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1. Introduction

The purpose of this paper is to present a characterization of the finite classical
linear groups of rank 2 and characteristic 2 in terms of the structure of their
maximal 2-local subgroups.

Let G(g) denote a Chevalley group? defined over a finite field F, of characteristic
2. As shown by A. Borel and J. Tits [19], the maximal 2-local subgroups of Glg)
are the maximal parabolic subgroups, and consequently their structure vividly
reflects its BN-pair structure. Furthermore, recent progress in the theory of finite
simple groups indicates the importance of the study of finite simple groups in
terms of the sfructure of their 2-local subgroups. Thus, it seems natural to ask
what group theoretic properties of maximal 2-local subgroups of G(g) would charac-
terize its BN-pair structure.

M. Suzuki was the first to take up a problem of this type. Suzuki showed
[18] that if G is a T.I. group, then either G has 2-rank 1 or O%*(G) is a covering
group of a Chevalley group of rank 1 defined over F,, g=2*>2. Thus, Chevalley
groups of rank 1 and characteristic 2 are the only simple groups that have 2-closed
maximal 2-local subgroups. A result of the author’s previous paper {5] is also in
this direction. To describe it let us say, following D. Gorenstein, that a finite
group G is of characteristic 2 type if every 2-local subgroup of G is 2-constrained
and core-free (we do not require that SCN,(2) be non-empty in G). This is one of
the properties which Chevalley groups of characteristic 2 universally have, as D.
Gorenstein pointed out. In 5] we studied the groups G of characteristic 2 type
in which every non-2-closed maximal 2-local subgroup M satisfies the conditions
(1) MJO,(M) is a T.1. group and (2} each involution of O,(M) is centralized by some

D A dissertation submitted to the Faculty of Science, University of Tokyo. The theorems
of this paper were announced at the International Symposium of Theory of Finite Groups
held at Sapporo in September, 1974.

2 We shall use the term ‘Chevalley group’ in the sense of Fong and Seitz [4]. In addi-
tion, we shall exclude nonsimple groups. Several authors use the term ‘simple groups of
Lie type’ to mean this class of groups.
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Sylow 2-subgroup of M. The result was that if G is simple then, with certain
exceptions, G is isomorphic to PSL(3,2% or PSp(4,2"), n>2. The primary objective
of this paper is to obtain the following generalization:

THEOREM 1. Let G be a finite group of characteristic 2 type with Oy,(G)=1
and O*(G)=G and suppose every maximal 2-local subgroup M of G satisfies

(1) MO, (M) is a T.I. group
and also either

(ii) 2:(0,(M))<Z(0:(M)) or

(i) 2(ZP)=2.(2Q) for any P,Q€SyL(M).
Then if G is not ¢ T.I. group, O¥(G) is isomorphic to one of the simple groups
on the following list:
(1) PSL(2,q),q=2"+1>5, PSL(3,3), M, PSU(, 3});
(2) PSL(3,2*), PSp(4,2~), PSU4,2%, PSU(5, 2", n>1.

Thus we obtain a characterization of the finite classical linear groups of rank
2 and characteristic 2 along the same lines. In the above, (ii) is a condition on
the structure of O,(M) while, as G is of characteristic 2 type, (iii) simply places
a restriction on the action of O¥(M)/0,(M) on 2,(Z(0.(M))). This contrast may
appear strange. IHowever, the existence of an M satisfying (ii) appears to be
closely related to the fact that the Weyl groups of the groups listed in (2) have
orders 6 or 8. It should also be remarked that, with the exception of PSL(3, 2%
and PSp(4,2"), the Chevalley groups of rank 2 and characteristic 2 contain an M
satisfying (iii).

The method used in the proof of Theorem 1 is basically a generalization of
those used in the previous papers [5] and [6]. Also, the results of [7] serve to
shorten the proof considerably. Let 4 denote the set of nonidentity 2-subgroups
H of the group G such that Ng(H) is not 2-closed and H=0,(Ng(H)). We show
that a Sylow 2-subgroup P of G contains two distinct elements H; and H, of 9
such that O (H)<Z(H.) and @.(H)<H, This implies that H; behaves as if it
were abelian. Then making full use of this property of H,, we analyze the struc-
ture of Ng(H,),i=1,2, carefully. This analysis eventually reduces us to a situation
where we may quote a theorem of Fong and Seitz [4]. In fact, this method breaks
down when both N,{(H,) and Ng(H,) are in some sense small, in which case we
must invoke the deep theorems which classify

(a) finite groups with dihedral Sylow 2-subgroups [11];

(b) finite groups with semidihedral or wreathed Sylow 2-subgroups [1];
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(e) finite groups all of whose 2-local subgroups are solvable [10], [15], [16].
Each of these classification theorems will be used to identify O¥(G) with one of
the groups listed in (1).

The paper is organized as follows. Section 2 is primarily a description of the
properties of 4 and its important subsets already discussed in [7]. The only result
that is reported there for the first time is Lemma 2.7, which is crucial to the proof
of Theorem 1. After preparing some auxiliary results in Section 3, we prove in
Section 4 a technical theorem (Theorem 4.2) which characterizes PSL(8,2" and
PSp(4,2% in terms of the properties of a certain subset of 4. It will be crucial
to the remaining sections. Section 5 is devoted to the proof of Theorem 1. The
final Section 6 contains a proof of the following related result:

THEOREM 2. Let G be o finite group of charascteristic 2 iype with O(G)=1
and suwppose o Sylow 2-subgroup of G contains two distinet abelian subgroups H,,
1=1, 2, such that Ng(H,))|H; 1s a non-2-closed T.I. group. Then Inn (K)<G<LAut (K),
where K is one of the following simple groups:

(1) PSL2,¢q),q=2"+1>5, PSL(3, 3), My;
(2) Js;
(8) PSL@3,2"), PSp4, 2", n>2.

Here, J, denctes the Janko group of order 50,232,960. As a direct consequence

of Theorem 2 we obtain the following result:

COROLLARY. Let G be a nonabelian simple group of characteristic 2 type and
suppose G contains an abelian subgroup A such that Ng{A)JA is a non-2-closed
T.I. group and | Ng(A).<|Gl,. Then G is isomorphic to one of the groups PSL(2, q),
q=2"+1>9, PSL(3, 8), My, and J,.

Apart from the theme of the paper, it would be of interest to know what
happens when the assumption [Ng(4)|.<|Gl, of the corollary is dropped. Let A<
PeSyl.(G). Then in view of Theorem 2, we need only consider the case where A
is the only abelian subgroup of P such that Ng(4)/A4 is a non-2-closed T.I. group,
and hence A is weakly closed in P with respect to G. We note that the group
PSU(4, 2% contains such an A of order 2. Presumably PSU(4, 2" is characterized
by these properties, but the proof of this may require a method quite different
from that of this paper.

Notation: Qur notation is standard and mainly taken from [8]. Possible excep-
tions are the use of the following:

O'(G)=0%(G): the subgroup of G generated by the 2-elements;
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F*(G): the generalized Fitting subgroup of G;

G?: the subgroup of G generated by the squares of elements of G;

S{G)=8yL(G): the set of Sylow 2-subgroups of G; Sylow 2-subgroups are called
Sz-subgroups;

I(G): the set of involutions of G; an element of I{G) is a central involution if it
is contained in the center of some S,-subgroup of G;

AGB: A is embedded in B;

AxB: a central product of 4 and B with amalgamated centers;

Z,: the cyclic group of order n;

Dg: the dihedral group of order 8;

Qs: the quaternion group;

SDy,: the semidihedral group of order 16;

Z, ! Z,: the wreath product of Z, by Z,;

PGL*(2,9): the unique extension of PSL(2,9) by a group of order 2 with semi-
dihedral S;-subgroups of order 16;

A,, 3, the alternating and symmetric group of degree x.

SflAmod B): the inverse image in A of f{A/B). Here B<]A, and f is a function
from groups to groups. But notice that 2,(Z(4 mod B)) means (2,7)(A mod B).

2. Properties of the set 9

In this section we describe the properties of 4 and its important subsets which
we shall need in later sections.

Let G be a finite group. Recall that 4{ is the set of nonidentity 2-subgroups
H of G such that N{H) is not 2-closed and H=0,(N{H)). Furthermore, we define
Y1 (resp. [, to be the set of elements H of 4{ such that N(H)/H is a non-2-closed
T.I. group (N(H)/H has a strongly embedded subgroup). It is clear that 41 < 9(,.
For any subset X of G, J{(X) will denote the set of elements of .4 contained in
X. 9({X),1=0, 1, are defined similarly. Finally, we define

H'={He H; 2(Z(P)+0.(Z(Q)) for some P,Qe SINH)),

H(X)=H"nHX).
LEMMA 2.1. Let He 9{ and let M be a subgroup of G such that Oy(Ny(H))=H.

