
IX 1346 Q(V6) p,
X1 Eg: g: gg (2,3,18) (2,918 (3,39 (36,18 Q(cos 7/9) 0
XII [(2,4,18 (2,18,18) (4,4,9) (9,18, 18) Qlcos/9) | v,-p,
Xl 1(2,316) (2,816) (3,38 (4,16,16) (888 | Qlcosn/8) v,
X1V | (2,5,20) (5,5, 10) Qcosz/10)| 1,
XV 8,2,3,122,4%2)@, 12,24) (8,3,12) (3,8,24) (6, 24, 24) Qcosz/12)| 1,
XVI | (2,5,30) (5,5,15) Qlcos/15)| 1,
XVIL | (2,3,30) (2,1530) (3,315 (3,10,30) (15,15,15) Q(cosz/15)| o,
XVIL| (2,58 (4,55 V2,5 b
XIX | (2,3 11) Qcos /1)1 (D)

Table (1)

In the above table we denote by p, the prime spot of %2 lying on the rational
prime (p). As to p, appearing in table (1) () does not split in k. Therefore,
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p, is uniquely determined by (p).

REMARK. In view of Proposition 1 table (1) can be considered as the table
of classification of all arithmetic triangle groups with respect to commensura-
bility in the wide sense.

§3. Signatures of the groups I"“(A4, 0,), I'"(4, 0,) and I'*(4, O,).

Let I' be an arithmetic triangle group of type (e, 5, ¢;). Then I' has the
presentation :
F:<71y Tas Tas 7’161:2’262:7’363:7’1'7’2‘73:i12> .

For any y=/  we have the expression

ar

7:iri1a1 ven rir

Suppose that both of ¢, and ¢, are even. Put
vou(y)= 2 a; (mod2).
1j=2,3

Then v,, is well-defined and is a homomorphism of I” onto Z/2Z (cf. [13]).
Hence I',;=Ker (v,;) is a normal subgroup of I” of index 2.

LeMMA 1. Let I' be a triangle group of ivpe (e, e,, ¢5), Where e;<co, ¢, and
e, are even. Let I'y, be as above. Then the following assertions hold:

If e,=2, e,=4, then 'y, is a triangle group of type (e, e, €3/2).

If e,=4, e,=4, then the signature of 'y, 1s (0; ey, €1, 2,/2, 2,/2).

Proor. First consider the case ¢,224, ¢,=4. Put
51:}’1, 52:7’2'71'7’2—1; 53:7’22, 54:7’32-
Then it is easy to see that these are contained in I',s and that

=00, =50 =k, 0,0y 8,0 0,=1,.

We shall show that each elliptic y of I’y is I'y-conjugate with one of {%0,°|
1=j<4}. There exists 6 such that y=44-7,°-07" (1=i=3). Since I'=
Iy\Jy,l s, 7 is conjugate with one of {£7% £y 7% 7. '}, If 1=1, then 7 is
conjugate with +8,¢ or =+8,% If i=2 or 3, by definition of I’y ¢ is even.
Therefore, 7 is conjugate with one of {#(y,>), ("%, (ror 172797}, Since
Yo7 e = (e 7s) 75X (reys) Y 7o 7s €108, we see that y is conjugate with one of
1£6,7, =857, £6,°}.

On the other hand, it is easy to see that no pairs of {5;|1=7=4} are
conjugate with each other. It follows that the signature of I, is (g;
ey, €1, 25/2, ¢3/2). By the formula 2g—2+2(1—1/e)+(1—2/¢)+(1—2/e))=
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[ I, 0(1—~1/e,—1/e,—1/¢,), we see that g==0. Similarly, in case ¢,=2, ¢,=4,
we can prove our assertion. q.e. d.

In case where both of ¢, and e, (resp. ¢, and ¢,) are even we can define a
homomorphism v,; (resp. v,) of I onto Z/2Z. Therefore, we have the subgroup
I';;=Ker (v;;) {resp. I',=Ker (v,)) of I'. In particular, if all of ¢; (1=<7=3) are
even, then Iy, I'y; and Iy, are defined and we see easily that I'®= "o,

LEmMMA 2. Let I' be a triangle group of type (ey, e,, e5), where ;< oo (1=<7<3).
Let ['® be the subgroup of I' generated by {y*lysl’}. Then the index d=
({1} T® {137 is equal to 1 or 2 or 4 according to the cases where at
least two of e; are odd, one of e; is odd and the rest are even, all of e; are even.

Since this proved in [13], we omit the proof.

Let A be a quaternion algebra over k. Let O, and O, be maximal orders
of A. If there exists g A such that O,=g0;g™", we say that O, and O, are of
the same type. This is an equivalence relation and the number T(A4) of classes
with respect to this relation is called the type number of A. Let A(0,) be the
class number of O,. Then it is well-known that T(A)=h(0)).

