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Introduction. The connected simply connected simple group of type E,
over C can be realized as a group of matrices of degree 56; the corresponding
ring of invariants is generated over C by a quartic, say J; and the matrix
group, say G, becomes the identity component of the algebraic group of all
linear transformations in the 56 dimensional space which keep J invariant. We
shall assume that the coefficients of J are contained in an algebraic number
fleld £ and we plan to prove theorems for J which are similar to known theo-
rems for a quadratic form. The reason why we have chosen J is that it is one
of the most interesting invariants of what we called “absolutely admissible
representations.”

We shall explain the main topic of this paper: for the sake of simplicity
(of the explanation) assume that J has rational coefficients and choose a good
prime number p; for any integer e not divisible by p and for m=1, 2,3, --- put

FH(pme)=p™™. 51 e(pe[(x);

then by the theory of asymptotic expansions in [6] (and by a result of G.R.
Kempf on “numerical data”) we will have

F*<p_me):a*<8)p—(5+1/2)7ﬂ_}_

for all large m, in which a*(¢) also depends on m mod 2. However to determine
a*(e) and other terms explicitly for all m was a difficult problem; and we shall
settle this problem in this paper.

The above local result implies some global theorems, e. g., the validity of a
certain Poisson formula for J; this we have included in the last section. We
might mention that the method we have used to determine F*(p ™) can be
applied to the computation of similar sums associated with various other in-
variants.

1. Preliminaries. We shall denote by £ a universal field: if X is an alge-
braic variety defined over a field K; we shall denote by Xy the set of K-

* This work was partially supported by the National Science Foundation.
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rational points of X; and if R is a subring of K and if X is, e.g., an affine
variety, then we shall denote by Xy or sometimes by X° the set of R-rational
elements of Xx. We shall denote by R* the group of units of R;in particular
K*=K—{0}. If Fis a morphism of an affine space X to another, we shall
denote by Sim (X, F) the algebraic group of all invertible linear transformations
g in X satisfying F(gx)=n(g)F(x) with n(g) in £ and by Aut (X, F) the normal
subgroup of Sim (X, F) defined by n(g)=1; if E is an alternating morphism of
X% X to another affine space, then we shall denote Aut (XXX, E) by Sp(X, E).

Suppose that char(2)#2,3 and let A denote a simple Jordan algebra of
degree 3 over ; for every ¢ in A let Q(a) denote the trace of (1/2)a* and
det (@) the norm of a; then a* can be defined generically as ac®*=det (a)e, in
which e is the identity element of A. We refer to Jacobson [8] for the details.
Consider the affine space X=(A+2)x(A+£2) and denote elements of X by
x=(a+a, b-+f), etc.; then we call

J)=0Q(a*, b¥)+det (a)-+det (Ha——4~(Q(a, b)—ap)*

a Freudenthal quartic; cf. [3]). We say that A is defined over K if A and the
law of composition in A are defined over K and if ¢ is in Ag; we say that A
is K-reduced if further det (¢)=0 has a nontrivial solution in Ag or, equivalently,
if a primitive idempotent u is contained in Ag. In this case A can be expressed
rationally over K as a Jordan algebra of twisted hermitian matrices of degree
3 with coefficients in a composition algebra C; and if we choose a basis for C
consisting of elements of Cg, then we will have coordinates in X such that
J(x) becomes a homogeneous polynomial of degree 4 in 6 dim (C)+8 variables
with coefficients in K. The Jordan algebra is called exceptional if dim(C)=8,
i.e, if C is an octonion algebra. In the following we shall assume that A is
exceptional.

If C splits over K, then we can identify X rationally over K with the space
of ordered pairs of alternating matrices of degree 8 such that if x corresponds
to (¥, z). then

J= PR3+ P& - tr (24 (f r(3) 5

this is the classical expression for J(x); cf. Freudenthal [2]. For our later pur-
pose we shall give an explicit correspondence between x and (y,2): let M,
denote the quaternion algebra over £ of 2-by-2 matrices with the usual involu-
tion £—&’; then C can be identified (rationally over K) with the octonion alge-
bra M,XM,, in which the law of composition and the quadratic form are defined

respectively by
(&1, 506, N2)=(£:8:—7.' 71, 7261+ 7:827)

9(&, py=det (§)+det (9);
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and A can be identified with the Jordan algebra H,(C) of hermitian matrices of
degree 3 with coefficients in C. And we have only to put

G11=Y19s  A23=Y34, A33=Y56, (=21,
— Z V4
023:<<)’36 _y35> , (P 27>>, etc. ;
Yase Vs Z1g  Zag

b11=21, Dy =25, byy=2s, B=2rs,

b23:( %45 —Z4s>, (—yzs y18>>, ete.