Then O,(M)<H. Hence if, in addition, G is of characteristic 2 type, M is 2-local,
and H is abelian, then O,(M)=H.

and

PrOOF. Suppose this is false. Then H<Ngo,an (H)<|Nyx(H) contrary to our
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assumption. Hence O,(M)<H.
Now assume that every maximal 2-local subgroup of G satisfies the condition
(i) of Theorem 1 and let He J(. If M is a maximal 2-local subgroup of G contain-
ing N(H), then O,(M)<H by 2.1, so as N(H) is not 2-closed, (i) yields that H=
0,(M). Thus I =Y9{,=9(, and 9{ is nothing else but the set of the maximal normal
2-subgroups of non-2-closed maximal 2-local subgroups of G. This accounts for the
important role which J{ plays in this paper.
Let {P}io1..... be a sequence of S,-subgroups of G and {Hj};-,..,, & sequence
of elements of 9, and suppose the following conditions are satisfied:
(1) Pia#=P,1<i<n;
{2) H;<H;, and H; . < H;, 1<¢<n—1;
(3) Hi<PaNP,1<i<n.
Then the pair of these two sequences, denoted by (P, H,),, is called a path of
lengih m. The path is proper if ;}IHﬁbl, and joins P to Q if P,=P and P,=Q.
The following three lemmas a;_e proved in [5] and [71.

LEMMA 2.2. Let P and Q be distinct S,-subgroups of G such that PNQ#1.
%
Then P is joined to Q by a path (P;, H;), such that PNQ= .nl H;.
pa

See [7], Proposition 2.4, for the exact meaning of “contrals” below.

LEMMA 2.8. Let PcS(G). Then JH(P)U{P} controls the fusion of subsets
of P.
LEMMA 2.4. Let Pc S(G) and suppose I o(P) has the unique minimal element
H under inclusion. Then either H<|G or m(G)=1, and hence O(G)<0y,:(G).
The following two theorems are the combinations of the results of [7] and Fong
and Seitz [4].
THEOREM 2.5. Suppose G satisfies the following conditions:
) 1 9Lo(P)[=2 for PeS(G);
) IS(NH))|=|NH): Hl;+1 for He Ho;
) If (P, H.), is a proper path and H=He 4(o(Py), then Py=H _r_ﬂlHj).
) The maximum length d of a proper path of G is odd. ”
Let Go=0%(®) and Z=Z(G,). Then Z has odd order and one of the following
holds:
{i) d=1 and G, is the product of two normal T.I. groups G;,i=1,2, such that
H;e S(G.), where J{(P)={H,, Hy}, PcS(G);
{ii) d=8 and G,/Z=PSp(4,2", PSU4,2", or PSU(5,2");

(1
(2
(3
(4
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(iii) d=5 and Go/Z=G.(2") or 2D,(2");
(iv) d=7 and G/Z=2F,(2".

Proor. Since d is odd, Theorem 2 of [7] shows that G has a BN-pair of rank
2 such that B=N(P), Pc §(G), and B=P(BNN). Furthermore, the Weyl group
has order 2(d+1). Let B,=BNG, and Z,= Q Bj. Since Z, has odd order (cf.
Lemma 2.13 of [7]), [P, Z,]=1 and then Z0§Z.ge’f)hus Z=17, has odd order. Hence
if d>3, the result follows from Theorem A of [4]. Since the case d=1 is not
relevant to this paper, we shall leave the verification of (i) to the reader.

Similarly using Corollary 1 of [7] we have the following result:

THEOREM 2.6. Suppose G satisfies the following conditions:
) 1 HHW(P) =2 for PeS(G);
) If He 9(,, then N(H)/H has abelian S,-subgroups of rank at least 2;
) If (P, Hy), is a proper path of length at least 3, then _r_t}z H;< H;
) 0.G)=1 and 0°(G)=G. -
Let d be the maximum length of a proper path of G, Go=0%(R), and Z=Z(G,).
Then Z has odd order and one of the following holds:
(i) d=1 and G,=PSL(2,2")x PSL(2,2™);
(ii) d=2 and G./Z=PSL(3,2";
{fii) d=38 and Go/Z=PSp(4,2") or PSU4,2";
(iv) d=5 and Go/Z=G.2" or 3D,/2).

Finally, we prove:

LEMMA 2.7. Let G be a group of characteristic 2 type, Pc S(G), and assume
that the following conditions are satisfied:
1) Y(,(P)={H,, Hy};
) Ewery involution of HiNH, is a central involution of G;

) If xe IIZ(P)), then C{z) is a non-2-closed subgroup of N{H,);
5) G contains an involution with the 2-closed centralizer.
Then O,(G)=+1.

We shall divide the proof into three parts.

{

(2

(38) H,—H, contains no central involution of G,
(4

{

(a) N(H,)—H, contains no central involution of G.

Proor. Let z€ I(P) be a central involution of G. We argue that x¢ H,. We
may assume x ¢ Z(P) since Z(P)<H,. Then if Cp(x)<@ € S(C(x)), then P£Q<c S(G)
and z¢€ PNQ, so x is contained in some element of 4/ (P) by 2.2. Thus by (1) and
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8), xe¢ Hy. As Pec S(N(H,)) by 4), (a) holds.
{(b) PN+ for all QeS(

PrOOF. By (5), there is an involution # such that S(C(x))={Cr(z)}. Suppose
Qe SG) and PNQ=1. Let ycI(Z(Q). Then zxy by (4 and so there is an
involution z such that [z,2z]=1=[y,2]. Notice that z2¢ Cp(z). Let z€ Rec S(Cly))
‘Then Re S(G) and H<R for some He 9,(@Q) by 4). In particular P+£R and sinece
2€ PNR, P is joined to R by a path (P, K;), such that z¢ n K; by 2.2. Since
2¢ PNK,, K,+H and so Y[ (R)={K,, H}. Since Z(R)<K, ﬂH<Pn NG, n>2. So
2z is a central involution by ( ) and is contained in K,—H. This contradicts (3).
Hence (b) holds.

(e) If we L Z(P)), then {u,u?> is a 2-group for all geG.

Proor. Let U=<u,u?. By (b), PNPs=+1, so let ve [PNP?). Then U<C).
If v is a central involution, Cv)<N(H) for some H~H; by (4) and so U<H by
{a). If v is a noncentral involution, then by (2) and 2.2 either P=P7 or PN P7¢c 9,
and hence U<Z(P), Z(P)*y< PN P¢ in either case. Thus (¢c) follows.

Now 2.7 is immediate from (¢) and the Baer-Suzuki theorem [8, Theorem 3.8.1].

3. Preliminary results

In this paper, the structure theorem of T.I. groups plays an important role.
Let G be a T.I. group. Then the results of [18] show that G is solvable if and
only if G has 2-rank 1, and if the 2-rank of G is at least 2, then O'(G) is a covering
group of the so-called Bender groups PSL(2, q), Sz(g), and PSU(3, q), g=2">2. So we
can derive properties of T.I. groups of 2-rank at least 2 from those of the
Bender groups, which we shall summarize in the following lemma without proof.

LEMMA 3.1. Let G be a Bender group defined over F,,q=2">2, P an S,-sub-
group of G, and K a complement for P in Ng(P). Then
(1) P acts transitively on S(G)—{P} and hence G acts 2-transitively on S(G
(2) £:(P) is elementary abelian of order q and Q,(P)<Z(P).
q if G=PSLZ2,q),
(3) 1Pl=q¢® if G=Sz(g),
¢ if G=PSU(8,q).
{4) K acts transitively on 2,(P)}, and Q2,(P) is the only K-invariant nontrivial
proper subgroup of P.
(5) Ng(P) is the only mazimal subgroup of G containing Q,(P) unless G=PSU(3, ¢).
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Now we collect together some results which we shall need for the proof of
our theorem. The following lemma will be used repeatedly.

LEMMA 3.2.
(1) Suppose SL(Z2,2%,n>1, acts irreducibly and nontrivially on a wvector space
over Fy of dimension m. Then m>2n. If m>2n, then m=8n/3 or m>4n.
(2) Suppose N is a group, N=0¥(N), and NJ/O,{N) is ¢ T.I. group of 2-rank
at least 2. Then if K>L are normal 2-subgroups of N and [O*N), K]<LL,
| K] L{=|N]O:(N) .

