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Introduction.
In this paper we consider the nonlinear evolution equation of the form
(E) du(t)/dt+oet(ult)) 2.,), 0<iLT,
and the associated perturbed equation of the form
(P.E) dult)/dt+o¢* () + Bt)ult) 50, 0<¢<T,

in a real Hilbert space H. Here, for each 0<t<T, 9¢* is the subdifferential of a
lower semicontinuous econvex funetion ¢f from H into (—oo, +00] (pf=+c0) and B(t)
is a perturbing operator of d¢’ in H.

Since Brezis [3] first treated the equation (E) in the case where ¢*=¢ is inde-
pendent of ¢, many authors have investigated the existence, uniqueness and regularity
of solutions of (E) and (P.E) {see e.g. Attouch, Benilan, Damlamian and Picard [1],
Attouch and Damlamian [2], Kenmochi [7], Maruo [9], Watanabe [10]). Recently
Kenmochi [7] obtained interesting results by the semi-discretisation method: with
respect to ¢, assuming that the effective domain D{¢p*){={u € H; ¢*(u} <+oo}) depends
on ¢t ‘smoothly’ in a certain sense.

The main purpose of the present paper is to show the existence, uniqueness and
regularity of the solution of (E) (and (P.E)) for the case of t-dependent D{¢*). We
modify the assumption of Kenmochi on the t-dependence of D{¢?) so that the results
can be applied to some nonlinear parabolic differential equations in domains with
moving boundaries, for example. (More precisely see the assumption (A.2) in section
2.) Then, by using the Yosida approximation of d¢°, we construct a solution of (E)
(and (P.E)) and show that some of the results in [2] are still valid for the case of
t-dependent D{(¢?).

The content of this paper is as follows. In section 1 we introduce an approxi-
mating function ¢; of a lower semicontinuous convex function ¢ and summarize
some known results on ¢;. In section 2 we state the results: Theorem I for the
equation (E) and Theorem II for the equation (P.E). In section 3 we show the



492 Yoshio YAMADA

continuity in ¢ of ¢%, which plays an important role in the proof of Theorems I and
II. Section 4 is devoted to the proof of Theorem I, in which we use some of the
ideas of Attouch and Damlamian [2], Kenmochi [7] and Watanabe [10]. In section
5, by using Theorem I, we give a proof of Theorem II. In section 6, as an appli-
cation of Theorem I, we consider the initial boundary value problem for a certain
nonlinear parabolic differential equation in a domain with a moving boundary. We
show the existence, uniqueness and regularity of the solution without reducing the
problem in consideration to the initial boundary value problem in a cylindrical
domain.

Notations. We use the following notations throughout this paper. H denotes
a real Hilbert space with the inner produet (-, -) and the norm ||-||. Moreover, we
use the notation

[S|=inf {|v]|; ve S}

for any nonempty subset S of H.

C([0, T1; H) denotes the space of strongly continuous functions w: [0, T]-H
with the norm Juj.= {)ré?éuu(t) I. L2, T; H) denotes the space of strongly measur-
able funections v : (0, T)—H such that

[hsarin=(| lo@ldr) <too.

1. Preliminaries.

In this section we collect some known results on the subdifferential of a convex
function. For the proofs see Brezis [3], [4] or Watanabe [10].

Let ¢ be a lower semicontinuous convex funection from H into (—oo, 40,
px=+oo, The effective domain D{p) of ¢ is defined by

Dip)={uc H; ¢u)<+oo}.
For each u € D{p) the set
souy=we H; ¢v)—eu)>w,v—u) for all ve H}

is called the subdifferential of ¢ at % and the domain of the subdifferential 8¢ is
defined by D(e¢p)=1{u € D{¢); dp(u)>}. Then the subdifferential d¢ is, by the defini-
tion, monotone in H, i.e., (v3—vs, Uy —uz) >0 if v;€00(u;), 1=1, 2.

Now for each 2>0 and u € H we define

—i L 2
(L eat = int {ol0) + 5 lu—vl] .
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We can show that the infimum of (1.1) is always attained by a unique element
(which we denote by J:u). Therefore using the eonvexity of ¢ we have

(1.2) o) —olau) = — (u—Jau, v—Ju) for all ve H,

>

which implies %(u—Jm) €do(Ju). Hence d¢ is maximal monotone in H and Juu

is equal to (1+20¢)~'u for all 2>0 and € H. On the other hand, setting v=u¢
D{p) in (1.2) we can show Llfg Jru=u. Therefore D(@¢) is dense in Dlg), i.e.,

Dipp)=Dlg).
Now the definitions of J; and ¢; imply for each 2>0 and uc H

(1.3) pala) = Ts) + 5= |u—Tiul?
and
1.4) el <elu) <o),

from which it follows that

(1.5) lim ¢, (u) =¢(u)

40
holds for each uwe H. Furthermore we have:
PrOPOSITION 1.1. For each >0, ¢; is a Fréchet differentiable convex function

on H and the Fréchet derivative 89, of ¢a is equal to the Yosida approzimation
(650)x=‘];(1—-J,z) of 8¢. More precisely,

(1.6) 0<9a(o] — 91000 — (09)ala), v—) < T fo—au)?

holds for 2>0 and u,ve H.

For the proof see [4, Proposition 2.11] or [10]. By the above proposition we
shall write d¢; instead of (0¢):. Then by the monotone operator theory in a Hilbert
space (see e.g. Kato [6]) we have:

PROPOSITION 1.2. The following statements hold.
(1) If 2>0 and u, v€ H, then
1.7 S~ T <[flu—v] .

(i) If ue D@y)=Dly), then
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{1.8) limJuw=u.
240
(i) If 2>0 and u, ve H, then
1
1.9) l8@a(u) —o02(v)[| < N lu—v] .

{iv) If 2>0 and e D@y), then
{1.10) lopz(w) || <lop(u)l=Inf {{[v]; veapu)}.

2. Results.
2.1. Existence and uniqueness theorem for (E).

First we shall consider the existence and uniqueness of the solution of the
equation

(E) dult)/dt+ a0t (u(t)) 2 1) , 0<i<T,

for a given initial condition.

Throughout this paper T denotes a positive number and {¢%},<;<r satisfles
(A.1) For each 0<t< T, ¢* is a lower semicontinuous convex function from H into
{—oo, +oo] with the nonempty effective domain.

