Nonrelativistic limit of the Dirac theory,
scattering theory

By Kenji YAJIMA®

§1. Introduction

The Hamiltonian which describes the Dirac particle with mass m and charge
¢ in the external electromagnetic field (A(x);, A{x),, A(x)s, ¢(x)) can be written in
the form

Hiel= 3 oo =S As(0) oy P esla),

where ¢ is the velocity of light, a; (§=1,2,3) and 8 are 44 matrices given as

1 0 0 07

:0 gj] 10 1 0 0
“ [A P 0 21 o

0 0 0 -1

Here ¢; (j=1,2,3) are Pauli’s spin matrices and are given as

UZP q 0=P ~q GZP ﬂ
Lol L olr Tlo -1t

The operator H{c) is considered to be a perturbed operator of the free Hamiltonian

19\, 1, ,

Hye)= ¥ ca;

J=1

and H{c) and Hy(¢) are considered to be operators acting on the Hilbert space
H=[LHRI

Under a suitable condition on {A.{(x),..., 4;x), olx)), Hlc) and Hylc) determine
the natural selfadjoint realizations on 4 and the wave operators

Wale)=s-lim ¢ #E () gitHye)

t—oo

exist and are complete.
Our problem which will be considered here is as follows. As ¢—co, do the
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wave operators Wai(c) and the scattering operator S(c)=W.(c)*W_(c) converge to
some limit operators in a certain sense? If the limits exist, can we represent
these limits as the wave and scattering operators associated with the Schroedinger
operator corresponding to the Dirac operator?

Concerning the nonrelativistic limit of the Dirac theory there are some works
such as by Titchmarsh [1], Veselié [2] and Hunziker [3], but these works dealt
with the analytic behavior of the point spectrum and the resolvent off the spectrum.
Our main interests are focused on the behavior of the boundary values of the
resolvent on the real axis.

§2. Preliminaries

In what follows, we assume that the normalization are made so that m=1
and e=1. We assume throughout this paper that A,(z) and o{x) satisfy

ASSUMPTION {A): There exist constants C>0 and y>1/2 such that
[A;@)|CA+z13)7,  le@ =00+ |x]?)7

for 7=1,2,3 and for all z€ R

Under our Assumption (A), H(c) and H,(c) defined on [CP(R%]* are essentially
selfadjoint operators. We use the same notations to denote their closures in /.
Following auxiliary Hilbert spaces are used in what follows; For any real p and
any positive integer n, we set the auxiliary Hilbert spaces

lajsn J g3

j[p:{fe LRy, 5 S (1+!xlz)"lD“f(w)lzde\lfllii,p<°°}.

For fe 49 and ge H°,, <f, g>=S \ flo)gl)de. For any pair of Hilbert spaces
R

GF, and &, the set of all bounded operators from &, to &, is denoted as B(F, , F»).

B&)=B(F, ).

The following lemmas are all well known.

LEMMA 1. Let Ry(z,c)=(Hyc)—2) Imz+#0) and let [I*={zeC'; Imz=0},
I=(—oo, ~c32) U (%2, o), 0>1/2. Then Ry(z,¢) can be extended to I=UI as a
BL9{18, 19114 -valued locally Hoelder continuous function with exponent c—1/2
(8/2>0>1/2) or 1 (6>>3/2). We write the boundary values as E{2£i0,¢).

LEMMA 2. Let Rlz,c)=(H(c)—2)"! Imz+#0). Let Assumption (A) be satisfied.
Then R{z,¢) can be extended to II*UIN\oolc) as a B I LH21Y-valued locally
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Hoelder continuous function, where o,(c) is the point spectrum of Hic), and
INoyle) is a discrete subset of I, even tf onlc)+T. Furthermore the boundary
values R(1+10,¢) can be expressed as R(21i0,¢)=(1+Ry(1x10, c) V) 1Ry (1:+10, ¢).
Here V=H(c)— H,(c) is considered as a bounded operator from [HS1* to [4{%.,1* for
any real number o, and Ry(i+1i0, )V is a compact operator from [ I, 1* to [, 1%

The proofs of Lemma 1 and Lemma 2 can be found in Yamada [4] or in
Yajima {5].

