Logarithmic forms of algebraic varieties

By Shigeru IITAKA

In the paper [2], “On logarithmic Kodaira dimension of algebraic varieties”,
the author introduced the concepts of logarithmic plurigenera P, and of logarith-
mic Kodaira dimension £, which plays the important role in the study of alge-
brajc varieties up to proper birational equivalence. Abelian varieties and Albanese
maps are very useful in the theory of birational geometry of complete algebraic
varieties.

Here we shall introduce the analogs of abelian varieties and Albanese maps
into the classification theory of algebraic varieties up to proper birational equiva-
lence. For the purpose, we study logarithmic 1-forms by applying Deligne’s theo-
rem concerning Hodge structure of algebraic varieties [11. We consider logarithmie
forms along singular divisors, which are logarithmic forms in the sense of [1] or
12]. As for 1-forms, both definitions coincide (Theorem 1). In the proof, the
homomorphism d log: E,— Ti(V)Ty(V) is introduced and it may be regarded as
the inverse of the residue map: Res of A. Weil. Note that by Theorem 1, we
know that logarithmic 1-forms are exactly the same as rational 1-forms of the
third kind in the sense of J. P. Serre [3].

Quasi-abelian varieties were defined in [2], which are extensions of abelian
varieties by algebraic tori. These are occasionally called semi-abelian varieties (by
Mumford). However, in proper birational geometry of quasi-projective varieties,
these play the same role as abelian varieties do in birational geometry. Further,
the quasi-Albanese map is defined and the universal property of it is proved in
Proposition 4. As a simple application of the theory of quasi-Albanese maps we
give another proof of the unit theorem by Ax and Lichtenbaum in [4].

Such a universal property was formulated and the existence of the universal
object was proved for the wider classes of commutative algebraic groups of certain
ty peby Serre [3]. His method is purely algebraic. But our theory of quasi-
Albanese maps are geometric and may be useful for the classification theory of
algebraic varieties in proper birational geometry. Actually, we can develop the
classi fication theory of quasi-projective planes, i.e., P2—divisor, by using # and g, in
other words, by logarithmiec pluricanonical maps and quasi-Albanese maps. The
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classification theory of quasi-projective planes is much simpler than Enrigues’ clas-
sification theory of projective surfaces but is very similar to the classical one.

For that purpose we need to analyze subvarieties of a quasi-abelian variety.
In particular, we have to transplant Ueno’s theorems concerning abelian varieties
into the field of our proper birational geometry. In faet, we formulate and prove
counterparts of Ueno’s theorems for closed subvarieties of a quasi-abelian variety
{Theorems 4, 5, 6) and for open subvarieties of a quasi-abelian variety (Theorem 7
and Proposition 11). As an application, we get the following result: Let V=Pr—3a
union of hyperplanes. Then V=4*XGE X V;, Vi being of hyperbolic type. In this
example, we have a very simple classification theory, which is, at the same time,
very similar to the Enriques-Kodaira classification theory of surfaces.

The author would like to dedicate this paper to the memory of late Doctor
Taira Honda, whose work on abelian varieties is very deep and important. During
the completion of this paper, the discussions with Professors M. Nagata, T. Oda,
and Mr. Y. Kawamata were very helpful, to whom the author gives hearty thanks.

1. Let k be an algebraically closed field of characteristic zero, oceasionally k=C.
We shall work in the category of schemes over k. Let ¥V be a complete non-
singular algebraic variety and D=3 D; an effective divisor with multiplicity 1 at
each irreducible component (reduced divisor).

We define the sheaf 24 (log D) of germs of logarithmic q-forms along D as
follows:

(i) 87(log D) is the subsheaf of 2%(x), the sheaf of rational ¢ forms of V,

(i) Q¢ {log D)|V=0%, V being V—D,

(iii)y for any p€ D, let (2, ---, 2,) be a system of regular parameters of V at
p and let f;+-- f,,=0 define D around p. Then

o= Tare) Lo n o p i g A, e € O
.f (1 f i{r)

Define

n\ V. D)=H"(V, (2 log D)®™Q) --- @(2" log D)®™s) .