235 236 Yor  —Yie
We shall summarize further results in the following two lemmas :

LEMMA 1. Let K denote a field of char(K)#2, 3 and A an exceptional
simple Jordan algebra defined over K; then Aut (4, det) is a K-form of the con-
nected simply connected simple group of type E; and Aut (A, det)-orbits in A— {0}
defined over K are det™ (i) for i in K* and if A is K-reduced, then the orbits of
e—u, u in det™(0). If the coefficient algebra C of A splits over K, then
Aut (A, det)x acts transitively on the set of K-rational points of each orbit and
Sim (A, det)x acts transitively on the union of det™ (i) for all i in K*. Finally
if K=F, with q relatively prime to 6, then the above conditions are satisfied and

card (det ™ (D)) =¢*(1—q¢ *)(1—g¢?)

and the cardinalities of the Aut (A, det)g-orbits of e—u, u are respectively equal to
*(1=¢)7A—gA—¢(1—g¢™),
" (1—=gH ' 1—g)(1—g).

This lemma is well known; cf., e g, Mars [9]. We also recall that the
Aut (A, det)-orbits of e—u and u can be defined respectively by det (a)=0, a*+#0
and a¥=0, a+0.

LEMMA 2. Suppose that K, A are as in Lemma 1 and [(x) is the correspond-
ing Freudenthal quartic; put

E(x, 21)=0Q(a, b)—Q(a’, b)—(af —a’§)

and G=Aut (X, DNSp(X, E); then G is a K-form of the connected simply con-
nected simple group of type E, and the G-orbits in X—1{0} defined over K are
J ) for i in K* and the orbits of (e, 0), (e—u, 0), (w,0) in JX0). If C splits
over K, then Gy acts transitively on the set of K-rational points of each orbit and
Sim (X, J)x acts transitively on the union of J™*i)gx as i runs over any coset n
KEX/(K*)*. Finally if K=F, with q relatively prime to 6 and if ¥ denotes the
unique nonirivial character of K*/(K*)?, then
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card (J @) =¢"1+2(—)g (A +2(—Dg ) (1—¢™)

and the cardinalities of the Gg-orbits of (e, 0), (e—u, 0), (v, 0) are respectively
equal to
=g A—g )1 —g7),

¢®(1—g )7 (1—¢ HA—-¢)1—¢),
g*(1+g )1+ A=)

PROOF. Since this lemma is not as well known as Lemma 1, we shall out-
line a proof: the proof of the first part can be found, e. g, in [5], pp. 425-435;
there we also showed that J'(i)g is a Gg-orbit if —iis in (K*)* and that every
xin JY0)g is Gg-equivalent to (g, 0). We shall show in §2 that every x in
Ji)x for any i in K* is Gg-equivalent to (g, 1). We recall that every s in
Sim (4, det) gives rise to an element of G as

s-(a+a, b+B)=(sa+n(s)e, 'sTb+n(s)™'f) .

In view of Lemma 1, therefore, if C splits over K, then G acts transitively on
the set of K-rational points of each orbit. (In the case where char (K)=0 this
was proved by Haris in [4]) Moreover if g, for ¢+0 denotes the invertible
linear transformation in X defined by

glata, btB=(a+ta, tb-+1°),

then we have J(gx)=#J(x). Therefore g, is in Sim (X, J) and if C splits over
K, then Sim (X, [)x acts transitively on the union of J7({)x as 1 runs over any
coset in K*/(K*)%. This proves the second part; the third part can be proved,
e. g., as follows:

We know all stabilizers of G explicitly as Q-groups; they are connected
and simply connected. As for the stabilizers as K-groups, suppose that C splits
over K: then we have only to consider stabilizers at 0, (, 0), (e—u, 0), (e, 0)
and at various x in Xx such that f(x) runs over a complete set of representa-
tives of K*/(K*)®. And except for those with -—J(x) in K*—(K*)* they are
K.split groups. After this remark we take K=F, with ¢ relatively prime to 6;
we choose i, i; from K* such that ¥(—i)=1, %(—i;)=—1; and we shall denote
by U any G-orbit in J/(0). Then we can calculate card (Ug) for every U and
card (J7'(i)x) because we know the cardinalities of Gg and the corresponding
stabilizers in Gg; cf. [1]. Therefore we can also calculate card (J7¥(i)x) via
the following obvious relation:

2 card (UK>+'%‘(C]_1><Card (J (@)x)+ecard (JH(IDr)=9";

and we get the expressions in the lemma. g.e. d.
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2. Digression. We shall show in the general case, i.e., without assuming
that C splits over K, that every x in Xy for which J(x)#0 is Gg-equivalent to
(g, 1). As we have recalled, J7'()x for —7 in (K*)* is a Gg-orbit. Therefore
we may assume that —Jf(x) is not in (K*)*; we may also assume that x=
(a+a, p); cf. [5], pp. 427-428. Then

JKa+a, B=det (@f—(S-af)

implies that det(a)p+0; and we have only to show that x is Gg-equivalent to
(a*, B%) because (a* f*) is Gg-equivalent to (g, 1); cf. Lemma 1. For un-
specified elements ¢, d of Ax we define the corresponding elements u., v, of G
as in op. cit., pp. 425-426 and put u.v.x=(a*+ea* b*+£*); then we will have
a*=0, b*=0 if and only if

a+Q(a, d)—det (1)8=0, (a—d*f)Xc=dp.

If d#=0, then the conditions become Q(q, d)+a=0, aXc=df; and for any d in
Ay the second equation has a unique solution ¢ in Ag. Therefore we have
only to find an element d of Ay satisfying d¥=0, Q(¢, d)=—«; this can be
done as follows:

In the notation of op. cit, pp. 403-404 we put

a=2Au+x,+¥o, d=Au+x+y;
then by assumption
det (@)= 2,Q:(x0) + Q(x, 3,%) #0

and the conditions to be satisfied become
4P =Qu(Du+x'+y*)—22y=0,
Q(a, d)=22+Q(xo, ) +Q(yo, ¥)=—a.

U 2,#0, we take 2=—2,'a, x=0, y=0; if 2,=0, Q(y,)#0, we take A=0, x=
—Q(x, ¥*) Yaye®, y=0; and if 2,=0Q(y,)=0, we take A=—Q(%,, ¥,*) ', x=—2A(3,*)’,
y=21y,. In each case we can easily verify that d satisfies the required conditions.

For our later purpose we shall determine the stabilizer, say H, of (A+£2)
X(A+2%) in G, i.e, the subgroup of G consisting of all g which keeps the
above subset of X invariant. We have recalled that Sim (A4, det) is embedded
in G; we shall denote by V the unipotent subgroup of G consisting of all v,.
Then the product Sim (4, det)V is semidirect and it is contained in H; we shall
show that H is contained in Sim (4, det)V, and hence H=Sim (4, det)V :

Let g denote an arbitrary linear transformation in X and express g as.a
4-by-4 matrix composed of

Sis Cij

Qdsy, ) 2
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in which s;; is a linear transformation in A4, ¢, di; are in A4, and 2;; is in £,
for 7, j=1,2. Put gla+a, b+ p)=(a*+ua*, b*+F*); then we get

B*—_—Q(dgl, @)+ Ay, +Q(dys, b)+’122:8 .

If gis in H, then $+0 implies B*+0 for all ¢, a, b, hence d,=d,,=0, 2,,=0,
A»#0. Since g is in Sp(X, E), that will imply ¢;;=¢,,=0, 2,=4,,"*. By multi-
plying an element of Sim (4, det) to g we may assume that A,;=1; then g is in
the stabilizer of G at (1, 0), which is Aut (A4, det)V; cf. op. cit.,, p. 431. This
completes the proof.