ProoF. (1) is Lemma (4B) of [4]. Let us consider (2). By [18], N/O:(N) is
a covering group of a Bender group. Using results on Schur multipliers of Bender
groups [2],[12],[13], we see that either N/O,(N) is a Bender group or N/O,(N)=
SU{8,q). We may assume that V=K/L is a chief factor of N, so that O,(N)<
Cy(V) and N/Cx(V) is a homomorphic image of N/O,(N). The assertion now fol-
lows from Lemmas (4B), 4D), and (4F) of [4].

LEMMA 3.3 A subgroup of GL(3,2) is a non-2-closed T.I. group only if it
has S;-subgroups of order 2.

PrOOF. This is easily seen by inspecting the list of subgroups of GL(8,2)=
PSL{2,7) 113, p. 213].
A similar proof shows:

LEMMA 3.4. Let g, 7 be powers of 2 such that g<r and r*<q®. Then PSL(2,q)
1s not embedded in PSL(@2,1).
We shall now list some properties of the automorphism groups of relevant.

simple groups.

LeMMA 3.5. Let G be a group of characteristic 2 type, K a nonabelian simple:

normal subgroup of G with Ce(K)=1, and Pe S(G). Then:

1) If P is dihedral, then G=PSL{2,q),g=2"x£1>3.

2) If P is semidihedral, then G=PGL*(2,9), PSL(3,3), or M.

3) If Z;XDsGP and PNEKGSD,,, then G=3; or Aut (PSL(3,3)).

4) If P=2Z,) Z,, then G=PSU3,3).

5) If PKK=J,, then G=J,.

6) If K=PSL(2,q), Szlq), PSU(8,q), PSL{3,q), or PSpl4,q), ¢=2", then G/K has:
odd order.

PrOOF. Assume that PNK is dihedral. Then K=PSL(2,q), ¢q=2"x£1>3 [11].
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Notice that either g=9 or q is a prime. Suppose G=PGL{2,q), then an involution
t of G—K satisfies O{C{¥))#1 contrary to our assumption. So G£PGL(2,q). Hence
G=PSL2,q) if g#9. If ¢=9, G has dihedral S;-subgroups only if GGPGL(2,9).
Thus (1) holds.

Assume that P is semidihedral. Then either P<K or K has dihedral S;-sub-
groups. In the latter case K=PSL(2,9) by the first paragraph, and then, as Pis
semidihedral, G=PGL*?2,9). If P<K, then K is isomorphic to PSL(3,3) or My
[1]. Since the outer automorphism groups of these groups have orders at most 2,
G=K (cf. [8]). Hence (2) holds.

If Z,X DG P and PN KG 8D, then the above two paragraphs show that either
K=PSL(2,9) or PSL(3,3). Since PI'L(2,9) is not of characteristic 2 type, (3) fol-
lows. The proof of (4) is similar (cf. [1]). (5) follows from Proposition 8.1 of [9].
In fact, the assumption P<K can be dropped here since G is of characteristic 2
type. In case (6) if G/K is of even order, then it follows from the structure of
Aut (K) (ef. [17]) that G—K contsins an involution ¢. Furthermore, Cg(t) has a
nonabelian simple normal subgroup unless K=PSL(2,4) or PSL(3,2) or PSL(3,4)
and ¢ is a graph-field automorphism, in which case O(Cx(t))#1. Hence (6) holds.

LEMMA 3.6. Suppose S=AB is a nonabelian 2-group, A and B are elementary
abelion, and Csla)=A for each o€ A—B. Then the only maximal elementary
abelian subgroups of S are A and B.

ProOF. If x=abc I(S), where a € A and be B, then [a,bl=24?=1. So ¢c B or
bc A and x€ AUB, whence 38.5.

LEMMA 3.7. Suppose H, K are subgroups of a group N, H=0,(HK), K has
odd order, Cx(K)=1, and Ny(HK)/HK has even order. Then Ny(K)—H contains
an involution.

Proor. Choose 2¢ Ny(HK)—H so that z2c¢ H. By the Schur-Zassenhaus
theorem, there is an element k€ H such that K**=K. We have (zh)?=x*{z"*hx)h €
Nz(K)=Cyz(K)=1. Thus zk is an involution of Ny(K)—H.

We shall use this in the following situation. Suppose NJ/O,(N) is a non-2-closed
T.I. group of 2-rank at least 2. Let P, @ be distinet S,-subgroups of N, and K a
complement for H=0,(N) in Ny(P)NNy(Q). Then since N acts 2-transitively on
S(N), an involution of Ny(HK)/H normalizes HK/H. Hence if Cz(K)=1, we can
apply 8.7 to conclude that P—H contains an involution.
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4. A technical result
In this section we study the following situation:

HypoTHESIS 4.1. G is a group of characteristic 2 type with O(G)=1 in which
an S,-subgroup P contains elements H; of 9{,,i=1,2, such that
(1) H,<H, and H,<H,
(2) either H;<{P,i=1,2, or Np(H))=Np(H;) and an element of P interchanges
H; and H,,
(3) &(H)<ZH),1=1,2, and
(4) either H;€ 9{’,i=1,2, or each H; is abelian and non-normal in P.

The purpose of this section is to prove the following result:

THEOREM 4.2. Assume 4.1. Then each H; is elementary, and one of the fol-
lowing holds:

(1) [H;|=4,i=1,2, and G=PSL(2,q), ¢g=2"+1>5, PGL*(2,9), PSL(3,3), or M,;

(2) (H|=8,v=1,2,{H;, Hy)=Z,XDs, and G=Z; or Aut (PSL(3,3));

(3) |H;|=16,1=1,2, and G=J;;

(4) 0¥(G)=PSL(3,2" or PSp(4,2",n>2, and H/s are the maximal elementary
abelian subgroups of P.

Henceforth, G will denote a group satisfying 4.1. Furthermore, we let
N;=N{H,;),Q=NpH),<R;€ S(N;) and R,#8S;¢ S(N:),i=1,2. If possible, choose
S; so that 2,(Z(R,))#2:(Z(S;)). Let K; be a conjugate in N; of H, contained in
S;,i#j. If P+#Q, there is an element a € Np(@) such that H¢=H,_ ; by 4.1.2, so
in this case we choose K; so that (H;NK,)*=H,NK,.

The exact statement of 4.1.4 is used only in the following lemma:

LEMMA 4.3. For 1=1,2, there is an element a,€I(H.NH, such that
CHiK3_i(ari) =H,.

ProOF. Without loss, 7=1. Notice that Z(R,)<Z(@Q)<H,NH, Hence if
D Z(Ry)#=2:(Z(S), we may choose a,€ Q,(Z(R)—-2:(Z(S))). Indeed, we have
Cs,(a,)=H, since Ny/H, is a T.I. group. So we assume H;¢ 9{’. Then by 4.1.4,
H, is abelian and P+#Q. Also, HiNK,#1 since 9,(Z(R,))=2,(Z(S))<H,NK,=
(H;N Ky Let, therefore, a,€ I[HNK;). Then a;€ HiNH,, and 0,(Cla)))=H, by
2.1, so Cg s <H,K,NN,=H,, as required.

The condition 4.1.8 is crucial to the following lemma:

LEMMA 4.4. The following conditions hold:
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H3=1;

Qe SNy

Q=H,H, and HiNH,=Z(Q);

|Q:Hi|=1Q: Hyl;

If Q#Q;¢ SIN), then Hi=Z(Q)Z(Q,) and Z(@Q:)NZ(Q:)=1;

H; and H, are the only maximal elementary abelian subgroups of @;
0,(G)=1, and F*(G) is simple.

P S S
-1 S Ol = W N
[ N

PrOOF. In view of 4.3 let a, ¢ I{(H,NH,) satisfy Cy,x,_,(a;)=H;. Then, since
o, € Z(Hy) and K, <H\K,, [H\K,,a,]<,(H;NK,). So by 4.1.3, the map z—{x, a]
is a homomorphism from H. K, into 2,(H: N K,). In particular, H,K,/H, is elementary
abelian. Suppose z ¢ H, K, and [x,a,]€ Hi. Then U={=z,a,],a,> is a 4-group and
if ye H H,—H,, yx induces an automorphism of order 2 of U by 4.1.3. However,
since N,/H, is a T.1. group, yx has odd order modulo H;, a contradiction. Thus
[H.K,, .0 H,=1, whence |HH,:H,|=|{[H.K,,a,]|<|H H,:H,]. By symmetry be-
tween H; and H,, we conclude that |H H,: H,|=|H H,: H,| and H . H,=2,(H.NK,)H,=
Q. H,NK)H;,. As a consequence, H?=H:=(H,NH,? Hence if H?#1, then
V=0,N{H, N Hy)))<H, N H, by 2.1 and then ,(H,)<C(V)< V< H,, a contradiction.
Thus HZ=1.