Here by (V, D) we denote the pair of V and D. Then for any morphism
f:Vi—V,, we have a linear map
VAR A mn(V—Zy D, — Tml,...,mn,(),...,o(vb FUDy) P

D For an effective divisor D,, we have f*(Dp)=317;C;, 7;>0, C; being prime divisors.
Define f~1(Dg)=3 C;.
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when n=dim Vz. It V2=VZ—I_)2, V1:T71“ch,‘> V_l—f_ll_)z:f—l(V2)y and f:
f—_IIV)_, then
f* M Tml ..... mn(VZ) DZ) — Tml """" mn,O,...,()( 1y Dl)
Tml ..... mn,o,..,,o(vl, f—ll_)2> .
Note that f is proper if and only if D,=f"D, Moreover, assume that V;=V..
Then
dlm Tml,...,mn(vl, Dx)_Z_dim T"m1

.....

In [2], we proved that if D, is a divisor of normal crossing type, dim To,,..., wal Vi, Dy)
is determined only by V,=V,—D,. Hence we write

..........

P om(V)=dim T ... (V) Zdim T ..., (V, D) .
PROBLEM: P, .. (V)=dim Ty ... m,(V, D) ?
2. Write T(V)=T, : (V)and TyV,D)=T, : [(V,D).

THEOREM 1. Ty V)=T.(V, D).

Proor. Let {V,=Spec A,} be a covering of affine open subsets of V and for
each D;, fix a regular function F, ;€ A, which defines D;NV,. Then {F, /F, ;=

€ap,it € H{(V, %), which we write §(D;). Thus we have a homomorphism:
§: E=3% zZD;—~ HYV, O .

Consider the following diagram.
HYV, )

b

B= X ZD,—>H\(V,0%  HNV, )

[ER-

HY(V, 2) — H*V, C)

2

Put Ker (80)=E,CE. Take 4¢ E,. On each V,, 4 is defined by

F,=c,IF,3, m;eZ, c,cA¥.
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98(4)=0 implies the existence of {a.z € HY(V, (9) such that
F,=lexp2zv —1a.)Fs on V,NVp.

From this follows

dF, _, ,— dFs
Fa -——271"\/ 1daa5+ Flg‘“ .

On the other hand o(a.,) =0 implies da.s={w,—ws)/2zV —1, where o, is a holo-
morphie 1-form on V,. Hence
dF, _dFs

— W= — Wz .
F, #

Fy

Thus we get a logarithmic form {dF,/F,—aw,} € T\(V, D). However {w,} is unique
up to an addition of logarithmic 1-form. Hence, if we fix F, 4, -+, F, ,, we ob-
tain a homomorphism d log:

dF,.;

a§

By A={(caF -+ - F23)} s {z: n; —wa} e Ty(V, D) T7) .

If d log 4=0, then dF,/F, is holomorphic. Hence F, ¢ A¥, and so 4=0in E,. Put
p=rank E,. Then we have a hase {4, ---, 4,}. By F.,; we denote the F, for 4,.
We get Q-linearly independent dlog 4y, ---, dlog 4,. We prove that these are
C-linearly independent by the following

LEMMA 1. Let Spec A be a C-algebraic non-singular variety and let Fy, ---,

F.c A and B,=ILF;4. Assume that dE\E, ---, dFWF, are Q-linearly inde-
pendent modulo holomorphic 1-forms. Then these are C-linearly independent
modulo holomorphic 1-forms.

PrOOF. Assume that

#dFy P+ -+ +2,dF,/F,=holom., where 2, -+, ,€C. Let p=dimg (5 Q%).
We choose a base {yy, -, g5} of 3 Q1. Hence

?
'2‘:5;1 viitti , v €Q.
Thus
T AdEFi= Y (T vidFi F)p; .

Put F,=I1 F,-”if“, where ¢+#0 is an integer such that ev;;€ Z. Hence

wdFF+ o + psd Fs) Fs=holomorphic.
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Then if dFy/F, is not holomorphic, we have F; such that
F’lzchil Tty elio .
We choose a point pe (V(Fy)— _LZJ2 V(F;) NReg (V(F)). Then we have a system of
J=

regular parameters (Fy, Cs, --+, () at p. Write F;=F7-G;, in which G; is non-
vanishing at p. Thus

> pdF Fi= (Y pe;)dFy/Fy+holom.=holom.
Hence X p;e;,=0. This contradicts the choice of gy, -, #s. Therefore we obtain
o=rank E,<dim T.(V, D)/T(V) .
By duality and the fundamental exact sequence, writing ¢:DC - V, we get
H(V)=H,(V—-D)= H*™'(V, D),
and
HZ”'Z(V)J—:HM‘Z(D) — H* YV, D) — H* V) ﬁ—»H“‘l(E):O .