3. Key lemma and its effect. We shall first reformulate our problem in
the language of Weil [107: let K denote a p-field, i.e., the completion of a
global field by a non-archimedean absolute value; let R denote the maximal
compact subring of K, P the maximal ideal of R, and ¢ the cardinality of R/P.
Choose an element 7 of P—P? and denote by | | the absolute value on K nor-
malized as |z|=g¢~'; fix a character ¢ of K which is trivial on R but not on
P~1. We shall keep the notation A, X, etc. in §§1-2; we shall assume that ¢
is relatively prime to 6; we shall also assume that A=H,(C) with C=M,XM,
and drop the subscript K from Ag, Xk, etc.; accordingly we shall denote Apg,
Xg, etc. by A% X° etc. Let |dx| denote the Haar measure on X such that X°
is of measure 1 and for any given element * of K put

Fr(i)={ | ¢(i#](0)ldx ;

then we certainly have F*(i*)=1 if 1* is in R. Therefore we shall assume that
* is in 7 mR*=P ™—P ™ for some m=1; then we can write

F*(i*)zq—ssm‘x mgpm gb(z*](x)) .

The problem is to obtain an explicit formula for F*(#*); cf. the introduction.
At any rate by decomposing X°— {0} into the union of =*X°—z**1X° for
k=0, 1,2, --- we can rewrite F*(*) as
F*(i*)ZQSGE—(1/4)m]+ 2 q—SGk_[k
054k<m ’

in which
L={  g*ix(o)ldzl,
X0-=Xx0
In order to compute this integral we shall use the following simple lemma
(which we have formulated with the aid of K. Igusa):

LEMMA 3. Let E denote a compact commutative group, E' an open subgroup
of E, and F a union of cosets in (E—E')/E’; let dx denote a Haar measure on
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E. Let ¢ denote a group of bicontinuous automorphisms of E which keep E’
invariant, 9 the stabilizer of F in G, and assume that GF=FE—F. Then there
exists an H-invariant function p on F/E' such that for every &G-invariant con-
tinuous function @ on E—E’ we have

[ odr=] oudx.

ProOOF. We shall use the plus-sign for group-theoretic sums in £ while the
minus-sign is reserved for set-theoretic differences: we observe that every g in
& is measure-preserving on E and also it gives an automorphism of the finite
commutative group E/E’. Let 71 denote the normal subgroup of & consisting
of all g such that g(E/-+x)=FE’+x for every x in E; then % contains 7 and
the quotient group 4/ is finite. We express F as

F= 1 (F+8

£ mod E'

and then F—FE’ as
E—F= 1 W(E+g:;8)

Emod E' ©
with g, in @ for 1=i<u(é); this is possible by assumption. We shall fix such
a non-intrinsic subset {g;;} of ¢ and define p(x) as g,(&) if x is in E/+§&; then
#, becomes an J-invariant function on F/E’. Finally for every x in F we
define p(x) as

) =card (/)7 3 po(ha),

in which % runs over a complete set of representatives of /7. It is easy to
verify that ¢ has the required properties. g¢.e.d.

REMARK. If a coset E’+x in F/E’ satisfies the condition that G(E/+x)NF
=4 (E'+x), then we will have

card (G(E'+x)/ ENy=p(x)-card (H(E'+x)/E").

In fact this is the special case of the formula in the lemma with the charac-
teristic function of @(E’+x) as @. Therefore if the above condition is satisfied,
then p(x) becomes intrinsic and it is group-theoretically computable.

We shall go back to the integral /,: in Lemma 3 we take X° as E, 7X° as
E’, the subset (A°+R)X(A*+R*) of X° as F, |dx| as dx, and Gy for the group
G in Lemma 2 as ¢&. We observe that if we disregard signs of coordinates,
then & acts transitively on the set of 56 coordinates of (y, z). Therefore the
condition SF=FE—FE’ is certainly satisfied. And if we take ¢(n**1*J(x)) as O(x),
then the formula in Lemma 2 becomes

Pt rix J(0)p(x) | dx].

L={
CAO+ R < ( AP+ RY
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We observe that the group 4 contains v, for any 4 in A°. We express [, as
the following iterated integral:

Ik:j‘AOxRx(J‘AOxR ¢(ﬂ4ki*]<x))#(x)ldada !) ldbdﬁl

and apply vs for d=-—pf"'b to the variable (g, @) in the first integral. Since
vgx={(a*-+a* B) with

a*=a+57b%,  at=a—BF'Q(a, b)—2p7% det (b),

the change of variable (¢, @)—(a*, a*) is measure-preserving. Therefore we get
. 1 ?
krx {
I, jAOXRXRxgﬁ(u‘* 1 (det (a)B ( 5 aﬁ) ))y(a+a, B)ldadadB|

= > ,U(ao‘l'am IBO)Ilz(aOy ﬁo)llk(am 180) ,

a9, g fo

in which (a,, @, B,) runs over A°XRXR* mod P and

Iay BO=] o HEti det (@) dadp],

IT(axs, ﬁo):fﬁ%gﬁ(—n“i*(%aﬁf) lda.