Suppose 1#£xe HHNH,N K NK,, then H,=0,{(C(x))=H, by 2.1, a contradiction.
Hence HNH,NK, NK,=1. Consequently, O,{G)=1 and, since G is of characteristic
2 type, F*(G) ig simple. Furthermore, if ¢q=|H.H,: Hy|, |H;|<¢*. Suppose R,+*H, H,.
If m(N,/H,)=1, then |H,|<8 and N,/H,GGL(3,2), impossible by 3.8. Som(Ny/Hy)>1.
Let r=|R,:H;|. Then r?<{H,|<q® by 3.2, s0 ¢>2 and E,/H; is abelian by 3.1.3.
Let M=<{H,, K,y. Then M/H,=PSL(2,s), s>q, and M/H, acts faithfully on H,/H, N K,
under conjugation. Lemma 3.2 now implies that s?<|H,/K,|<¢?. So s=¢ and
PSL(2,q)GPSL(2,r). However, this is impossible by 3.4. Thus R,=H H,=R,,
whence (2), (3), and (4).

Let @#Q;€ S(N). Then Z(Q)#Z(@,) by [5, 4.41], so replacing S; by @, we
obtain (5). Furthermore, Cy(h)=H,; for he H,—Z(Q) since N,/H; is a T.I. group,
so (6) follows from 3.6. The proof of 4.4 is complete. ,

Now we define ¢=[Q:H,|=[Q:H;| and B=Ny, (@Q)=Ny, (@) (cf. 4.4.6). Hence-
forth, we assume that G does not satisfy either 4.2.1 or 4.2.2.

LEMMA 4.5. For +=1,2, the following conditions hold:
(1) Z@QNZ(S) is independent of the choice of S¢ SIN,)—{Q}. Let H, denote
this group. Then if q=2, H;#1;
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(2) C@<N; for xc HL If P#Q, then Z(P)NH;=1, and Z(P)+Z(Q) unless
H,=1 and ¢>2;
(8) Hi= U Z(S);
SeSHy N o 5
(4) B acts transitively on (Z@)/H;)* by conjugation. FEither H;=H,=1 or

Z(Q)231XH2.

Proor. If ¢>2, then 3.1 shows that @ acts transitively on S(N,)—{@} by
conjugation and (1) follows immediately. Assume ¢=2. If |H;|=4 then, as H; is
self-centralizing, P is dihedral or semidihedral by Suzuki’s lemma and we are in
4.2.1 by 3.5, which we are assuming is not the case. So [Z(Q)N Z(S){=2 for each
Se S(N,)—{@}. If P=Q, then 4.2.2 holds [9, Lemmsa 4.8]. So P+#Q and H, is
conjugate to H, in Np(@). Soif ZQ)NZ(S)+Z@) NS(T) for some S, T'c SNV, — (@},
the same occurs in N,. But then, since Z(@Q) is a four-group, Z({U)NZQ)=
Z({U) N Z(Q) for some U, ¢ S(N;)—{@}, which contradicts 4.4.5. Thus (1) holds.

Let x¢ Hf. Then 0,(Clx))=H; by 2.1, so Cx)<N;. In particular, Cr(z)=Q,
whence the latter part of (2).

By (1), we have

={(ISNllg=1)+11Hl .

SGS(N)

As |[S(N)|>q+1, (8) follows.

To prove (4), we may assume ¢>2. Let a¢ N;—B, @,=@¢, B,=B*, and K,=H}.
Then B, acts transitively on (Q,/K;* by 3.1.4. As B=@,(B.NB) by 3.1.1 and
@:/K, is abelian, it follows that B;NB acts transitively on (@,/K,)¥, hence on
(Z(@Q)/H)* since Q/K.=Z(Q)/H, as (B,NB)-modules. Thus the first assertion of (4)
holds. Since H,NH,=1 by 4.4.5 and H, is B-invariant by (1), the second asser-
tion follows.

LEMMA 4.6.
(1) [P:Q|<2.
(2) @ is weakly closed in P with vespect to G.
(8) If X is an elementary abelian subgroup of @ not contained in Z(Q), then
N(X)<Q.

PrOOF. First, we consider (2). Let R=Np@). Since Q=H H,, it will be
sufficient to prove that a conjugate of H;,i=1 or 2, contained in R is necessarily
contained in Q. Suppose, by way of contradiction, that H:<R but Hi<Q. Let
y € IQ—Z(Q)). Then 4.4.3 and 4.4.6 imply that Cely)=H;,i=1 or 2, and hence
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Coly)=H,<Q. This and 4.5.2 force (QNHN<Z(Q)—H,—H,. Letr=|H,, i=1,2.
Then, as [R:Q|=2 by 4.4.6, it follows that (¢*r/2)—1<¢qr—2r+1. This is possible
only if ¢=2 and r=1, which, however, contradicts 4.5.1. Hence @ is weakly closed
in P with respect to G.

Now (2) in particular implies that @<JP, so |P:Q|<2. Let X be as in (3).
Then X< H; i=1 or 2, by 4.4.6. Since elements of P—@ interchange H; and H,,
and HiNH,=Z(Q), we must have Np(X)<Q. The proof is complete.

From now on, we assume that G does not satisfy 4.2.4.

LEMMA 4.7. 9(o(P)#9,(@Q).

PrROOF. Suppose that [(P)=Ho(@). Then by 2.8 and 4.6, § is strongly
closed in P with respect to G. Since |P:@Q|<2, the focal subgroup theorem implies
that PNG'<Q, so by 4.4.7 K=F*(G) is a simple group of characteristic 2 type
with S,-subgroups of class at most 2. Thus either K=PSL2,r), Sz(r), PSU3,r),
PSL(3,r) or PSp4,r),r=2", or else K=PSL(2,9) [6] (see also [7 ,Corollary 27). In
the former case O/(G)=K=PSL(8,q) or PSp4,q) by 3.5. In the latter case ¢=2
since |Aut (PSL(2,9));=32, and then G=X; by 4.5.1 and 8.5. Thus we are in
421, 42.2 or 4.2.4. Therefore, . (P)+ 9 (@).

Now we choose He [ o(P)— 9 (@) so that H is maximal under inclusion. Then
H is a maximal S,-intersection and hence N(H)/H is a non-2-closed T.I. group and
Np(H)e S(N(H)). We fix the following notation for the balance of the section:
B=NpH); Z=2(Z(H)).

LEMMA 4.8.
(1) Z=Z(P).
(2) ZQI<Z(P)<KQNH.

PrOOF. If x¢c P—@Q), then 4.6.1 shows that P=@Q<x) and x induces an involutive
automorphism of an elementary abelian 2-group Z(Q), so [Z(Q), x]<Z(P) and then
ZQ)<Z,(P). As G is of characteristic 2 type, Z;(P) normalizes every element of
ILo(P) and, in particular, Z,{P)<Q@N R. Notice that QNZ=Z(Q)NZ=Z(P) by 4.6.3.

Suppose that (1) is false. Then as P=QZ, ZIQ)NH=Z(P), so H;NH=2,{QN H)
=Z(P) by 4.6.3. Thus 2,(H)=Z.

Assume that He 9{’ and P+#R, and choose z¢€ Np(R)—R such that z*¢ R.
Then the pair H, H® satisfies 4.1, so H is elementary by 4.4.1; that is H=Z. So
Z(P)=QNZ=QNH hsas index 2 in H. Thus Z(R)=Z(P). By 4.4, Z(Q)éH or H*
and HNH*=Z(R)=Z(P), so as Z(Q)<|P, ZQ)=Z(P). Thus H;=1 and |Z(Q)|=¢>2
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by 4.5.2. On the other hand, [Z(Q)|=|Z(R)|<4 by 4.4, so ¢=|ZQ)|=IZ(R})|=4.
Thus |P|=2" and |R|=2‘ Checking the structure of P, we see that H and H"
do not satisfy either 4.2.1 or 4.2.2. But now |P: R{<2 by 4.6 applied to P and
R, which is a contradiction.