Hence b,(V)=b,(V)+r—dimImi*. By Poincarés duality we have the dual “* of
¥

u*: HY(D)= % zD;—> H¥V, Z) .
Clearly, ti*(4) is the cohomology class of 4. Hence,
t*=94 .
And so p=dimKer *=r—dimIm+*. Hence
b(V)—b(V)=p.
ProposSITION 1 (Deligne).
gV—qV=0b,(V)—0,(V) .

This follows from his theorem, the degeneracy of the spectral sequence of the
cohomology of logarithmic forms ([1], (8.2.13), (ii)). Thus

p=qV—qV=dim (Ty(V)/T(V)) .
Consequently, dim T,(V)=dim T.(V, D).
complete the proof of Theorem 1.

Hence T.(V,D)=T.(V). Thus we

Example 1. Let S be an algebraic K3 surface and D a purely 1-dimensional
curveonit. Assume £(S—D)=0. Then D=3 D, satisfies 1) Di=—2 and 2) ((D;, D;))
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is negative definite (see Example 4 of [2]). Hence we have a Dynkin diagram:
A,, D,, ---. Anyway 2) implies that D, ---, D, are linearly independent in
H%S, z). Thus g(S—D)=0. Note that these S—D may be regarded as some
versions of K3 surfaces. We have a sublattice 3 ZD,C H2(S, Z). By the theory
of elementary divisors, we have a base {cy, - - -, 22} of H2(S, Z) such that Di=d;zs,

-+-, D,=d,z,. Then Di=—2=d%%. Hence d;=1. Moreover, the intersection form
of H2(S, Z) is of the form EQEDUPUBU, where U=<g (1) and E, denotes a
matrix corresponding to the Dynkin diagram E,. Hence we get r<16.

3. In [1], Deligne proves that logarithmic g-forms are d-closed. Hence fixing
a point o€ V, we have a multivalued function Spco, for we T (V).
[

Choose a base {w;, -+, w} of T4(V) and a base {wy, -+, @, 01, -+, ¢} of Ti(V),

where g=¢(V) and t=¢(V)—q(V). Let {&, +--, &} be a base of the free part of
H,(V, Z) and consider the exact sequence:

H(V, 2)—2>H(V, 2) > KV, V; 2)
I _
H>YD; Z)=0, 4 being the immersion: VC V.

Hence we choose 7y, ---, 7, € Ker i, such that {&, ---, &, 71, -+, 7} forms a base
of the free part of Hy(V, Z). Put vectors in C7:

A1=<S @1, “'yj wq"")S 90t>
& & &

.............................

.............................

Note that
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PROPOSITION 2. These wectors Ay, +--, Ay By, +++, B, are R—C linearly
independent.

PROOF. Assume
Z a,,A@-f—Z bijZO where a;€ R, b]' eC.

From the note above, we see that a,, «--, ag, are all 0, because the former parts
of A; are R-linearly independent. Put

BJ:<§ Py “',‘g @t>~
75 75

Then we have only to prove that B, ---, B, are C-linearly independent. This is
equivalent to saying that det (B, ---, *B,)*0. Thus by the following lemma we
complete the proof.

LEMMA 2. Let o¢ Ty(V) and assume S =0 for any y € the free part of

7

H{(V,2Z). Then o€ T (V).

Proor. If ¢ ¢ T\(V), ¢ has a pole along some D,. Let p be a general point
of D;. Then we have a system of local coordinates (z;, z, -+, 2,) around p such
that 2,=0 defines D,. Hence

o=alz) -@fl— +holomorphic 1-form .
1
Here we may assume az)=af(zs, +--, 2,). Since dp=0, we get
do=da A % +d (holom)=0 .
1

Hence da=0. This implies « is a constant. Consider a 1-circle y; around D; at
p. Then

0=S §0=a§ '@‘ZL:OIZE'\/——]..
75 o %
Hence a=0. This implies that ¢ is holomorphic at p.

In view of Lemma 2, we can choose ¢4, :--, ¢, such that

‘g @1:2717'\/:.1— 52',]' .
7.

J
Therefore let L= X ZA;+ ¥ ZB; and L= ZA; modulo C* and L,= Y ZB;.
We get
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0—CtLy— C* L —~CYL—0 .

Here T=C!/L, is an algebraic torus G, and Jy=CYL is the Albanese variety of
V. Hence we may call

Ay=c**L the quasi-Albanese variety of V.

4. For a point pe V, we define

k4 P P P -
aV(p):<j @Dy, J wq: j @1’ Tty S S,Dt>e(_)4V .
0 0 0 4

This point does not depend on the choice of the path from 0 to p. Thus we get
the quasi-Albanese map:

ay 2 V—NJ@V .
PROPOSITION 3. av ts a rational map from V.