These integrals can easily be computed; for the convenience of some readers
we shall give the details.
If det(a,)#0 mod P, then we get

_ oy 1
g Bd(x™ 1i* det (a,) Bo) k=——(m—1)
I(a,, ﬁo)z { 4

\

otherwise ;

no comment seems necessary. If det{a,)=0, ¢,*%0 mod P, then we get

q % k:%(m—l)

[an =1 ,

0 otherwise
as follows: by Lemma 1 and Hensel’s lemma we may assume that ¢;=¢—umod P;
then in the notation of [5], pp. 403-404 we have a=Au+x+y=qg, mod P if and
only if 1=0, x=e—u, y=0mod P; and this implies @;(x)=1mod P. If we fix x,
¥, then

A —> 22=24-0Q,(x)7Q(x, ¥)

is measure-preserving (on the space 2=0mod P) and det (a)=2*Q,(x). There-
fore we get

[ oGt det@plaal={ _¢a*Qu(0D)1d

-1

=g or 0
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according as k:—i—(m-1) or otherwise; the rest is clear. If a,*=0, ¢,=0 mod P,
then we get

- b=—p(m—1), --(n—2)
Ii(ay, ﬁo)z{ L .
[ ] 3g20%-18 otherwise
as follows: we may assume that g¢,=u mod P; then we have a=Au+x+ty=aq,
mod P if and only if =1, x=0, y=0mod P. If we fix 4, y, then
X —> x*=x+ A7 (y¥y

is measure-preserving and det (a)=2Q,(x*). Therefore we get
[ g det (@B)ldx]=[ _ pia**i:28Qu(x) [dx]
=0 =90
:q—w or q~10. [7Z.4k+2i>kl—5

according as k:%(m~1), —}l—(m—Z) or otherwise; the rest is clear. If g,=0

mod P, then we get
[k(ao, ﬁo):q—zs or (1_q~4)«1((1_q—9) I l*} —5q20k—13_q—4<1_q—5) ll*] -9q36k‘1>

according as k:—i-(m—l), —if(m—Z), %(m—S) or otherwise ; this follows from
the fact that

Losb(i* det (2))lda] =(1=¢™) ((1—=¢ ¥ =g~ (1—q7%) |i*| )

for every * in K—R; cf. Mars [9], p. 127. (Incidentally the left hand side is
F*(i*) for det instead of J; and the formula can be proved elementarily as we
mentioned in [7]; it can also be proved by using Lemma 3.)

If ;%0 mod P, then we get

I, ﬁ0>:{ g‘1¢(~nm-li*(%aoﬁo)2) k=—t-(m—1)

otherwise ;

this follows from the fact that the taking of squares is measure-preserving on
1+P. Finally if @,=0 mod P, then we get

- 1 1
- b=t (-1, T(m-2)
e, 89=]1 4 1

r(*) |ix | T VEgRR otherwise,

in which y(z*)*=1; and this is classical. In fact we know that y(*)=1 for
m=0 mod2 and if ¥ denotes the unique quadratic character of R* and

g=[  H@Pae) del,



240 Jun-ichi Icusa

then
r()=x(—="*)-¢'"g,
for m=1mod 2.

4. Explicit formula for F*(1*). We have reduced the problem to the cal-
culation of p(x,) for some x, mod P. It will turn out that we have only to
calculate p(x,) for x,=(y, 1), (0,1) mod P; and we shall use the remark after
Lemma 3 for that purpose. We reduce A%, X°, @=Gg, 4, etc. mod P and, just
for this moment, denote the reduced finite sets simply by A4, X, G, H, etc. Then
H coincides with Hp, for the group “H” in § 2; and the condition to be verified
becomes Gx,\F=Hzx,, in which F=(A+F)xX(A+F;). This can be verified as
follows :

We observe that every x in F is H-equivalent to x'=(a+a,1); cf. §2.
Suppose that such an x is G-equivalent to x,=(a,, 1) for a,=u or 0; then we get

J(x) (=grady J)=J(x%)=0.