Assume that He 4’ and P=R. If m(P/H)=1, then as H;NH=Z(P), we have
Z(Q)=Z(P) and ¢=2, impossible by 4.5.2. So m(P/H)>1. But if P+S¢ S(N(H)),
<P, S> acts nontrivially on the 4-group Z/(Z(P)n Z(S)), impossible because (P, S)/H
is a Bender group or its covering by 3.1.

Therefore, H¢ 4{’. A consequence of this is that O'(N(H))/2.(Z(R))} is 2-
constrained and core-free, so Z,(P)<H. Thus Z(@Q)=Z(P) and ¢>2. P=P/Z(P)
and take € H—Q. Then P=Q{> and I induces involutive automorphism of @,
which is elementary. So [Q,11<Z(P). Thus [Q,t1<Z,(P)<@NH. Since Q=
QN H)<t> and P=QH, this implies that H<|P, or P=R. Since @=H,xH}, we
have |[@,f]|=|H;|=qand so |QNH : Z(P}{>q. Since HiNH=Z(P) and |Q : Hi|=q,
we conclude that P=H,H. But now O/{N(H))/H=PSL(2, q) by [18] and | H/Z(P)|=2q.
Furthermore, O/(N(H)/H) acts faithfully on H/Z(P). This is impossible by 3.2.
Therefore Z=Z(P).

Consequently, 2,(Z(R))=Z and so O'(N(H))/Z is 2-constrained and core-free.

Thus ZQ)<Z,(P)<QNH. The proof is complete.
" We are now in a position to prove that G=J;. Let ne N(H)NC(Z)—-N(R).
Then QN Z@Y)=Z(@Q)NZ@Q") by 4.6.3. Suppose that Z(Q"=Z(Q). Let M={(R,R*
and L=<(QNE,Q"NR">. Then M=<L,H)>L, so O*(M)<L<Cy(Z(@)). Hence if
QNH=Q"NH, L stabilizes the series 1<Z(@Q)<QNH<H, a contradiction because
O M)<2H. SoQNH=+#Q"NH and then Z(Q)=Z(P)=Z. Moreover, H|Z is elementary
abelian since H=@Q@NH) U@ NH)UQ=NH) for xc QNRER—H. Thus HHNH=Z by
4.6.3. Now arguing just as in 4.8 and using 3.2, we get a contradiction. There-
fore, Z(Q@" <@ and then QNZQ"=ZQ)NZQ@=Z(P)=Z. Moreover, 2,(QNQ"=2
by 4.6.3.

We let C=C(Z)/Z and use the “bar” convention for homomorphic images. Let
D=0,(C), then C5(D)<D<H. As H is abelian, it follows that D=H and C(Z)<
N(H). In particular, H</P. By the same reason, an element x € H—Q normalizes
H.,nH, so HHNH=Z(Q). Furthermore, [Q, z]<QNH and [Q,2]1Z(Q) : ZQ)|=q, so
Q=H,QnH). Thus P=HH.

We claim that H;=1. Suppose this is false. Then since |Z(Q): Z|=2, H,N Z=1,
and Z(Q) =H.xH, by 45, we have q=|H,|=2. Let H,=<b,), Z={c), H}=<t) and
H,={a;, ZQ)y with al=a, and a;~c. We shall calculate the focal subgroup P*=



Characterizations of linear groups 479

PNG'. First, c=bb,=bbt € P*. Next, a;,c€ P*, s0 a;€ P*. Furthermore, bt <€ P¥,
hence S=<a,a, bit><P*. A simple computation shows that S is semidihedral of
order 16 and Z(S)={c¢). Since a;~c, all involutions of S are central involutions
of G, while 4.5.2 shows that b; is a noncentral involution. Thus P*=S8 by the
Thompson transfer lemma, and we are in 4.2.2 by 3.5. Hence H;=1, and ¢>2 by
4.5.1.

Let 2€ ZQ)—Z and let Q<Te S(Clx)). Then P+Te S(G) by 4.5.4. Further-
more, Z{T)<Z(Q). Hence if ¢>4, Y=Z(P)NZ(T)#1. Let X=0,(C(Y)). Then
X<PNTNnP=@QNH, and then X<@QN@Q". Butthen Z(@Q)<C(X)<X<Q" a contra-
diction. Therefore, ¢q=4. Thus @NQ*=Q; since 2,(QNQ" =2, and

H=@nNE<ZQ), ZQ"))=Qs*Ds.

Let C=C(Z). Then O'(C)/H=A;s by [18] and C/H=(D/H)x(O'(C)/H), where D=
Co(0'(C)/H). Since D normalizes every S,-subgroup of C, [0*(D), Z(Q)]=1 by 4.6.2.
Thus

Y D)< C((H))=CH)<H,

which shows that D=H. Therefore C/H=A;.

Since |P:@Q|=2, every involution of K=F*(G) fuses to @. Furthermore,
involutions of @ are all conjugate by 4.5. So C<<KZ(@Q)%><K. Thus K=J; by [14]
and so G=J, by 3.5. This completes the proof of Theorem 4.2.

8. Proof of Theorem 1

HypoTHESIS 5.1. G is a group of characteristic 2 type with Oy ,(G)=1 and
0:GY=G. G is not a T.I. group. Every maximal 2-local subgroup M of G satisfies
(i) MJO,(M) is a T.1. group
and also either
(i) £2:(0.(M)) < Z(0,(M)) or
(iil) 2(Z(P)=2,(Z(Q)) for any P,Q¢c S(M).

In this section we prove the following theorem:

THEOREM 1. Under Hypothesis 5.1, O¥(G) is isomorphic to one of the simple
groups on the following list:
(1) PSLZ,q),q=2"+1>5, PSL(8,3), My, PSU(3, 3);
(2) PSL(8,2"), PSp(4,2*1), PSU(4,2%, PSU(5,2%, n>1.

First, we shall collect together some easy consequences of 5.1 in the following
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lemma.

LEMMA 5.2. Under Hypothesis 5.1 if He 9, then the following conditions

hold:

(1) N(H) is a mazimal 2-local subgroup of G;

(2) NH)/H is a T.I. group;

(3) If He Y, then 2.(H)<ZH) and H is a minimal element of 9{ under
inclusion;

(4) If M is a 2-local subgroup of G containing H and NH)NM is not 2-closed,
then M<N(H);

{(5) If He 9" and H<Pe S(G), then H=0,(N(2.{Z(P)))).

ProoOF. (1) has already been proved in Section 2. Thus {2) and the first as-
sertion of (3) are restatements of 5.1, ()~(iii). To prove the second assertion of
8), let H>Kec 4{. Then 2,(K)=,(H) and so N(K)=N{(H) by (1). Thus K=H.
In proving (4) we may assume that M is a maximal 2-local subgroup, so that
O,(M)e 9. As O, Ny H)=H by (2), 2.1 yields that O,(M)<H. By symmetry
O,(M)=H and hence M=N(H). This proves (4). Let H¢ 4’ and H<Pec S{G).
If Q=N:(H)cSINH)), then NH)=NQ,(Z@)) by (1), so P=Q and H=
O(N(2,(Z(P)))). This in particular implies that elements of 4 — 9’ all have the
same order. Hence H is a maximal S,-intersection by (3), and consequently Q¢
S(N(H)). Thus () holds.

Using Theorem 4.2, we shall now prove the following result:

THEOREM 5.3. Under Hypothesis 5.1 if |4/ (P)|>2 for Pc S(G), then O'(G) is
isomorphic to one of the following simple groups:
(1) PSL2,q),q=2*+1>5, PSL(3,3), My;
(2) PSL(3,2", PSp(4,2"), n>2.

PrROOF. If some element, say, H; of 9{’(P) is not normal in P, then for some
element z¢ P, H, and H,=H3 satisfy 4.1.1-4.1.4 by 5.2. Otherwise arbitrarily
chosen two distinet elements H; and H, of J{’(P) satisfy them by 5.2. It there-
fore follows from Theorem 4.2 that either O/(G) is one of the groups on the above
list or else G=J,. However, J; is eliminated as J; has an element He 4’ which
is isomorphic to an S,-subgroup of PSL(3,4). Therefore, 5.3 holds.

Now by 2.4,5.2.5, and 5.3, we are left with the case where |4 (P)|=2 and
[ H'(P)|=1 for Pc §(G). So we shall assume this for the remainder of the section.
Thus our goal will be the following theorem:
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THEOREM 5.4. Under Hypothesis 5.1 if | 9 (P}|=2 and | 4{’(P)|=1 for Pc §(G)
then O'(G) is isomorphic to PSU(3,3), PSU4,2", or PSU(,2%,n>1.