(A.2) Let r>0 and 0<t,<T. Then, for each z,¢ D(¢'") such that ||z, <7, there
exists a funection z: [0, T]—H such that

(i) o) —xoll <1g. () —ge o {p*0(zo) + K,)H/2 for 0<t<T,

(i) ¢ @(t) <ptolwo) +1h. () —h. (o) [@"0(20) + K,) for 0<t<T,

where K, is a non-negative constant and g, and &, are absolutely continuous funec-
tions on [0, T'] such that g, € L0, T).

We now define a strong solution of (E).

DEFINITION. Let u: [0, T]—H. Then u is called a strong solution of (E)
on [0, T} if () u is in C([0, T']; H), (i) u is strongly absolutely continuous on any
compact subset of (0, T) and (iii) u(t) is in D(@¢") for a.e. t€[0, T'] and satisfies (E)
for a.e. t¢[0, T1.

Then we have:

THEOREM 1. Let feL20, T; H) and let {o%ec.<r satisfy (A1) and (A.2).
Then, for each a€ DY), the equation (B) has a unique strong solution u on
[0, T1 with w(0)=a. Moreover, u has the following properties.

(i) For all 0<t<T, ult) is mn DipY) and o' (ult)) satisfies tot{u(t)) € L=(0, T) and
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otu®)) € LH0, T). Furthermore, for any 0<5<T, ¢*(ult)) is absolutely continuous
on s, T1.
i) For any 0<5<T, u is strongly absolutely continuous on [5, T'1 and it satisfies
dujdt e L?(9, T; H) and t"/%dujdte L*0, T; H).

In particular, if a€ D(¢%, then u satisfies
(i) For all 0<t<T, ult) s in DoY) and ¢*(u(t)) is absolutely continuous on [0, T'1.
i)’ wu s strongly absolutely continuous on [0, T1 and satisfies du/dt € L*(0, T; H).

We shall prove this theorem in section 4.

2.2. Existence and uniqueness thecrem for (P.E).

Next we shall consider the existence and uniqueness of the solution of the
equation

(P.E) dut)jdt+o¢t (u(t)) + Blt)ult) 3 fE) , 0<1<T

for a given initial condition. Here B(t) satisfies
(B.1) For each 0<¢<T, B{t) is a single-valued hemicontinuous operator in H with
a eonvex domain D{B(f)) such that

DB@))D> U D@e).

0<s<T

(B.2) There exists a real number » such that
(Blt)u—B(t)v, u—v)twlu—v|[2>0 for 0<t<T and u,vec D(B()) .

(B.3) For each 0<»<1, there exists a monotone inereasing function L, : [0, +oo)—
[0, +<o) such that

1B w] <ploet )+ Ly(lul)  for 0<t<T and ue D{gy") .

(B.4) For each uc U D@y¢%), B{t)u is strongly continuous in 0<¢<T.

0Ls<T

If we define a strong solution of (P.E) by replacing (E) by (P.E) in the defini-
tion in 2.1, then we have:

THEOREM II. Let fe L2(0,T; H) and the assumpiions (A.1)-(B.4) be satisfied.
Then for each a < D(g%, the perturbed equation (P.E) has a unique strong solution
% on [0, T with w(0)=a. Moreover, u has the following properties.

(i) For all 0<t<T, u(t) is tn DoY) and o'{ult)) satisfies to*(u(t)) € L=0,T) and
o ult) e LY0, T). Furthermore, for any 0<5<T, o' (u{t)) is absolutely continuous
on [6,T]
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{{i) For any 0<o<T, u is strongly absolutely continuous on [, T1 and it satisfies
du/dt e L*5, T; H) and t%dujdt € L0, T; H).
In particular, +f a¢ D(e°, then u satisfies
(1)) For all 0<t<T, ult) is in Dip*) and ¢'{ult)) is absolutely continuous on {0, T1.
(i)’ u 1s strongly absolutely continucus on [0, T and it satisfies dujdt € L0, T; H).
We shall prove this theorem in section 5.

2.3. Remarks.

REMARK 1. The assumption (A.2) implies, in particular, that for each r>0
there exists a positive number K, satisfying

{2.1) o (z)+ K, >0

for all 0<¢<T and z¢ H such that |jzf<r.

In fact, let € H with ||z||<7r be fixed. Then, if x is in D{¢?), it easily follows
from (A.2) that 2.1) holds. If z is not in D{¢?), then ¢'{x)=+oo0. Therefore we
have (2.1).

REMARK 2. The assumption (A.2) is a generalization of the assumptions of
Attouch and Damlamian [2, H.1) and H.2)] and Watanabe [10, (I} and (II)]. In fact,
if we assume the #-independence of the effective domain D{p*)(=D) and the following
continuity condition on ¢t with respect to ¢:

“For each r>0 there exist a positive number K, and an absolutely continuous
funetion k. on [0, T satisfying

loHp) — ¢ ()| < R, {t) — B (3) | (¢* () + K

for 0<s, t<T and xc D with [z <r.”,
then we see that z{t)=uz, satisfies the conditions i) and (ii) in (A.2).
Therefore we can see that Theorem I generalizes the results of [2] and [10].

RemMaARK 3. Kenmochi [7] treated the equation (B) in the form of the vari-
ational inequality and established the existence and uniqueness of the strong solution
of (E) under the following assumption on the ¢-dependence of the effective domain
Dip"):

“There is & non-decreasing function r—C, from [0, +oo) into itself with the
following property: for each >0, 0<t< T, z€ D(¢*) N B, (B,=the set {x € H; |z <))
and t<s<T, there exists Z€ D(¢*) such that

1Z2—2<C,|s—1]



Evolution equations 497

and
B <o)+ C,ls—t| I+ et(@)]). 7

His assumption is, in a sense, slightly weaker than ours. However, it is not easy
to verify his assumption when we treat certain nonlinear parabolic differential
equations in domains with moving boundaries (see section 6).

His method of proof is based on the semi-digeretisation with respect to ¢ and
is quite different from ours.

REMARK 4. The assumptions (B.1), (B.2) and (B.4) are almost the same as those
of [2], while (B.3) is slightly stronger than the corresponding assumption of [2].