PROOF. May assume D to be a divisor of simple normal crossing type. Let
p€ D and choose a system of regular parameters (z, ---, z,) such that 2, --- 2,=0
defines D around p. As in the proof of Proposition 2,

§Dj=i§1 a;idzi 2+ 35
where «;; € C and the §; are holomorphic 1-forms around p. Let &; be a l-circle
around D; near p. Then 7,6;,=0. Hence,
0;= 2, mymn;+ a torsion , Mmi;€EZ .

From this follows

;5= 1*-5 Pi= 1~ LM\ Q=M.
2zv/ —1 5; 22V =1 4 7

For a point p’€ V near p,
»’ " »
eXpS ©;=€Xp X My log zL-eXpS ;= Il zmy eXpS &; .
0 0 0

This implies that ay is a rational map from V. Thus we have proved that J[V is
a quasi-abelian variety and ay is a morphism in the category of C-schemes.
Clearly,

o TU AN S TV) and (ay)s: BV, Z) = Hy( Ay, Z)
and Ker (av>*=H1(V, Z)tor .
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5. Let f: V;—V; be a morphism. Then f induces f;: Jyl“éjvz which satisfies
Jyrav,=ay,-f. Let p: V'~V be a proper birational morphism. Then g*: Ty(V) =
T(V") and H.(V, Z)o= H(V’, Z),. Hence py: Av= Ay. Thus any strictly
rational map f: V;— V, induces a morphism

St uqvl g LJQVZ .
In case V is gingular, we take a non-singular model (V*, ) of V, that is, V*
being non-singular, g: V¥ —V being a proper birational morphism. Define the

quasi-Albanese variety of V by jV:JV*. Hence we have a strictly rational map
ay=ay g1 V— V*—>J7V. Summarizing the argument above, we obtain

PROPOSITION 4. For any algebraic variety V, the quasi-Albanese variety jv
of V and the quasi-Albanese map ay: V— Jv are defined. ay is strictly rational
and is defined at non-singular points of V. Any strictly rational map f: Vi—V,
induces the morphism f*:jfyla TVZ which satisfies the following commutative
diagrom:

S

V]_ I V2
ayll VLO(VZ
Ay —— v
Jx
Moreover, the morphism fi satisfying feay,=ay, f is unique.

From this we get the universal property of the quasi-Albanese map: Let
¢:V—>_4 be a strictly rational map from V into a quasi-abelian variety J
Then there exists a morphism o : jvaj[ such that ¢;-ay=¢. Such ¢, is unique
and ¢, is a translation of a homomorphism as an algebraic group. Hence we obtain
a group homomorphism:

7y i PBir (V)= Aut () .
We make the following

CONJECTURE: If V=0, then Ker (r,)° is an algebraic torus.

PROPOSITION 5. Let B be the closure of ay(V) in JV. Then gB=gV and
{ay)x: jv:jg. Moreover, a,(V) generates jv as an algebrate group.

PrOOF. Decompose ay into a composition of «: V—B and j: B— jv. Then
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a* ¥ ~
TV) +— T (B) «— Ti( Av)
and a*oj*=af=id. « is dominant and so a* is injective. Hence a«* is bijective.
Thus §V=gB. Moreover (ay)s=Jx a4 is the isomorphism: jv'—’jg‘_)jv. Hence
ay 18 injective. Thanks to dim jV:ququdim JB, ay turns out to be iso-
morphic. Hence j, is also isomorphie.

COROLLARY 1. If V is non-singular and dim B=1, then B is non-singular
and a general fiber of ay is irreducible.

Proor. Since dim B=1, B coincides with av(V). Consider the normalization
of ay:V—B and denote it by af : V—>B*. Assume dim V=1. Then by §V=
g(B*) we see that of is the isomorphism or §V=1 and «¥ is étale by Theorems 1
and 2 in [2]. In the latter case, V=G, or an elliptic curve and so ay=of=id.
On the other hand, if gV=2, |K+D| has no base points. Hence B is non-singular
and so V=B. Then assume dim V=2. jB«‘:JV and so the normalization 1:
B* — Binduces iy : Ap= Ay. Since B*C Ay — Ay and BC Ay, 1s|B* : B* = B.
Hence B is non-singular.