The rest of the section is devoted to the proof of Theorem 5.4, so that we
shall assume the hypothesis of Theorem 5.4 throughout. Remaining lemmas involve
the following situation:

HyroTHESIS. (P;, H))s is a path of length 5 such that H;< 4{’ for odd j.

Furthermore, for each i we define N,=N(H,), B;=N(P), and Z;=0Q.(Z(P).
Then Z;=Z;.,,i=1,8. Notice that our assumption and 2.4 imply that elements of
I{(P) are maximal S,-intersections and weakly closed in P with respect to G.
Hence, in particular, B;=N; N N,y;,1<i<4. Notice also that H,NH,,<H,. for
1=1,2,3 and H;NH; ;s <H;\ N H;y, for i=1,2.

We first prove:

5
LEmMA 5.5. If HiNHy#H,NH; and HyNH,#=H,NH;, then N H;=1.
j=1

PROOF. Suppose o ¢ 1< f_\l Hj) Then {H, N Hy, Hy 0\ Hy, Hy> < Cy,() by 5.2.3 and
S0 our assumption implies that Cy,(x) is not 2-closed. Hence C{x)<N; by 5.2.4, a
contradiction because H,<{N; whereas H,<C(z).

Henceforth, we assume that P#£Z,) Z, as otherwise G=PSU(3,3) by 3.5.
Under this assumption we next prove:

LEMMA 5.8. Q.(H,)<H,.

Proor. Suppose this is false. Then 2,(H,NH,) = .Ql(Hl)#.Ql(Hg) O.(H, " Hy),
whence H,NH,#H,N H;. Similarly we have H,N H,=H,N H;, so n H;=1 by 5.5.
In particular, Z,+Z, and so Cp,(Z;)=H, since N,/H, is a T.L crroup Hence if
V=0:(H;), Cyy(V)/H; has odd order. Also, if g=max {|{VH, : H,|,| VH; : Hy}}, then
[VI<q¢®. We may assume q=|VH; : H,|.

We shall derive a contradiction by analyzing the action of N, on V. Assume
first that ¢>2. Then O'(Ns)/H;=PSL(2, r), Sz(r), PSU(3, r), or SU(3, r), where r>gq,
and O’(N;) acts non-trivially on V. Hence <[P, : H;P<| V| by 3.2. Since |V|<
¢°<r’, we conclude that g=r, P,=VH,, 0'(N,)/H;=SL(2, 1), and |V]|=¢%. Moreover,
(HzﬂH4)2£jfi]lHj:1, whence V=H,NH,. Also, since &,(H\)<Z(H,), VNH,=Z,=2Z,
and V=Z,xZ,. Now arguing as in 4.5.3, we see that every involution of H, is a
central involution of G.

As VNHj#1 and N; acts irreducibly on V, V<H3 Hence if m(Ny/Hy)=
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then H,N H,#H,N H, since Ny/H, acts faithfully on Hy/Hj. But then O’(Nj) acts
nontrivially on the 4-group 2,(H,/V), impossible. Therefore, m(Ny/H;)>1 and so
B,=P,(B.NB,) by 3.1.1. Since P,/H, is abelian, it follows from 3.1.4 that B,NB;
acts irreducibly on P,/H,, hence on V/Z, In particular, V<Z(P; mod Z). Since
we also have B,=P,(B,NR,), a similar argument shows that B, B; acts irreducibly
on Z,. By symmetry and since ¢>2, if K is a complement for H; in B;N B;, then
K acts fixed-point-freely on V, and hence on H,. Since K also acts irreducibly on
P,/H, by 3.1.4, it follows that Cp(K)=1. Now applying 3.7, we conclude that
P,—H, contains an involution, say, x. Since z¢ Hs, P, is the only S,-subgroup of
G that contains z, hence in particular C(z) is 2-closed. Since O'(N,)<C(z)<N, for
all ze€ I(Z,) by 5.2.4, 2.7 yields that 0,(G)=1, a contradiction.

Assume, therefore, that ¢=2. Then V is a 4-group, and since Cy,(V)/H; has
odd order, it follows just as before that P,=VH, VNH:=Z,, and V=H,NH,=
ZoX Zs. Set Ky=H,N H, Then since 2,(K,)=Z, has order 2, K, is either ecyclic
or generalized quaternion. Next, we set N,=N,/Z, and use the “bar” convention
for homomorphic images. Then H,=K,X Vx0.(H,). Moreover, O'(N,) is a 2-
constrained core-free group and hence 0/(N,)/H, acts faithfully on W=H,/H;.

Suppose that K, is cyclic. Then |W|<8 and so |P;: Hy|=2 by 3.3. Next,
since Cp,(Z;)=H,, we have that Z{H;) =K, and that H,N H; is not elementary, as
otherwise I,N H, and H,N H, would be the only maximal elementary abelian sub-
groups of H, by 3.6 and H,N H,<{N,, a contradiction. This implies that |K,|=4.
Thus H,=ZxDy, Hy=2Z,XZ, and P,=Z, Z,, which we are assuming is not the
case. Therefore, K is generalized quaternion, so that K, is dihedral and |W|=16.
Moreover, since K,GPs/H,, we have m(Ny/H;)>1. Thus it follows from 3.2 that
O'(N,)/H,=A;. Furthermore, K,=Q; and H,=Qy*D;, and then we have NJH,=A;
as in the last step of the proof of Theorem 4.2. This implies that C(Z;)=N..
A lemma of Janko [14, Lemma 2.3], now shows that P,— H; contains an involution
(the proof of that lemma does not require the simplicity of G but only the fusion
simplicity of G, and hence we may use it here). But then 2.7 yields that 0,(G)#1
just as before. This contradiction completes the proof of 5.6.

For each i, set M;=(P;_;, P>. Notice that M;=0'(N;) if m(N,/H;)>1. For
i=2,4, define X;=Cpg,(0*(M;)) and Y;=£,(Z(P;mod X3)), j=i—1, 4. Then since
M,=P,0*M,), we have X,N Hy=X,N Hy<]M,. Define W,=X,NH,=X;N H;.

Now by the definition of X, M,/X; is a 2-constrained core-free group and
0.(My/ Xo)=H,/X,. Hence X,<Y,;<H, j=1,2. Similarly, YN Y.=2X,. Since
Z(H,)< H, by 5.6 and N,/H, is a T.I. group, it follows that ¥Y;NH;<Y,. Thus
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Y.NH,=W, and by symmetry Y,NH,=W,. Also, since H,<|P, and H <X,

W.<Y:N H, by the definition of Y;. Consequently, YN H:<Hs, so HiN H;+H,;N Hs.

Thus vrg]lH,-:l by 5.5. In particular, Z,N Z;=1 and Cp,(z)=H, for z¢€ 7% as N,/H,
=

is a T.I. group. Thus we have proved the following lemma:

LEMMA 5.7.

(1) X<Y;<H, j=1,2.
(2) YINH;=Y,NH,=W,.
(8) YiNH,>W,<Y,NH,.
(4) NH=1

(5) Cpylz)=H, for z€ Z%.

LEMMA 5.8. P,=H.H,.

PrOOF. Suppose this is false. 1f |H H,:H,|=|H,H,: H,|=2, then [H,|<16 by
5.7.4. But then |H,/X,|<8 and M,/H, acts faithfully on the Frattini factor of
H,/X,, impossible by 8.3. Hence if m(N;/H;)=1, +=1,2, we may assume, say,
|H,H, : H,|>2. Then there is a maximal subgroup @ of P, such that H,H,<Q<B;.
Indeed, if P/H H,%Z,XZ, we may take the unique cyclic maximal subgroup
Q/H.H, of P,JH,H,. If P,/H H,#Z,XZ,, then P,/H, is generalized quaternion of
order at least 16 and H, H,/H,= (P:/H,)?, so we may take the unique cyclic maximal
subgroup Q/H; of P,/H,. In each case @ has the desired property. But then
using 2.3, we get that @ is strongly closed in P, with respect to G. The focal
subgroup theorem now yields P,NG'<Q contrary to 5.1. Thus we may assume,
say, m(N,/H,)>1. Then since H,<]B;, 3.1 shows that H H,=,(Pymod H;) and
P,/H,H, is elementary abelian of order 22*1 or 22* according as M,/H; is of type
Sz(22~1) or PSU(8, 2%, n>>2. This forces m(N,/H,) >1, and hence H,H,= (P, mod H,),
M,/ H, is of the same type as My/H,, and |H.H,: H,|=|H,H,: H,|]. But then 5.7.4
yields that |H,/ X, <|Pi/H,|?, impossible by 8.2. Therefore, P,=H H,.