ProrosiTION 3. Let h(0O,) and T(A) be the class number of a maximal order
0, and the type number of A respectively. Then T(A)=h(0,)=1 for all quater-
nion algebras A appearing in table (1).
PrROOF. Let k be the center of A. Let M= TI y., where by is the infinite
=2
prime spot of % corresponding to ¢;. Let (k) and P(k) be the groups of all
fractional ideals and principal ideals in 2 respectively. Put
PR, M={(a)ePR)la=1 (mod* M)} .
Let a(k)=[I(k): P(k)] and let h(k)=[I&): P(k, 2] ~Then we have h(B)=
h(R)LP(R): P(k,M)]. Let E(k) be the group of all units of # and put
EB)y={e=E(k)|e is totally positive},

E(By={e=E(R)|e=1 (mod* M)} .
Then we have [P(k): P(k, W)]1=2""*/LE(k): E\(k)]. By making use of Minkow-
ski’s theorem and a result in Kubota [4] we see that A(k)=1 for all 2 appear-

ing in table (1). On the other hand, by making use of the table of fundamental
units in Billevi¢ [1] we obtain the following table:
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k LE(R): Eo(R)]  LEJ(R): (E(R)*]  [E(k): E(k)] dp ”

Q 2 1 1 1
Qv2) 2° 1 2 8
Q(V3) 2 2 2 12
QVv5) 27 1 2 5
Q(+6) 2 2 2 24
Q(cosn/7) 28 1 22 49
Qcos/9) 28 1 A 81
Q(cos/8) 24 1 28 2048
Q(cosn/10) 28 2 22 2000
Q(cosn/12) 2° 2 28 2304
Q(cos x/15) 28 2 28 1125
QT V5) 2¢ 1 28 1600
Qcosz/11) 2° 1 2t 14641

Table (2)

In the above table we denote by d, the discriminant of 2. From the above
table we see that [E(k): E,(k)]=2""", where n=[k:Q]. Therefore, we have
ny(k)=1 for all fields & appearing in table (1). On the other hand, Let O; be
a maximal order of A. Then by Eichler’s theorem in [2] we have A(0,)=h (k).
Since T(A)=h(0,), we see that T(A)=h0O,)=1. qg.e.d.

Let O, be a maximal order of A. Put

(A, 0)={pi(e)|e€0,, n(e) s Ey(R)},
I'®(A, O)={pla)lac 4, a0,=0,a, n(a) is totally positive} .

Then these are subgroups of GLs(R)={geGL,(R)|det (g)>0} and can be con-
sidered as Fuchsian groups of the first kind. By the formula of Shimizu in [&]

we have
vol (H/T'V(A, Ol>):4l_n'ﬂ_zndsz(:k(z)n‘].D__'(:A)(nk/()(p)4‘1>,

where {,(s) is the Dedekind zeta function of 2. By a result in Skimura [9] we
have
vol (H/I™(A, O)=[E\(k) : (E(R))*]vol (H/I""(A, 0))),

vol (H/I'P(A, O))=[L,: L,Jvol (H/I'*(4, 0))),
where L, and L, are defined as follows:
L={{a)=p, - p,0®la is totally positive in &, v;|D(A), ac (&)},

L,={(c*){a is non-zero in k} .
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Since h(k)=1 and D(A) is given, it is easy to calculate [L,: L,]. Now we shall
determine the signatures of I'“(4, 0y), I'(A, 0,)) and I'™(4, O,) for each A
appearing in table (1). Let I be the triangle group with the minimum
vol (H/I') among the groups with which A is associated. Since I'® is a sub-
group of I'®(A, O,), in view of tables (1) and (2) by Lemmas 1 and 2 we obtain
the following table:

k D(A) [L,:L] I'(A,0) I'™(A0) [I'™40)
Q ¢y 1 (2, 3, o) (2, 3, o) (2, 3, o)
Q (2)(3) 4 0:2,2,3,3 0;2,2,33) (24,6
Qv2) b, 2 (3,34 334 239
Q(v3) by 1 (3,3,6) (2,3,12) (2,312
Q(V3) s 1 ©0;2,2,2,6) (2,4,12) 2,4,12)
Q(v5) b, 2 (2,5,5) (2,5,5) (2,4,5)
Q(V5) b 2 (3,5,5) (3,5,5) (2,5,6)
Q5) b 2 (3,35 (3,35 (2, 3, 10)
QV6) 8 1 0;2,333 (346 (3,4,6)
Q(cos n/7) oy 1 (2,3, 7 2,37 2,37
Q(cosn/9) ® 1 2,39 2,39 2,39
Q(cos w/9) DDy 4 0;2,2,9,9 02,299 (2,4, 18
Q(cos n/8) P 2 3,3,8 3,38 2,3, 16)
- Q(cosw/10) P, 1 (5,5, 10 2,5, 20) (2, 5, 20)
Q(cos n/12) D, 1 (3,3,12) (2,3,24) (2,3,24)
Q(cos ©/15) Dy 1 5,5, 15 2,5,30) 2,5, 30)
Q(cos #/15) s 1 (3, 3,15 (2,3, 30) (2, 3,30)
QV2, v5) b; 2 (4,5,5) (4,5,5) (2,5,8)
Q(cos m/11) ® 1 2,3,11) 2,3,11) (2,3,11)
Table (3)