3. Continuity of ¢} with respect to ¢.

In this section we summarize some consequences of the assumptions (A.1) and
(A.2). TFirst, using the idea due to Attouch and Damlamian [2, Lemma 1], we prove
the following lemma.

LEMMA 3.1. Let {¢flo<i<r satisfy (A1) and (A.2). Then there exist two positive
constants Cy and C, such that

3.1) @' (@) +Cllal|+ Co=0
holds for all 0<t<T and x¢ H.

PrROOF. Let v,€ D(¢°) be fixed. Then by the assumption (A.2) there exists an
H-valued funetion » on [0, T'] such that
8.2) 20)=v,, [v@EII<re—~1 and ¢* o)) <M, for 0<t<T,
where 7, and M, are positive constants. Since by (2.1)
2.1) ote)+ K, >0

o=

for all 0<¢<T and z¢ H with |jz]|<7,, we have only to show (8.1) when |z]>7,.
If weset alt)=[lz—2@)|"* and u{t)=at)z+ 1—a®))v{t), then we have 0<a(t)<1 and
fu®)| <7y for 0<t<T. Hence by (2.1)’ and the convexity of ¢* we have

a(t)p' @)+ 1—at))etwt) > ¢t (ut) = - K, ,
from which it follows that
P'2) = — (K, +Mo)a(t) = — (K, + M) (2] +1o)

bolds for 0<¢<T and z¢ H with ||z]>7,. This inequality shows that (3.1) holds
when |z} >7,, which completes the proof.
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For each 1>0 and uc H we now set Jiu=(1+20¢")u and ¢i(u)=¢"(Jiu)+
@2 Yu—Jtu)2. Then by Proposition 1.1 we have dpi=21"'(1—J}). Next we shall
show the continuity of J% and ¢% with respeet to .

PROPOSITION 3.1. Let {p%oci<r satisfy (A1) and (A.2). Then
(i) For each 0<2<1 and x€ H, Jiz is strongly continuous in 0<t<T and it

satisfies
(3.3) Tl <2z +Cs  Sfor 0<t<T,

where C, is a positive constant independent of 2,t and x.
(ii) For each 0<2<1 and x€ H, ¢i(x) is absolutely continuous in 0<i<T and it
satisfies for 0<s, t<T

loh(e) — @3() ]
(3.4) < |k, {8) — R (8}l Imax {phlx), pi(x)}+ K]
+1g.t) —g.(8)| max {[agh(@) ], o¢s(x) [} Imax {pi(x), p3(x)}+ K172,

where r=sup {|Jix]; 0<t< T, 0<i<1} and K, is the constant in (A.2).

PrOOF. Let 0<<2<1 and z¢ H be fixed. Then by (1.1) and (1.2) we have

(3.5) o)+ lo— vl gi(a)
and
3.6) )= )= e Tio, 0= T

for all £¢[0, 77 and v¢ H. Next if v,€ D(¢°) be fixed, then by the assumption (A.2)
there exists a function v on [0, T satisfying (3.2). Hence taking v=v(t) in (3.5) we
obtain for 0<t<T

8.7 A4l0) S 00+ o— 0B Mot (] 41
which shows that ¢i(x) is bounded in 0<t<T. Also taking v=v(t) in (3.6) we obtain
Mo—w(Jxac)Z—i—]lJﬁxllz——i—liJixH(ﬂwll-H‘o)—%- 7olle]

for 0<t<T. Hence using (3.1) we find that (3.3) holds.

Now we put r=sup {|Jix|; 0<t<T, 0<2<1}, which is finite by (3.3). Since
Jire D(pg?)cD(¢*), by using the assumption (A.2) again we see that, for each
0<s<T, there exists a function v, on [0, T] such that '
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V()= ,
o t) — el <lg.(t) — g8} (g*(J3x) +- K, )12, for 0<t<T,
o', (1) <ot (Jim) + b, (B — B () (i) + K,) ,  for 0<t<T.

Therefore taking v=u,(t) in (3.6) we obtain for 0<s, t<T
e (8) — B (8) 3 (@) + K,) + ¢ (J32) — ¢ (%)

2%(%—%90, S~ Jiw) —1g.0) — g, () [ 0¢k (@) | (@5 () + K, )2,

{3.8)

where we used (1.4). Similarly we have for 0<s,t<T

(3 9) Ihr(t) —hr(s) | ((pf’ (x) +Kr) +§0t (ng) ~¢3<Jix)
2%(%—J§.x, Jiz—J52) — g, (8) — g, (8) |05 (@) || (0h(a) + K,) 12 .

Adding these two inequalities we obtain for 0<Cs, i< T

[T — T2 < alh, (8) — R, (s)] (@h(2) + 93 () +2K,)
+ 2|g.) — g.(8) {1804 (@) | (04(w) + K ) 2+ [[0py () | ok (@) + K )13,

which implies the strong continuity in 0<¢t< T of Jix since both [|a¢i(x)]] and ¢%{x)
are hounded in 0<t<T by (3.3) and (8.7). Thus (i) is proved. To prove (ii), we
first note

o= T, Jiw—Jig) 2= (lo— il e — T3l
Consequently using (1.8) and (3.8) we obtain

{Bo(t) = ho (s} (95(2) + K+ 19.(8) — g.(s) o0k () || (03 (2) + K, ) 122> b {2) — 95 ()
for 0<s,t<T,

while, if s and ¢ are exchanged, the above inequality still holds by (3.9). Hence
we get (3.4). Moreover, sinee g, and h, are absolutely continuous on [0, T, (8.4)
implies by (3.3) and (3.7) that ¢i(z) is absolutely continuous on [0, 7. Thus the proof
of (i) is complete.

As a consequence of Proposition 3.1 we have the following proposition which is
basic for the proof of Theorems I and II.