LEMMA 5.9. Either m(Ny/H,)>1 or m(N,/Hy)>1.

ProOOF. Reecall that J{(P)={H,, H;}. This shows that every maximal 2-local
subgroup of G is conjugate either to N; or to N,. Hence if m{(N;/H;) =1, i=1,2,
then every 2-local subgroup of G is solvable. From the list of simple groups
satisfying this condition given by Janko [15], Smith [16], and Gorenstein and Lyons
[10], we see that G=PSU(3,3), and consequently P,=Z,! Z,, which we are as-
suming is not the case.
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We set gq=|@(H)H,: Hy|,r=|P; : Q.(H)H,|, and s=|P,: H;|. Notice that
Ql(Hl)szgl(Pl mOd Hg) by 5-6 and 3.1.4.

LEMMA 5.10. If m{No/Hy) =1, then O'(G)=PSU4,2) or PSU,2).

PRrROOF. First of all, m(N/H,)>1 by 5.9 and so s*<{Q(H;)| by 5.7.5 and 3.2.
Since |Qy(H,) : 2 (Hso1 NHy) =2, [2,(H,) | <4]Q,(HNHy)l. If both [2(H,NHy):
Q.(H\NH)| and [Q(H.NH,) : 2,(H.N H;)| are less than s/2, then |2:{H,N H)|<s%/4
by 5.7.4 and so [2,(H;)|<s? a contradiction. Thus we may assume without loss
that |[Q,(H.N Hy): 2 (H,NH,)|>s/2. Then |2,(P/H;)|>s/2 and so M,/H,=PSL(2,s)
by 8.1. Consequently ((H,N H.)Q,(H,))?=(H,N H;)?<H, and therefore symmetry
and 5.7.4 show

(Hzn Hs)gl(Ha) n (Hsn H4)Q1(H3) :QI(H3) .

In particular, H,N H; is elementary as H,N H,<H,.

Now let V be a minimal normal subgroup of M; contained in 2,(H;). Then V
is a nontrivial M;/H;-module by 5.7.5 and so s*<|V] by 3.2. We claim that |V]=s2%
Suppose this is false. Then, since [Q,(H;)|<4s?® as in the above paragraph, 3.2.1
yields that s=8,|V|=2} V=02,(H,), and P,=H,(H,NH;). Hence if r<4, then
| H,/2,(H,)] <16 and another application of 3.2 yields that [M,, H;]<Q;(H;). If 4<7,
then [0%(B,), P,]< H,, whence [0%(B,N By), H;1<2,(H,). So in any event [0?(M,), H 1<
2.(H,), and therefore H,NH,<9,(H;) by the equation in the first paragraph.
Since P,=H,(H,N H,), this forces HiNH;=Z,=2Z, and by symmetry H;NH;=Z;.
Since also H,n Hy=(H,N H:)(H; N Hy), 8.6 and 5.7.5 yield that H;NH; and H,NH,
are the only maximal elementary abelian subgroups of H, and so H;NH,<|N,, a
contradiction. Therefore, |V]|=s?% as asserted.

Suppose that V<Q,(H;). Then |9Q:(H;)|>2s% so we may assume |H,NH,:
H,NH,>s. Then P=H2,(H,NH,) and so Q,(H.NH,)=Z,=2Z,. Also, H N H,+#1,
as otherwise |92 (H,)|<4|H, N H,|<4s. Let W denote the intersection of all elements
of J{(N,). Since P, acts transitively on S(N:)—{P.}, ;N H, < W< H,N H, and there-
fore W is a nontrivial M,/H;-submodule of 2,(H;) and is irreducible by 3.2. Since
12.(H,)| <4s?, such a submodule is unique by 3.2. We conclude that V=W=H,NH,=
(LN H)X{(Hy;NHyy. Furthermore, [M,, &(H;)1<V by 3.2, so V=(H.NHy)=
Q(HNH)=2Z,XZ;. A counting argument as in the proof of 4.5.3 now shows
that every involution of V is a central involution of G. Next, let # be a central
involution of G contained in H;. Then, as @,(H,)<Z{(H,), z is contained in the
center of some S,-subgroup of N; and so z€ V. We claim that G contains an
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involution with the 2-closed centralizer. Let x¢ 2,(H,)—V and suppose that
Cp,(x)>H;. Then % centralizes an involution y of HiNH,—H; as Pi=H.9Q,(H,N H,)
and by symmetry P.=H.2,(H,NH,;). Since xy ¢ P,— H,U H;, Clxy) <N(P;). There-
fore, we may assume that Cp,(x)=H;, hence that H; € S(C(x)). Let M be a maximal
2-local subgroup of G containing C(z) and let H=0,(M). If C(x) were not 2-closed,
then H;#=He 4{. Moreover, x€ H,(VH by 5.1.i, so z would be a central involution
of G as shown above, a contradiction. Hence Clz) is 2-closed. We can now apply
2.7 to conclude that 0,(G)+#1 contrary to 5.1. Thus V=0,(H,). If Z,NH,+1, then
1+ W< H,N H, just as before, where W is the intersection of all elements of 4 (Ns).
This is a contradiction because V is irreducible. Thus Z,NH,=1 and so |Z;|=2
and |H,N H,|=s?/4.

Case I r=1. First, H; is elementary by the equation in the first paragraph,
g0 that H;=V. Hence Z(H,)<H,, as otherwise P,=Z{H,)H,; by 3.1.4 and then
H,N H,<|M,, a contradiction because V is irreducible. Thus Z(H,)=Z,=Z, by 5.8.
We claim that H.NH,=Z,. Suppose this is false and let U={HNH,)(H;N Hy),
t=\U: H,NHs|, and T=(H,NH)(H,NH;). Then t<s. Furthermore, replacing P,
by its conjugate, we may assume without loss that |7 : ;N H, =¢. Then s*/4=
|H,N H,]<t* and consequently t=s/2 and H,NH,=(H, N H,)(H,NH;). Assume that
2<t. Letwxc (H;NH)* and let X=Cy(x). Then {(Cp,(), Hs, T) < X<M;and TH;/H,
is an elementary abelian subgroup of X of order t. If Cp,(x)>H,, then X/H; is
not 2-closed and so X/H,=PSL(2,#). Since PSL(2,s) can not contain PSL(2 1),
this is impossible. Thus Cp,(#)=H, for x¢ (H,NHy* But 3.6 now yields that
H N H, and H,N H, are the only maximal elementary abelian subgroups of U. This
is a contradiction because U7 is normal in M,. Therefore, t=2 and 3.6 yields that
U is abelian. Since |H, : Z(H,)|>4, this shows that U is characteristic in H, and
in particular UH,<]B,, which contradicts 3.1.4. Thus H,NH;=2Z, This implies
that HyNH,=1. Hence s=4, P.=H,(H,NH,), and H, is extraspecial of order 32.
Let n=|S(N:)]. Then

19> I(Hy) | =] B\r I(H, N Hy)*|=6n+1.

Thus #=3; that is ]S(Nz)]:(NZ:Hzlz‘—i—l. We can now apply Theorem 2.5 to
conclude that O/(G)=PSUH4, 2).

Case II: r>1. TFirst, Hi+1, so V<H? as M, acts irreducibly on V. Since
M;/H, acts faithfully on H;/HZ it follows that P,/H, is generalized quaternion.
1f r>4, then [0 M), Hs1<V and H,NH,<V as in the second paragraph. But then
H,]V is dihedral, impossible. Hence P, H,=Q,, s=4, and |H,/V|=16. Suppose that
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H,NH,+#1, or equivalently Z,<Q,(H,NH;). Then U=(H,NH,)(H,NH,)+H,. Since
we may also assume that H,N Hs;#1, it follows that H N H; is a non-abelian group
of order 16 and exponent 4 and moreover ,(H;, N H;)<Z(H, N H;). Inspecting the list
of groups of order 16, we see that H, N H; is either Z,X Qs or the semidirect product
of Z, by Z;. Furthermore, U is the direct or central product of H.NH; and a
dihedral group of order at most 8. Hence U contains at most 85 involutions.
However, on the other hand, both U and 2,(H,nH,) are normalized by P, and
Q{HNH) =2 (H;NH})=2,(H, N Hy) for € P,—H,. Thus

II(U)lz}zgl O H N H)" | >4X9+3=389.