We can easily make this condition explicit and we get a*=0, a=0; hence x'=
(a, 1) with a*=0. We observe that x’ is H-equivalent to x,; cf. Lemma L
Therefore the condition is satisfied.

According to the remark we have

plxyy=card (Gx,)/card (Hx,)

and we know card (Gx,) by Lemma 2. We can calculate card (Hx,) as follows:
the stabilizer of H at x, can be identified with the stabilizer of Aut (4, det) at

a,. Since
card (H)=card (Aut (4, det))-¢*(¢g—1),

if x,=(0, 1), then we get
card (Hx,)=¢"(¢—1),
p(x)=(1—g) 1+ 1+ )1—¢™);
and if x,=(u, 1), then by incorporating Lemma 1 we get
card (Hx,)=card (Aut (4, det)w)-¢*(¢—1)
=¢"(1—¢ H(1—¢ ) A—¢H1—¢g™,
wlx)=(1—¢) " (1+¢)1—¢79.

We are ready to make F*(i*) explicit.

We shall first calculate F*(1*¥) for m=1 by a direct method: if we write
i*=m"'¢ with e in R*, then by using Lemma 2 (and omitting the subscript F,)
we get



Exponential sums 241

F(z"e)=¢"(card (J"(O)+ X card (J7*(D)$(@i))

€F
=T (A= ()

In the general case where m=1 mod 4 (and m=1) we put *=z""¢; then we get
7(t¥)=y(w's). Moreover we have

Fr(ymgimopgruono. fy T3 e g,
in which -
1:f<m_n/4=q‘”‘%’%”ﬁo#(aﬁao, Bod(x™ e J(ap+a, fo)) -
Since I is independent of m, therefore, we get
[=F*(xie)—q*
with F*(z7'¢) as above. On the other hand we have
L=y () [i% | T2 (1] ~og0k 35, %‘ﬁ’o (@, Bo)
=g H (=g i gk
—q H(L—g ) [*] ~0g** ) ﬁZo‘/ #0, B0,
in which a,*=0, a,#0 mod P and §,%0 mod P; hence
%27‘5; #do, Bo)=q*1—¢ ) 1—¢ )1 —g)(1—¢7*),
820’ #0, B)=q(1+q7")(1+¢™*)(1—¢7).

If we put these together, we will get an explicit formula for F*(i*) in the pre-
sent case, i.e., in the case where m=1 mod4; we can similarly obtain explicit
formulas for F*(i*) in the other three cases. And the results can be stated as
follows :

THEOREM 1. Let * denote an element of P ™—P ™ for some m=1 and
define a fourth root of umity y(i*) as

] 1 m=0 mod 2
r(1*>:{ ,
X(—7™*y- g7 Gy, m=1 mod 2,
in which ¥ is the unique quadratic character of R*=R-—P and

Gi= % 1)

the corresponding Gaussian sum; then we have
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F *(i*)ZL,OQb(i*J ()ldx|
_ ((ll_— q;:))((%: ;1:;8)) (%) | i%| 752

a4 (1_q_10>(1—q_14) e\ | g% ] ~9-1/2
q I=¢H1—¢" 7(1 Yx

H(g Fc@N]x| T,

n which
a1 (=g (A +g )1 —¢7") .
<*) q (1—61_9)(1—(]_17) m=0 mod 2
Cl1 -
a1 -4 14
g ¢ 51321-33?1_)21_17)" ) 7(1%) m=1 mod 2.

We know that F* determines the “local singular series” F(2) as
F()= lim j FH(iF)p(—ii%) | di|
g—eo  pT€
and F determines the “local zeta function” Z(w) as
Zw={  we(J@)lde=] F@e@ldi,
X0-J7H® KX
in which w is a quasi-character of K*; cf. [6]. In this way we can transform

Theorem 1 into the following equivalent statement:

COROLLARY. Let ¥ denote the restriction of @ to R*, put t=w(x), and assume
that |t} <1; then Z(w) for x=1 has

(=g H1—g (A= g " )1~ *F)
as its denominator and
(1= HA—=g (I +g =g (1+q +¢ =g
+g (=g g g B g7 (LT
as its numerator; Z(w) for y*=1, x1+1 is given by

o5 (1—g HA+gH(A—gA—g7%) |
x(—1)g (l_q—utz)(l_q—wtz)(l_q—zstz) H

and Z(w)=0 for *#+1.