PROPOSITION 3.2. Let {0%y<:i<r satisfy (A1) and (A.2) and let u: [0, Tl—H be
a strongly absolutely continuous function. Then, for each 0<2<1, ¢4(u(t)) is abso-
lutely continuous on [0, T] and it satisfies for a.e. &[0, T]
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d o d
(3.10) = Pl — gk, —

<|h Ol pHu(t)) + K) +1grt) a0k (w(t) | (ph(ult) + K12,
where r=sup {|Jiu(s)]; 0<1<1,0<s,t<T} and K, is the constant in (A.2).

u(t))

Proor. We set r=sup {}|Jiu(s)||; 0<21<1, 0<s,t< T}, which is finite by (3.3).
Hence using (1.6) and (3.4) we obtain for 0<s, t<T

) —@h{ult)) — 09k (u(f)), uls) —u))|
[ (u(s)) — phluls)) | +ioh(uls)) — phlult)) — 0ok (u(2), uls)—uld)

() —u(s)i®+ () — ho(s) [max {ph(u(s)), e3(uls)}+ K]

lo3(u(s)

A
5

(8.11) <

e

+19.(t)—g.(s)] max {Jopiluls) |, [aes{uls)) |}
X [max {p%(uls)), p3luls))}+ K, 1112,

from which we have the absolute continuity of ¢4(u(t)) in 0<¢< T because both
sup {ohluls)); 0<s, t<T} and sup {|api(u(s)ll; 0<s,t<T} are finite. Consequently
we have for 0<t<T

hgx max {g4(u(s)), piluls)}=ei{u{) ,

where we used (1.6). On the other hand, by Proposition 3.1 (i) and (1.9) we obtain
for 0<i<T

lim max {{[pek(u(s), lopitulsh i} =loekuE)] .

Therefore dividing (3.11) by [t—s]| and letting s—¢ we find that (3.10) holds. Thus
we complete the proof.

4. Proof of Theorem 1.

Let fe L20, T; H) and a< D(p®). From now on we assume ¢°(a@)>0 without
loss of generality.

In order to construct a strong solution of (E} with the initial condition «(0)=a,
we consider the integral equation

8¢5 (ua(s)ids =a+ Stf(s)ds ,  0<t<T,

[

4.1) ua(t)+ St

0

for 0<<2<1. Here we note that d¢%i(u) is Lipschitz norm-continuous in u with
Lipschitz constant 4! by (1.9) and also we note that 0¢%(u) is strongly continuous
in 0<t< T for fixed wec H by Proposition 8.1 (ij). Therefore (4.1) has a unique
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solution u, ¢ C([0, T'1; H).

Hence, since a¢4(u:(t)) is strongly continuous in 0<t< T by (1.9) and Proposition
3.1 (i), it follows from (4.1) that u, is strongly absolutely continuous on {0, T] and
that

4.2) dua(E)/dt -+ 804 (ua () =F )

holds for a.e. tc[0, T]. Furthermore Proposition 3.2 implies the absolute continuity
of ¢h{ua(t)) on [0, T].
Now we ghall deduce some estimates for u(f).

LEMMA 4.1. Let a€ D(¢% and let w, be the solution of (4.1). Then
(i) sap {lma®)]; 0<a<1, 0<t< TY< M, (lla])-

(i) sup {S o a(s))ds; 0<2£1,0§t£T}£M2(!]ail)-
i) sup fehuale)); 0< <1, 0<t< TH<Mlllal).

{iv) sup {5.

In particular, if a € D%, then
(v) sup{phualt)); 0<a<l, 0<e< T My(o®(a)).

{(vi) sup {S: d

—— Uz (S)
Here M{a) (i=1,2, ---,6) denote positive constants depending continuously on «a.

I-——-ux

’ ds: 0<)<1}<M4(ﬂa]l)

< * ds: 0<zgl}gM6(so°<a))-

ProOF. To prove this lemma we use the following lemma which is essentially
due to Kenmochi {7, Lemma 3.3 and its corollary].

LEMMA 4.2. Let {¢%} satisfy the assumptions (A.1) and (A.2). Then there exist
positive constants §, r, and M with the following properties: for each 0Lt< T there
exists a strongly absolutely continuous function v, on [t, min {£-+95, T} such that

o) <re and ¢ (v,(s) <M

Jor t<s<min {t-+4, T}.

We can show Lemma 4.2 with a slight modification of the proof of [7], so we
omit the proof.

We now continue the proof of Lemma 4.1. We first take a positive constant
d in Lemma 4.2 and take a positive integer m such that m<T/6<m+1. If we
put £;=46 (:=0,1,2, ---,m) and ¢,+,=7, then by Lemma 4.2 there exist positive
constants r, and M and strongly absolutely continuous functions v; on [¢;, £;41] (=0,
1,2, .-+, m) satisfying
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vt <ry and ¢*(wi(t) <M
for ¢, <t<t;y; (1=0,1,2,.--,m). Hence by (1.4), (1.6) and (4.2) we have for a.e.
S€ T, tin]
1 d , ,
—2~d—Huz(S)-vi(S)!P:(ux(S)—vi(S),uz(S)-%(S))
S

(4.3) <@a(vsls)) —pa(ua(s)) + (fls) —vils), uals) — vi(s))
<M—gi(uals) + (LF )+ lvils) D) uals) —vils) ] -

On the other hand, (1.4) and Lemma 3.1 imply
{4.4) —@3ua(s)) < — @ (Jquals)) <CillJ5ua )|+ C,

for 0<2<1 and 0<s<T. Therefore, combining (3.3) and (4.4) we find a positive
constant C, (independent of 1 and s) such that

(4.5) —5(ua(s)) <2C Juals) —v: ()| + C, for every 0<i<m .
Consequently by (4.3) and (4.5) we obtain for ¢, <t<t;n
(&) — v @ <lwa(ts) —vi ) |+ 2(M+ Chop
+ | (e s +200ds
from which we deduce

L)< ] + (-4 1) 2o+ 2(M+Cy)3}/2] + j (1£) | +2C0ds

(4.6)
+ £ S [v)(s) [ds=Mi(al)

for 0<t<T. Thus we have the estimate (i). Next integrating (4.3) and using (4.6)
we obtain the estimate (ii). To prove (ili)-(vi) we note that there exists a finite
positive number » such that

(4.1 sup {JlJuals)]l; 0<<1<1,0<s,t<Ti=r .