Incidentally, we have

k Q Qv2) QW3 Q5 QWE)  Qlcosz/T)

C (2> TL.Z 71.4 71.4 2 . 7t4 2 . TL.4 23 . TL’G
k 6 24+/8 18412 754/5 24+/24 3.7
k Q(cos/9) Q(cosw/8) Q(cosz/10) Q(cosn/12) Q(cosw/15)
2 23'71.6 5.2371.8 25'7f8 24_72.8 26‘7:8
x(2) 35 34,5 34,7 TdE 5d, 0T
k Q(v2,+5) Q(cosx/11)

7.24'7,:8 5,27.7r10
2 35457 314"
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The values {,(2) given above coincide with results in various papers Lang [5],
Meyer [67] and Siegel [10].

§4. Diagrams of inclusion among the groups [e,, ¢, ¢;]-

Let I’ be a triangle group of type (e, €, ¢;). Then I'-{+1,} is also of this
type and these groups are the same one as transformation groups on the upper
half plane H={2=C|Im (2)>0}. Denote this group I'-{31,} by [e,, ,, ¢,]. Then
[ey, e, ;] is uniquely determined by the type (e, ¢, ¢;) up to SL,(R)-conjuga-
tion. Suppose that [e,, e, ¢;] and [e/, ¢/, ¢,’] are commensurable with each
other in the wide sense. Then by a suitable SL,(R)-conjugation we may assume
that these groups are commensurable with each other. Therefore, in each com-
mensurability class in the wide sense we may choose the groups [e,, e,, ¢;] for
all types (e, e, ¢;) such that these groups are commensurable with each other.
By making use of the results in Greenberg [3], Petersson [7] and Singerman
[117 and Lemmas 1, 2 and Proposition 3, we obtain the following diagrams:

@ [2,6, ool [2,3, o3 {2, 4, 0]
4 3
- 2 A 5 2
[6,6, 0] £33, o0, ] [3,3, o] [2, o0, e0] 4,4, ]

[oe, 00, 00]

(ID) 24,63
2
2,6, 61 £3, 4,41
2
9 2
[3,6,6] £0;2,2,3,3]
I
(HD) £2,6,8] [2,3,8]
2 10 3
2 z 4,8
[4,6, 61 [3,8, 8] [3,3,43 248
3 4
2 2

[4,4,4] [2,88] 04,881
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vy [2,3,12]
4 3
2
[3, 4,121 [3,3,6] £2,6,12]
2
3 2
(6,6, 6] [3,12,12]
(V)
24,121
- 2
2 2
[2,12,121 [4,4,6] [0;2,2,2,61
2
[6, 12,121
(VD
r2,4,51 [2, 4, 101
6 2
2 2
2,551 [4,4,51 [2, 10, 107
2
(5, 10, 101
ViI -
Vi) (Vi 2,510
[2,5,6] ; 3
2 R (23,107
[3,5,5] 3 5
(5.3, 5]
(iX)
[3,4,63
(xX)
(2,471 [2,3,73 2,3, 141
2 8 3
9 2
[2,7,7] £3,3,7] [2,7,14]
3
2
[7,7,71
(XD
£2,3,9] [2,3, 18]
i 1
2 3
3,391 [2,9,18]1 (3,6, 18]
3 2

9,9, 9]
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(XID) [2, 4, 18]
2
2
£2, 18, 18] [4, 4, 9]
2 2 2
[9, 18, 181 [0;2,2,9, 9]
XIII
( ) 12,3, 16]
3
2
3,3, 8] [2, 8,161
2
3 2
8,881 [4, 16, 163
(XIV)
[2,5,20]
2
(5,5, 10]
(XV)
[2,3,24]
4 3
2
£3,824] [3,3,12] [2,12,24]
2
3 2
[12, 12,123 [6, 24, 247
(XVD)
[2, 3, 301
2
[5,3,15]
(XVIID)
[2,3,30]
4 3
2
[3, 19, 301 [3,3,13] [2, 13, 30]
3 2
[15,15,13]
(X1X)
XVIII -
( ) [2, 5 81 .
2 [2,3,11]

{4,55]
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In the above diagrams by the number over or under the line connecting two
groups we mean the group index between them.

[1]
Lz]
(3]
L4]
5]
L6]
L7]

[8]
[9]
[10]
[11]
[12]

[13]
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