The above results give rise to some global theorems; of these we shall just
explain the Poisson formula for [

5. Poisson formula. Let 2 denote a global field, f(x) a homogeneous poly-
nomial in 7 variables x, x,, -, X, with coefficients in % such that char (&) does
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not divide deg (f)=2, and X an n-space; for every ¢ in & let U(i) denote the
k-open subset of the fiber /(i) defined by f'(x)=grad,f#0, 6,(x) the residue of
(f(X)—D)*dx, A -~ Adx, along U(i). On the other hand let the subscript A
denote the adelization relative to % and fix a nontrivial character ¢ of k4/k;
let |0;] denote the adelized measure on U(i), associated with #,(x). Then the
Poisson formula for f(x) means the following identity :

2 1O:ila= 2 P(*f(x)

of tempered distributions on X . This is a rather delicate formula : the restricted
product measure ||, may not exist; even if it exists, it may not be tempered;
even if it is tempered, the sum of 6], for all ¢ in 2 may not be tempered;
similarly the sum of ¢(i*f(x)) for all #* in k& may not be tempered. We recall
that any bounded measurable function ¢ on X, is considered as a tempered
distribution as

D)=, pODIdxls,

in which @ is taken from the Schwartz-Bruhat space S(X,) of X, and |dx|, is
the Haar measure on X, such that X,/X, is of measure 1. We shall show that
Theorem 1 and our result in [7] imply the following theorem:

THEOREM 2. Let J denote the Freudenthal quartic associated with an excep-
tional simple Jordan algebra defined over an algebraic number field k; then the
Poisson formula is valid for ], i.e., we have

i;a fU(i)A@] O:l4= izek jXA¢(i*](x))@(X) |dx]4

for every @ in S(X,); both series are absolutely convergent and the convergence
is uniform if @ is restricted to a compact subset of S(X,).

PrOOF. We have only to show that the two conditions (C1), (C2) in op. cit,,
Theorem 1 are satisfied. (Cl) requires that if S denotes the critical set of J
defined by J(x)=0, then

COdimJ-l(())(S)ZZ .

Since the left hand side is 10, it is clearly satisfied. We shall recall {C2): let
k, denote the completion of % relative to a nonarchimedean absolute value | [,
on %: let o, denote the ring of integers of k,, , the maximal ideal of o, and
g=4¢, the number of elements in 0,/p,; the absolute value is extended to k, and
is normalized so that it is constant ¢~* on p,—p. Let ¢, denote the product
of the canonical injection k,—k, and ¢; let |dx|, denote the autodual measure
on X, relative to, e.g., the bicharacter (x, x')—¢(E(x, 7)) of X,xX,, in which
Eis as in Lemma 2. We choose a basis for X from X, and denote by X} the
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compact open subgroup of X, consisting of points with coordinates in 0,. Then
(C2) requires the existence of ¢>2, which is independent of v, such that

a0 20T | Smax 1, 1i#1,)-7

for every i* in k, and for almost all v. This is a consequence of Theorem 1
for the following reason:

We know that ¢,=1 on b, but not on p;?, X is of measure 1, the coefficients
of J(x) are in o,, and the Jordan algebra, say A, by which J is defined has a
good reduction modyp, for almost all v. In particulae A, is k,-reduced. Since
every octonion algebra splits over a p-field, there exists an invertible linear
transformation in X, which transforms J(x) into the classical expression. The
point is that we can find such a linear transformation with coefficients in Oy ;
and this follows from Hensel's lemma. Therefore we can apply Theorem 1 and
we see that (C2) is satisfied, e. g., with ¢=5. q.e.d.

We might mention that Theorem 2 remains valid even if we take as 2 a
function field (of one variable with finite constant field) provided that char (k)
#2, 3; this follows from op. cit., Theorem 1 and from a result of Kempf on
the desingularization of the singularities of /=0. And our last remark is the
following : let J denote the quartic we have defined in the introduction, i.e., by
the condition that the identity component of Aut (X, J), where X is a 56 dimen-
sional vector space, is a k-form of type E,; then up to a constant factor it is
the Freudenthal quartic associated with an exceptional simple Jordan algebra
defined over &2 This is one of the theorems in the classification theory of all
“absolutely admissible representations” over Z.
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