In fact, this follows from (i) and (3.8). Therefore applying Proposition 3.2 with »
replaced by u; we have for a.e. sc{0, T]
|- st~ (ogituat) ) )|
< i8] (3 uale)) + )+ g (8) o oua(s) | e osa ) + K2

Multiplying (4.2) by du./dt we get for a.e. s€{0, T']

(4.9) Hdi \1 <6¢x ua(s ds ux(s)>=<f(s),—‘%u;(s)> .
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Hence combining (4.8) and (4.9) we obtain

| d
| ds

2

uals)

+; Sl ;{ !hfsxllJrlh’( 91 (3 (uals) + K.

+19:(8) 11092 (wals) [ (% (uals)) + K, )2
Rearranging this inequality we see that

‘ o 2 (5)) < ()0 0 ) -+ Enls)

(4.10) L l— wale) |+

holds for a.e. s€ [0, T]. Here k1(8)=%ig£(8)lz+ lhi(s)] € L0, T) and kz(Sb%liﬂS) >+
——K lgr(s) 2+ K h(s)| € LY(0, T). For convenience we first prove (v) and (vi). If
aED( 9, then integrating (4.10) leads to

iqend, lE
2 50 e )| daehluale)

@1l <a)+ Stkz<s>ds+ S s o(uals)) ds

< ((p"(a) + S:kz (s)ds) exp <S:kl (s)ds)

for 0<2<1 and 0<t<T. Furthermore, by (4.4) and (4.7) there exists a positive
constant C; (independent of 2} such that — o (u:(T))<Cs. Therefore the estimates
(v) and (vi) follow from {(4.11). In order to prove (iii) and (iv), we multiply (4.10)
by s. Then we have for a.e. s€{0, T

}Z"‘diiséosz(ux (s)

Lo (uals)) +ko(s)s@i(wals)) +skals) .

-% sl|-%- a(s)

ld

{4.12)

Integrating (4.12) and using the estimate (ii) we obtain the desired estimates (iii)

and (iv) almost in the same way as above. Thus we complete the proof of Lemma
4.1.

PrROOF OF THEOREM I. We divide the proof into two steps.
I. First we shall prove the theorem when a€ D(¢%. If 0<2, #<1, then by using
(4.2) and the monotonicity of 8¢* we have for a.e. s€[0, T]

s lats (8) — wul(8) 2= (— 095 (wa(s)) + 00 (w(s)), wals) — ua(s))
=(—0¢3(uals) + 005 (uuls)), Jiuals) — J3u.(s))
{4.13) + (=095 (ua(s)) + 09aluuls)), 2005(ua(s)) — popi{u.ls)))
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S_L;_f‘ 1003 (2(3)) ~ B (uals)) |12

+ A= ogs o) 12— logsuals) ] -

Integrating (4.18) over [0, Tl we obtain
(4.14) !lux<t)—uﬂ(t>llz+(2+#)ﬁ 9% (uals)) —0pi(uals)) | %ds
<{2—p) j:(ilm(uu(smiz—H@soi(ux(S))Hz)ds for 0T .

Since, by (4.14) and Lemma 4.1 {vi), S fops(ua(s))li*ds is nondecreasing as 1} 0 and
bounded in 0<C2<1, it converges as 2] 0. Hence it follows from (4.14) that

{4.15) Iimu=u

140

exists in C({0, T1; H) and also
(4.16) lim 8¢% (ua( - )} =
210

exists in L?(0, T; H). Consequently letting 2,0 in (4.1) we obtain
13
4.17) u(t) + Sz'u(s)ds=a+S fledds  for 0<i<T,
0 0

which implies the strong absolute continuity of % on [0, T]. Therefore we have

(4.18) dul)[dt+v{E)=1f1t) for a.e. tc[0, T]
and
(4.19) 12151(1. duafdt=du/dt in L0, T; H).

On the other hand, (4.16) implies the existence of a sequence of real numbers
2, | 0 such that hm 0%, (uz, (£))=2(t) for a.e. t€[0, T]. Hence using (4.15) and the
well known result in the monotone operator theory (see e.g. Kato [6, Lemma 4.5])
we get

(4.20) u(t) € D(det) and wo(t) € dot(ult)) for a.e. [0, T].

Thus « is & strong solution of (E) with #{0)=a.

Next we shall prove the absolute continuity of ¢*(u(t)) on [0, T]. Since u is
strongly absolutely continuous on [0, T], by using Proposition 3.2 we obtain for
0<2<1 and 0<s<i<T
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leh(u(t) — oi(uls))]
(4.21) < St {logi(u() | dulz) fdell+ k(o) (95 (ulz) + K.)
+1gr@opa(u (o) [ {pilulo) + K,) Adr

where r=sup {|Jiuls)]; 0<i<1, 0<s,¢<T}. Now noting (1.8) and (1.10}, we have
by (4.20)

(4.22) foghu@N<loe*ut) | <{v@)]  for a.e. t€[0, T]
and
(4.23) 121?01 Jiu(t) =ult) for a.e. t€[0,T].

Hence, since [Jiu:()—ult) <lui) —u@) |+ |JiuE) —ult)]l, we have by (4.15) and
(4.23)

(4.24) 1}1&1 Jiuat)=ut) for a.e. t€[0,T].

Consequently, using (1.4), (4.24), Lemma 4.1 (v) and the lower semicontinuity
of ¢!, we obtain for a.e. £€[0, T']

(4.25) SOB(u(t))Ssoi(u(t))élinxxiionf ol ﬁux(t))élirg inf @2(ua(t)) <Ms(e*(a)) -

Therefore it follows from (4.22) and (4.25) that the integrand of the right-hand
side of (4.21) is dominated by a ke L0, T) independent of 2. Then we have

(4.26) lph(u(e)) —paluls)< Y k(z)dz

3

for 0<s<t<T. Letting 210 in (4.26) and using (1.5) we obtain the absolute con-
tinuity of ¢*(@(t)) on [0, T]. In particular, this implies u() € D¢} for 0<t<T.
Thus we have shown the existence of a strong solution of (E) with the properties
(@)’ and (ii)’.

Finally we can prove the uniqueness part of Theorem I by using the following
lemma.

LEMMA 4.3. Let u, and wu, be two strong solutions of the equation (E). Then

s (8) — s (8) | <{luals) —usls)]
holds for 0<s<t<T.

PrOOF. See e.g. Watanabe [10, Lemma 4.1].
Thus the proof is complete when a ¢ D{¢%.
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II. In this step we shall prove Theorem I when a € D{¢?).