LEMMA 3. Let hi (or h*) be selfadjoint operators on the Hilbert space L2(R®)

2 2 2
determined naturally by the differential operators J?A:i(—a;-{— 9 + 9 > {or
ox? = 0x%  ox}

Fd+ox) defined on CP(RY). Then ri@)=(hi—2)"1 (or r*@)=Hh*—2)"Y) can be
extended to 1= (0,00) for + case (the case of the upper sign) and II*U(—oo, ()
Jor — case as & B(Y{3, 9(*,)-valued locally Hoelder continuous function for amy
a>1/2.

A proof of Lemma 8 can be found in Kuroda [7]. Note that, under our as-
sumption, k% (or k~) has no positive (or negative) eigenvalues {see Kato [8]).

LEMMA 4. Let (H, H,, Ey(d2)) be one of the triplets (h*, hi, ef(dA) and (Hlc),
Hyle), Eylda, c)), where ex({dd) (Ey(da,c)) is the spectral measure assoctated with hE

(Hylc)). Then the wave operators

Wae=s-lim e "*H¢itHo

{—too

exist. Furthermore for any compact interval I such that INc,(H)=C and

Fog€ 9% (or L90Y

(WE(L)S, 9)=

1
T

5 S {1+ VR(2£20))f, (R(2-+10) — R(2—10)) g>d 4,

where R(2+10) (or R,(A=xi0)) are the boundary values of (H—z)t (or (Hy—2)"Y) on
the real axis and V=H—H,.

A proof of Lemma 4 can be found in Kuroda [6].

§3. The theorem

THEOREM. Let Assumption (A) be satisfied. Let wi and wz be the wave opera-
tors associated with the pair (WY, hi) and (b=, hg). Then the limits s-lim W.(c)

c—00

exist and are equal to
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“wf 0 0
0

wi

0
0
Wiloo)=
+(e0) 0wz 0
0

=
o
(5

Y

To prove the theorem we need some lemmas. We write Hic)+(1/2)¢? and
Hyle)={1/2)¢* as H¥(¢) and HF(c), respectively, and their resolvents are also dis-
tinguished by the upper sign + or —.

LEMMA 5. Let Assumption (A) be satisfied. Let I be any compact interval

in (0,00). Then, for sufficiently large ¢, INc,(H*e)=C and in B4 LH1H
T (1£10) 0 0 0]
(24
lim BHa4i0,0)=]  ° rHaE) 0 0 pti0, o),
oo 0 0 0 0
| 0 0 0 0 |
uniformly on I. Similarly the relations
0 0 0 0 7
0 0
lim R~(Ax10,¢)= 0 0 . =R~ (1£10, )
Py 0 0 r(1x10) 0
| 0 0 0 r{A=%10)

hold wniformly on every compact interval I in {(—oo,0).

ProoF. We shall give the proof for R*(2+1:0,¢) only. The proof for the
others may be done similarly. Let ¢>0 be sufficiently smalil and write

2(N={£eC*; RegeL0<Im <l

Then for sufficiently large ¢

|~ —~2 3
1+(z)c 1+gc‘2 ¢ Z‘l% a?uo’"
Rilz,¢)= = ’ rilz+2tc?)
o i_l_ 9_, w7
=tioex; 00 2
is uniformly Hoelder continuous in z€ Q., and by Lemma 3, as ¢—oo, Ri(z,¢) con-
verges to
“rie 0 0 0]
0 ry 0 0
Rife, o) = )
0 0 0 0
0 0 0 0
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in BLYT, LHLIY (0>1/2) uniformly on Q.(I).
Hence by Assumption (A), 1+ Rf(z, ¢}V converges, as ¢—oo, to

1+7riz)e 0 . —r§(2) ,Z=:1Aj(x>gj

0 1+78(2)
1+ Rz, 0) V=
v, ) 0 0 1 0
0 0 0 1

in BL.9L%14, 190214 aniformly on 2.(I). On the other hand 14+-Rf(z, )V (2€ £2:)
is invertible in [ 4{%/]* and

- 1—7r*(2)e 0 _ N
L e (rEen@ 5 Ae)

0 0 1 0

0 0 0 1

(1+Rf(z, ) V)™=

Therefore, since Rz, ¢)= 1+ Rf(z,¢) V) Ri(z, ¢} for Im 2>0, we can conclude that,
for sufficiently large ¢, INo,(H*(c))=2 and R*(z,c)=(1+Rf{z,¢)V) Ef(z,¢) for
Im z>0. Letting ¢—co and using the equation 7§ (z)—r+(2)ers (2)=17(2), we get the
result of Lemma 5. (Q.E.D.)