This contradiction shows that H N H,=1. Hence |H,NH, =4 and H,NH,=Q;.
Furthermore, Z(H,) <H,NH; as before, whence Z(H,)=2Z,. Thus H, is extraspecial
of order 27 and so |I{H,)|=55 or 71. Let n=|S{N;)|. Then

(Hy) | > g I(H, N H,)*|>6n+1.

Since n=1 (mod 8), it immediately follows that n=9. Theorem 2.5 now shows
that O’'(G)=PSU(5,2). This completes the proof of 5.10.

In view of 5.10, we assume henceforth that m(N,/H,) >1, although remaining
lemmas are also true when m(N,/Hy)=1.

LeEmMmA 5.11.
) Y= HNH) X, <H,NH,.
) Po=YH,, Y N Hy=X,.
) QI(XZ)Zgl(HlnH3):Z1:Z2-
) Hyl X, is elementary.
) (Hz NV Ho)2:(Hs) N (Hy N Hy)2y(Hy) = 021(Hs).
) ¢?r<s® and m(N,/ Hy)<m(N;/H,).

PRrROOF. Since we are assuming m(Ny Hy)>1, M,=0'(N,) and hence X,<|N,.
By the same reason B,=(B,NB,)FP;. ,

Suppose that W,< X,. Then, since Y, N Hy/ W, X Xo/ WG Py/Hyand Y, N Hy/ W,o+#1
by 5.7, m{Ns/H)>1. Further, X,<|B, and X,< Y, so X,H;=2,(P; mod H;) by 3.1.4.
But then (Y /Wo)=X/W. whereas (Y nNH)NX,=W,, a contradiction. Thus
Y :NH,=Y,NH,=X,. By the above remark B,=P,(B.NB.), and since Y,/X, is ele-
mentary by definition, Y H;<|B,. This then yields that Y.H;=0;(P, mod H;} and
that B,N B, acts irreducibly on Yy/X,. Since 2,(H\)< X, by 5.6, X,<&(H)X;NY,
and it follows that Y, <Q(H)X;NH,=0,(HiNH;)X,. Since P,=HH, by 5.8,
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<Hy, Hyy<|H,(Hy, Hy)=M,, whence O*M,)<<{H,, H;>. Hence 0,(H\NH;)=2,(X)
by the definition of X,. Since 2, (H, N H,) <Z(P,mod Hy), we have [2,(H,N H,), H)]<
Q(H NH)<X,, so &,(HNH;)<Y, by the definition of ¥;. Thus (1) holds.

Set K/ X,=(H)/X,)? If X,<K, then Y <K just as Y.<Q,(H\)X, whence
[Q(Hy), H)]<Q,(H N H,)<Y,<K. But since M,/K is a 2-constrained core-free group,
this yields that Q,(H,)<H, contrary to 5.56. Hence H,/X, is elementary. Since
Y. H;=0,(P; mod H;), (2) follows. Furthermore, M,=<{H,, H,>, whence (3). We have
((Ho N Hy) 2, (Hy)) 2= (H, N Hy)2 < Hjy, 50 by symmetry and 5.7.4, (5) holds. This shows
|HiNHy : Z,| <Py« §,(H3)Hy|=7, whence |H,: X;]<rs®. Hence [(gr)?<rs® by 3.2.
Since Q,(H:)H,=,(P, mod H,), (6) follows. Thus all parts of the lemma hold.

4 5
Lewva 5.12. ( Hy=1= (O H,.
= j=2

PrOOF. Since many of the methods to be used here appeared in the proof of
5.10, we leave some of the details of the preof to the reader. Suppose 5.12 is false
and let V be the intersection of all elements of J{(N;). Since P, acts transitively
on S(N.)—{Py} and HiNH,<Z, by 5.11, we have H, N H,<V<H,NH,. Moreover,
[M,, Vi1 by 5.7.5, so 3.2 shows that s2<|V|. Since |H,NH,|<s? it follows that
V=HNH,=(HNH)X (H,NH;) and P,=H,(H,N H;).

Assume that »>1. Then ¢?<g¢?r<s® by 5.11.6, so [£2,(H;)/V|<s? Therefore,
[M,, 2,(H)J<V by 8.2, which implies that V=0,(H.NHy) =2, (H:NH)=27,XZ,.
Moreover, every involution of V is a central involution of G, and conversely every
central involution of G contained in H; is contained in V. Further, an argument
of the third paragraph of the proof of 5.10 shows that G contains an invelution
with the 2-closed centralizer. But then 2.7 yields that 0,(G)#1 contrary to 5.1.
Therefore, r=1, so that H; is elementary by 5.11.5. But sinece H,NH,=
(HiNHy) (Ho.NHy) and Cr(e)=H,NH, for z¢€ Z% it follows from 3.6 that H,NH,
and H,N H; are the only maximal elementary abelian subgroups of H,, a eontradic-
tion. This completes the proof of 5.12.

We are now in a position to complete the proof of Theorem 5.4. By 3.2 and
5.12, $2<|2,(H,)[<q%. Hence s<¢? and if equality holds, then {Z,)=¢ and
|H. N Hyj=s.

Case I X,=H,NH,. First, Y,=H NH, by 5.11, so P, stabilizes the series
X, <Y.<H, and P,/H, acts faithfully on H,/X,. Hence P/, is elementary; that
is r=1. It is clear that H,NH,< H;. Also, since Z;<H, by 5.12, H;NH,< H,.
Theorem 2.6 now shows that O'(G)=PSU4, q).



488 Kensaku Gomi

Case II: X,#H,NH,. Observe first that r+1, as otherwise Z,=X,=H,NH,"
by 5.11. Next, <&.(H), 2:(H,), Hyy#+M,, for if equality holds then OM)<
{Q(Hy), 2(H,)> and so H,NH,<X, contrary to our assumption. Hence M/ H,=
PSU3, q) or SUB,q) by 3.1.5. As a consequence we have r=¢?, so by 3.2

< H, : Xo|=8*H N H; : Xp|<s*r=s%.

Since s<¢? it follows that s=¢?, X;=2Z,, and |H;NH,: Z;)=v. Moreover,
|H:NH;NHyj=s and |Z,|=q as remarked before. Thus P,=H,(H,NH,NH,) and
P=H,(H NH,NH;). Theorem 2.5 now shows that O'(G)=PSU(5,q). This com-
pletes the proof of Theorem 5.4.

Theorems 5.3 and 5.4 imply Theorem 1.

6. Procf of Theorem 2

We let G be a group satisfying the hypothesis of Theorem 2, so that if Pe S{G)
then 9{,(P) contains two distinct abelian groups H;, i=1,2. We shall show that,
when suitably chosen, H;'s satisfy 4.1.1-4.1.4, in which case we can apply Theorem
4.2 to the proof of Theorem 2.

First of all, we may assume that H;<|P,i=1,2. For if H,{|P, then for some
element x€ P, H; and H? satisfy 4.1.1-4.1.4. We may also assume that H,¢ 9{’,
in which case if Z=2,(Z(P)) then N(H,)=N(Z), since N(H,) is a maximal 2-local
subgroup by 2.1. Thus N{P)<N(H,;) and H,=0,(N{Z)). Since H,+H,, this forces
H,¢ 9{’. Further, we may assume that H, is the only abelian group contained in
JPYN Y, and in particular that N(P)<N(H,). We shall in fact show that
this case does not occur. Let P+P,e S(N(H;)) and H;~K,<P, i+#j. Suppose
1#zx¢ ié (H;NK;), then H,=0,(C{z))=H, by 2.1, a contradiction. Therefore,

2

7,‘91 (H;NK;)=1 and consequently 0,(G)=1.

Assume that P=H H,. If m(P/H,)>2, then as N(P)<N(H,), H.H,/H,=Q,(P/H;).
Moreover, |P: H H;|=2"1 or 2** according as N(H;)/H, is of type Sz{2** %) or
PSU3,2%. Thus m{P/H,)>2, H H,/H,=Q,(P/H;) and |H,H, : H;|=|H,H, : H;]. Let
q=|H,H; : H;|. Then since él(HiﬂKi)zl, |H < ¢®<q*<| P/H,?, impossible by 3.2.
So m(P/Hy)=m(P/H;)=1. But then m{H;)<3 and N(H))/H,GGL(3,2), impossible
by 3.3.

Therefore, P=H,H,, so that P has class 2. Since 0,{G)=1, a result of [6] and
3.5 show that either A;CGG Y or O/(G)=PSL(3,2% or PSp(4,2". In each case:
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we can easily verify that 9{,(P)N 9’ contains at least two abelian groups. This

is a confradiction completing the proof of Theorem 2.
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