Before the proof we summarize some additional results on the strong solution
2 constructed in the first step. Since w satisfies wu(t) € D(p*) for all t€[0, T, we
see that (4.25) holds for t€[0, T]. Hence it follows from Lemma 4.1 (ii), (iii) that

v S o*{u(s)ds< My (lal)
and
(4.28) tot (u (D)) <Ms(llal)

hold for all 0<¢<T. Furthermore, by (4.19) and Lemma 4.1 (iv) we obtain

(4.29) j:tnduw/dtHZdtszm(nam .

Now let ae D(p% and choose a sequence {a,}CD(p% such that |a,—all—0 as
n—oo. Then by the first step there exist strong solutions u, of (E) with the initial
-~ data u,(0)=a,. By Lemma 4.3 u, converges to a « in C{{0, T]; H) as n—co. In
order to show that « is a desired solution of (E), we note that the estimates (4.27),
(4.28) and (4.29) remain valid with % and a replaced by u, and a, respectively.
Hence, in particular, by the lower semicontinuity of ¢* we have for 0<t<T

tot(u(t)) < Himinf ot (u, (1) < ggMz(llanll)=M3(llall) ,

B—CO

which implies u{t) € D{¢*) for all 0<¢<T. Then take any 0<6<T and let v be a
strong solution of the equation

{dv(t)/dt—i-agot(v(t)) Sf(), 0Lt<LT,
v{0)=u(0) € D(¢?) .

Since the existence of such v is assured by the first step, we see, by using Lemma
4.3 again, that |u,(&) —o@) ]| <|u,.(0) —u(s)] holds for 6<t<LT and every m. Then
letting n—>co we see that u is equal to v on [6, T]. Therefore recalling the results
in the first step we can easily show that u is a unique strong solution of (B) and
that » satisfies (i) and (ii).

5. Proof of Theorem 1I.

Throughout this section we assume that the assumptions {A.1)-(B.4) are satisfied.
We first prove the following lemma.

LEMMA 5.1. Let the assumptions (A.1)-(B.4) be satisfied. Then ade'+ B(t)+ol
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1s maximal monotone in H for each 0<a<land 0<t<T. Furthermore, {14 i{adpt+
B(t)+ol)} 'z is strongly continuous in 0Lt T for each 0<a<l, 0<2<]1 and <€ H.

Proor. Let 0<a<1, 0<i<1 and ¢ H. First using the results of Brezis [4,
Proposition 2.10], we obtain the maximal monotonicity of ad¢'+B(t)+wl. Next,
since Jix is strongly continuous in 0<i<T by Proposition 8.1 (i), the strong conti-
nuity of {1+ 2{ad¢’+ B{t)+wl)} 'z can be shown by applying the method used in
Attouch and Damlamian [2, Lemma 5].

Let ac D{¢® and fe L0, T; H). For simplicity we assume ¢%a)>0 and =0
in the assumption (B.2). To prove Theorem II we use the idea of Attouch and Damla-
mian [2]: we fix 0<a<1 and rewrite the equation (P.E) into the form

(P.E)a du(t) jdt+ (1—a) 09" (u(f)) + ade'(u(t)) + Bi)u(t) 2 /1)

with the initial condition u(0)=a. Later we shall determine «. We now set ¢i=
1—-a)¢t and Ct)=ade!+ B(t). Then we see that 8¢*=(1—a)d¢® holds for each
0<t<T and that {¢%},<;<r satisfies the assumption (A.2) with g, and K, replaced
by 1—ea) g, and (1—a)K, respectively. Moreover, by Lemma 5.1, C{f) is maximal
monotone in H for each 0<t<T and the Yosida approximation Cz(t)u:%-{%—
A+ 2CE))u} of C{f) is strongly continuous in 0<¢< T for each 0<<2<1 and ue H.
To construct a strong solution of (P.E), we introduce another Yosida approxi-
mation agbf,:%{l—(l-!—yagb*)‘l} of 24t and consider the equation of the form

(65.1) ds, o) Jdt+ 0P h (ua,u(8)) + Calt)ua, ) =f) , 0<Li<T,

with %.,.0)=a and 0<2, #<1. Then we see, as in the proof of Theorem I, that
there exists a strongly absolutely continuous function s, on [0, T'] satisfying (5.1)
for a.e. t€[0, T].

Now recalling the results of Theorem I, we see that, for fixed be D{¢%, there
exists a unique pair of %€ C([0, T]; H) and 9 ¢ L*0, T'; H) such that

4 (t)[dt+ D) =11t) for a.e. t€[0, T]
o2 ey
and
5.3} B(t) € 99 (U (L)) for a.e. t¢[0,T].

Then using @ and 9 we have:

LEMMA 5.2 (cf. Lemma 4.1 (1)). Let uz,. be the strong solution of (5.1) with
u,.0)=a. Then there exists a positive constant N; (independent of «) such that
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(5.4) BN, Sfor all 0<2, #<1 and 0<t<T.

ProoF. Using (5.1}, (5.2) and the monotonicity of a¢% and Caiis), we obtain for
a.e. se[0, T]

1

5.5 2 s Iluzm A8} |12= (Ul u(s) =/ (8), Ua,u(s) — A (s))

< (B(s) —09(a(s) — Cals)a(s), ua,pls) —(s)) .
Now noting {1.10) and (5.3), we have for a.e. s [0, T']
logilals) i <loge(a(s)=]1—a)og (@ (s))]| < (1—a) [D(s) ]
and similarly we have

1Casya{s) | <ICis)it(s)|=|ade*({s)) -+ B(s) % (s)|
<{A+a) |9 |+ Ly (4]l for a.e. sc[0, T],

where we used the assumption (B.8) with y=1. Therefore using (5.5) and the above
inequalities we obtain for 0<¢<T and 0<2, £<1

luaut) —a@) | <lla— bll+S Bllol)l +Lalllal)ds ,

from which (5.4) follows.
Furthermore, we have the following estimates for wa,.(t).

LEMMA 5.3 (cf. Lemma 4.1 (v), (vi)). Let ui, be the strong solution of (5.1)
with u2..0)=a. Then there exist positive constanis N;, N3 and N, (independent
of «) such that

(5.6) $us,ut) <N, exp ( -

Ny ><1+<P @)+ j ICa{s) )n%ls)

2ds£N2eXp<lN3 ><1+go S 1Ca(8)u2,u(s 1\2ds>+N4

and
d

T
5.7) S ﬁguz,m

hold for all 0<2, <1 and 0<¢<T.