LEMMA 6. Let EE(d2,c) be the spectral measure associated with the selfadgjoini
operator HE(e), and put

“et(da) 0 0 O "0 0 0 0
+
FHdn = 0 etdy) 0 O ’ F(di)= 0 0 0 0
0 0 0 0 0 0 e{da) 0
0 0 0 0 .0 0 0 eda

Then for any compact interval I, EF({I, ¢) converge to F={I) strongly.
ProOOF. By Stone’s theorem and Lemma 1 we get for any f, g€ [LH* (6>1/2)

(E5(L of, g)ZE];r—iS (R (2+10, ¢) — B3 (4—10, c))f, g>da.
I
Hence by the result of the proof of Lemma 5 we see easily that (EF(Z, ¢)f, g) con-

verge to
E%S ((RE2+10, 00)— R (1—i0, co))f, gda=(F*(D)f, g)-
I
Since E#(I,¢) are projection operators we get |EF(L e)f|<|fll. Therefore we can
conclude that, for every fe [ H%4 E%(,c)f converge weakly in 9 to F=(I)f. On

the other hand, putting f=g¢ in the above formula, we get
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VESL of|l—IF=(Dfl  as c—oeo.

Therefore, for every such f, E%(I, c)f converge strongly to F*(I)f. Since [ 4{%]* is
a dense subset of J{, a simple consideration shows that E3(I, ¢) converge strongly
to F*(I)} in 9. (Q.E.D.)

LEMMA 7. Let I be a compact subset of (0,0) (or (—<0,0)). Then

s-lim W.(e)Ef (I, ¢

(or s-lim W.(c)E7 (L, ¢)) exist and are equal to

¢

" wied (I) 0 0 0]
+ ot
W (co) F+(I) = 0 wied () 0 0
0 0 0 0
0 0 0 |
-0 0 0 0 7
0 0 0
or W) b (I)=
0 wiey(l) 0
- 0 0 wze(I)

PrROOF. We shall prove only + case. The — case can be proved similarly.
We omit the sign + in this proof. By Lemma 5, for any compact interval I and
any f=(fy, -+, f) and g=(gy, -+, g.) €[H}]* we get, as c—oo,

(W0 Bo(L A)f, g) Zimk (14 VR, (1240, 6))f, (R(2-+10, ¢) — R(1—10, ¢))g>d2
ZLS é (A pro(ai0)f;, (r{3430) — {2~ i0))g;d2
=(Ws(co)FHI)f, g)

On the other hand by the isometry property of W.(c) and wi, Lemma 6 shows

(W le) Bo(I, o) f | — | Wa(oo) FHI) fI.
Therefore by a simple limiting procedure we get that W.(c)E,(I, ¢) converge strongly
to Wo(co)FH(I). (Q.E.D.)

ProOF OF THEOREM. Let F(dA)=F*(dA+F-{d2). Then F(da) is a spectral
measures on 4 and supp F+=[0, o), supp F~-=(—o0,0]. Let I be any compact subset
of RN\ {0} and F(I)f=f. Let I.=IN(0,o) and L.=IN{—<,0). Then f=F*(I;)f+
F-(I.)f and the results of Lemma 6 and Lemma 7 imply that
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(W le)f = Wl IS W) ES (L, e)f = Wa(eo) FHILS|
+ | Wele) E7 (L, e)f = W (o) F-(I)f + | B (L, o) f — F (LS
+IE(L, o f —F-(I)fl—0

as c—»co. On the other hand the linear hull of {F(I)f; f€ 4, Iis a compact subset
of R™N\{0}} forms a dense subset of J{. Hence by a simple limiting procedure we
get the conclusion of the theorem. (Q.E.D.)

Since S(c)=W.{c)*W_(c) is a unitary operator we can get easily the following
result.

COROLLARY. Under the Assumption (A), scattering operator S(c)=W.(c)*W_-(c)
converges strongly to S(eo)=W (c0)*W_{co) as c—>co. '
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