ProoF. We first note that Propositions 8.1 and 8.2 still hold with ¢* replaced
by ¢*. Hence it follows from the estimate (5.4) that there exists a finite positive
number » {independent of «) such that

sup {| (1+£09%) " uauls)ll; 0<2, <1, 05, t<TI<r .

Therefore, as in the proof of Lemma 4.1, by applying Proposition 3.2 we obtain for
a.e. s€{0, T
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1l d

2 g
——”———u;,ﬂ(s) o dauuls)
8 8

(5.8)
< Ca(s)uznl(s)|2+

0,803 .6)) + 6]
-«

where g, and g, are positive integrable functions independent of «, 2 and z. Then
by (6.8) we can show (5.6) and (5.7) almost in the same way as we have proved (v)
and {vi) in Lemma 4.1.

Now we return to the proof of Theorem II. First we shall prove that i,

. converges in C({0,T]; H) as ¢} 0. Let 0<2<1 be fixed. If 0<py, #,<1, we have

for a.e. s€[0, T1]

7 o) =0~ o )~ s )
(5.9)
+ B (10 1218 P~ [0 s D1

where we used the monotonicity of 9¢° and C;(s) (ef. (4.13)). Since ! 1odsluar,(s))l2ds
0

is bounded in 0<g<1 by (6.1), (6.4) and (5.7), it follows from (5.9), just as in the
proof of (4.15) and (4.16), that

(5.10) lim wa,,=ua
“10

exists in C{[0, T1; H) and also

(6.11) lim 8% (uz,.(-)) =22
“io

exists in L2%(0, T; H). Therefore, as in the proof of Theorem I, we have the
following.
(5.12) H?ol Caltyua,,=Calt)ua in C(0, T}; H) .

13
(5.18) H?& dta, o/ dt =dua/dt in L20, T; H) .

W
(6.14) dua(t) jdt+v2({t) + Calt)ua (&) =F(t) for a.e. €0, T].
(5.15) ux(t) € DY) and  va(t) € 0P u,(t)) for a.e. t€[0,7T].

Moreover u.(t) is in D(¢*) for all 0<¢<T and ¢f(u:(t)) satisfies the absolute con-
tinuity on [0, 7] and

(5.16) dHust)) < limiinf G, (t) for all 0<t<T.
240

Therefore using (5.10), (6.12), (5.13) and (5.16) we find that the estimates in
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Lemmas 5.2 and 5.3 are all valid with u, , and ¢} replaced by u; and ¢* respectively.
In particular, we have

ldus/dEll L2,r:m)

<Ny exp(z(f_’fa)){<1+¢°<a>>m+ncx(wuanz(o,T;H)}+Ni/2 .

(6.17)

Now using the assumption (B.S) and (5.4) we see that for any 0<y»<1

1 Caltyua () | <ICH)us(t)| =labo! (ua(t)) + Bt ualt)]
<{at+n)aet (ua(t)) |+ Ly(Ny)

holds for a.e. ¢€[0, T]. On the other hand, noting (5.14), {5.15) and 8¢t=(1—a)d¢’
we have

[9g" (ua(8) | <

11 o)) < (Hdux ddt] + | Cat)ua () + L)
for a.e. t€[0, T]. Hence combining these two inequalities we obtain
(5.18) 1 —2a—) | Cat)ua )| < (a+ ) (Iduat) /de | + L)) + (1 —a) Ly (Ny)

for a.e. £€[0,7]. We now choose 0<a<1 and 0<»<1 such that

{2+N%/2 exp<2(f’_3 a)>}a+ {1+N21’2< 5 é\f?’ )>}7;<1

‘Then by (5.17) and (5.18) we can easily show that there exists a positive constant
N; (independent of 7) such that

(5.19) dus/dt] L20,7;m) <N .
Also noting (5.6), (5.16), (5.18) and (5.19) we find a positive constant N, such that
(5.20) ' {ualt)) < N;

for all 0<2<1 and 0<t< T

Next we shall prove that u, converges in C({0, T1; H) as 2}0. Let 0<2y, 2,<1.
Then by (5.14) and (5.15) we obtain for a.e. s¢ [0, T]
1
Sy lo) = s < — 2 O sy )~ Gl

+-]

2 (Ciyls 8)u(8) 1= [ Cry (s)uny () 17)

where we used the monotonicity of d¢® and C(s). (Cf. (4.18).) Since [|Ca)uall z20r:m)
is bounded in 0<C2<(1 by (5.18) and (5.19), we can show, as before, that, as 2{0, u;
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converges to a u in C({0, T'l; H) and that C,{t)u: converges to a w in L2(0, T; H).
Hence it follows from (5.19) that u is strongly absolutely continuous on [0, T'1 and
that du/dt converges weakly to du/dt in L2, T; H) as 2} 0. Moreover, ¢*(u(t)) is
a bounded measurable funetion on [0, 7]. Indeed, Proposition 8.2 implies the conti-
nuity in ¢ of ¢i{u(t) for each 0<2<1 and (1.5) implies 1}1?01 oS u(t)) =t (ult)) for
0<t<T. Hence, since by (5.20)

oHult)) < lir;niénf H(ua(t)) <Ns for 0<t<T,

we see that ¢*(u(t)) is a bounded measurable function on [0, 7'
Now we shall prove

(6.21) —dut)/dt+f(t)—wit) € 1—a)dp(ult)) for a.e. t€0,T7.

Let t=t, be a Lebesgue point of f{&), w(t), du(t)/dt and ¢*(u(t)). Let x,€ D(p') be
fixed and take an x:[0, T}—H satisfying the conditions (i) and (ii) in (A.2). Then
using (5.14) and (5.15) we can show

%*di”%x@ —2ol* <A =)t (3(s)) — (1 —a) ¢* (ua(s))
S

+ (fs) — Cals)ux(s), uals) —x(s)) + (uz(s), x(s) — o)
for a.e. s€[0, T]. From this inequality we can obtain in the usual way
(dulto) [dE, ulto) —20) < (1—a) ' (we) — (1 —a) @™ (u(t))
+ {(flto) —wits), ulte) —20) »

which implies (5.21) since z, € D{¢*) is arbitrary.
On the other hand, since 1;?:1 Cit)ur=w in L20, T; H), we can show
Q

(5.22) w(t) € CEWu(t)=adp (u(f))+ Blt)u(t) for a.e. 1[0, T].

Therefore noting the convexity of d¢*(u(t)) we see, by combining (5.21) and (5.22),
that u is a strong solution of (P.E).
The remaining parts of Theorem II can be proved in the same way as Theorem 1.

6. Applicaticn.

In this section we apply the preceding results to the initial boundary value
problems for certain nonlinear parabolic differential equations in domains with moving
boundaries.

Let @ be a bounded domain in R:x (0, T) and set Q,=QN{t=s}, [;.=0QN{t=s}
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(0Q=Dboundary of @) and I" = lgT I',. We consider the equation
<t

du &8 /lou|PPou_

ot i=18xi< o 6xi>_f on Q,
6.1) =0 on I,

u(x, 0) =u,(x) on @,

where p>2. For simplicity, we make the following conditions on the domain Q.
(i) For each 0<t<T, the boundary I'; of @, is sufficiently smooth (say, of class
C2).

(ii) There exists a diffeomorphism of class C? from @ onto a cylindrical domain
Q% (0, T) such that the image (&,7) of (z,%) is represented by

E=X(x,t) and r=t¢,

where both X and its inverse X! are C% up to the boundaries.

To solve the equation (6.1) we take an open ball Qin R? such that QCQX[O, T1]
and treat the equation (6.1) in L2(Q). We denote by C(0, T1; L*Qy)) (resp. C([0, TY;
Wi*(Q,)) the space of all functions we C(0, T]; L#Q)) (resp. C(I0, T1; Wi2(@)
such that v{t)|ow € L3Q;) (resp. WiP(Q,) for every 0<t<T. Then we have:

THEOREM 6.1. Let fc L¥Q) and u,€ L*Q,). Then there exists a unique solu-
tion u of the equation (6.1) such that we C([0, T1; L2@,)) NC{0, T1; Wi*(Q,) and
t29ujot € LA@).

In particular, if u,€ Wi*(Q), then w satisfies we C0, Tl; Wi*(Q,) and
dufot € LAQ).

PrOOF. To solve the equation (6.1) in Lz(Q) we put

1 n
(6.2) ()= { Y § 4 El

too it we 12(Q), ue Wi*(Q) .

?

% %ae it we Win(Q),

ox;

Then we can show that ¢g is a lower semicontinuous convex function on L2(Q) and
that 9¢pg=Ag, where A is a maximal monotone operator in L*(Q) defined by

23y

axi)
with the domain D{dg)={uc Wi?(Q); Auec L*Q) in the sense of distributions} (cf.
Lions [8, chap. 2]). We next define a closed convex set K(f) in L2Q) by

U
ox;

(6.3) Agu=Ju=— 32 (

i=1 9%;

(6.4) K@t)={ueL*Q); ulx)=0 for a.e. zc§—Q;
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and denote its indicator function by Ixq, i.e.,

if t),
©3) Tt =0y tnerwise.

Then setting o'{u) =¢¢u) + Iz (u), we see that for each 0<i<T ¢’ is a lower
semicontinuous convex function on L%Q) and that the effective domain D(¢*)=
Wy*(@)NK(t) can be identified with Wi?(Q,) by the assumption (i). Therefore,
oHu)=pow (u) for each we D(¢?). Furthermore, we can show by (6.2)-(6.5) that
feogtu) if and only if ulow € D(Aow), ulr)=0 for a.e. € Q—Q, and flx)=Ag ulx)
for a.e. x¢@,. Hence we can rewrite the equation (6.1) in the form

da(t)/dt+agtalt) > ft),  0<t<T,
’LA{/(O):/I:(/O >

(6.6) {

where f(t) and @, are natural extensions of f(t) and w,, i.e., f/=f on @, f=0 on
Q% 0, T)—Q and f,=u, on Qq, #%,=0 on Q—Q,. The required solution of (6.1) is given
by u=1%lq.

In order to apply Theorem I to (6.6), we have only to verify that {¢?} satisfies
the assumption (A.2). Let ¢ €[0, T]1 and take v,€ Dlp*)=W¢y?(@,). Then setting

(XU X (@, 1),20))  for xe€ @,

vla, 8= {0 for zeQ—Q, ,

we can show by the assumption (i} that o(-,t) is in D )=W¥?(@Q, and that it
satisfies

o0, 8) = voll 1200, 7:2200) SCilE—Eol@"(vo)/? for 0<E<T
and

@ (v(+, 1)) <@'o(vo) + Caft —Eo| 0" (v,) for 0<t<T,

where C; and C, are some positive constants. Thus (A.2) is verified. Hence applying
Theorem I to (6.6) we obtain the conclusions of Theorem 6.1. The continuity in ¢
of () in the topology of Wi#(Q) follows from the continuity in ¢ of ¢*(4()) and the
uniform convexity of Wi?(Q).

REMARK 1. Let us consider the initial boundary value problem

ou L] =29y
— =3 — B 2 on Q,
YR axi< axi> pw s @

u=0 on I,

o
0x;

{6.7)

u(x, 0) =2u,{x) on @,
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in a non-cylindrical domain Q. Here p>2 and g is a (possibly multi-valued) maximal
monotone operator in R! such that D(8)50. Then, by using the same arguments
as above, we can show directly without a change of variables that a theorem
analogous to Theorem 6.1 holds for the problem (6.7).

REMARK 2. Attouch and Damlamian {2] considered the initial boundary value
problem for the equation

(6.7)" aa—;‘—duw(u) S5f

(the special case of (6.7), p=2) in a non-cylindrical domain. They obtained the
existence, uniqueness and regularity of the solution by reducing the problem in
consideration to a problem in a eylindrical domain by a suitable change of variables.

REMARK 3. Fujita [5] also treated the initial boundary value problem for the
equation (6.7)’ by the penalty method, which is, in a sense, related to ours. How-
ever, as is pointed out in [2], we can obtain the precise results on the regularity
of the solution by our functional method.
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