Let ¢-8: V— Bt — B be the Stein factorization of ay: V— B, in which Bt is
the normalization of B in k(V). Then 8: V—»Bﬁgjgﬁ is written as B;-ay,
where B : jvszejB#. ¢ : Bt*— B induces ¢, :jBﬁajV and ¢, |Bi=¢.
Hence ¢y -f=ay yields ¢4 81 -ay=ay. Thus by the universality, we obtain ¢ -8, =id.
Hence ¢, is surjective and 8, is injective. Note that gB*=gB by the inequalities:
GV=gB*=gB=gV. Hence §; is isomorphic and ¢, is so too. Q.E.D.

PROPOSITION 6. Let Vy and V, be algebraic varieties. Then
T(Vix Vo)=Ty V)BT, VIQTV)D - - - BT(Vy) .
Hence
G(VixX Vo =q:(V) + @ V) -qu( Vo) + -+ +5:(Va) .

Moreover, P, (VixXVy)=P.V)P.(V,. Thus g(VixVa)=q(V)+q¢Vs and &(V,X
Vo) =r(Vi)+&(V3).

PrROOF. We may assume V; and V, to be non-singular. By V; we denote com-
pactifications of V,; with smooth boundaries D;,. Then V,x V, turns out to be the
compactification of VXV, with smooth boundary D=D;x Vo4 VixD,. It is easy
to check that

2 log D=4 log El@k@Vg@Qi_l log D;®,0" log DD --- @@€1®k~9i log D,.
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Since V, and V, are complete, we have

HY(V,x V,, 2 log DR, log Dy)=H"(V,, 27 log D)QH(V,, 2/ log Dy) .
Q.E.D.

By p1: Vix Vo= Vi, pa: Vix Ve— V, we denote the projections. ¢=(p., P :
-uq.le vy Jivl X uflvz induces

T, (JVIXUE[VD T 4V1 VDT L}qu TiV)DT(Ve =5 T, (jV1XV2) S T(Vix Vy)
and

uqlevz, =H,(VixX Vs, )o = Hy(Vy, )O@Hl(VZ» Z),
=H,( u[lvl, JDH,( uzlvzy = H,{ Jlegﬂvz,

Hence ¢ is isomorphic.
By this we prove

PRrROPOSITION 7. Let V, and V, be algebraic varieties and ¢ : VX VZ»J a
morphism into a quasi-abelian variety j[ Then there exist morphisms ¢y : Vy— Jl
and ¢y: Vo A such that ¢=¢,+¢, that is, ¢(x, y)=0:(@)+p.(y), where 1€ Vi,
Y€ Vo Such a pair (¢, ¢s) is unique up to translation. This implies that another
pair (1, ¢5) is written as ¢i=¢,+c¢ and Pj=¢,—e¢, where cCk.

PROOF. ¢y : J{VIXVZ—-JLVIXJZVZAUQ is written easily as ¢,+¢,, where o, :
J[ — A and ¢;: J[Vz-»ull are linear maps between the universal covering
manifolds. Define ¢,=¢;-ay, and ¢,=¢,-ay,. Then (¢),=9¢;. Note that (¢4, ¢,)
is unique up to translation. We complete the proof if we show that these ¢, and
¢; are really morphisms. Fix yecReg (V,). Then ¢i(x)+¢uly)=¢(z, y) for ze
Reg (V). Thus a rational map ¢,+¢,ly) is the morphism ¢( , y). Hence ¢, is the
morphism. And so is ¢,.

THEOREM 2. Let G be a connected algebraic group and j @ quasi-abelian
variety regarded as an algebraic group. Then any strictly rational map ¢ : G —
18 @ translation of a homomorphism.

Proor. Let Oej be the neutral element of j and assume ¢{1)=0. Con-
sider ¥ : GxG — ] that is defined by ¥z, y)=¢{zy). Then by Proposition 7, we
obtain ¢, : G— A and o1 G— J such that ¢(1)=0 and ¢, (x)+¢.(y)=V(z, y)
where (z, y) € GXG. Henee ¢,(1)+¢u(y)=¥ (1, y)=¢(y). This implies g,=¢,=0.

COROLLARY TO PROPOSITION 7 AND THEOREM 2 (Unit Theorem by Ax and
Lichtenbaum). Let k be a field of characteristic zero and A, B k-domains such
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that Q(A)k and Q(B)/k are algebraically closed extensions. Constder the group
U(A) of units of A and write U¥(A)=U(A)/k*, that is a free abelian group.
Then

U*(AQB)=U*{A)xU*(B) .

Moreover, for connected affine algebraic groups, the only invertible regular
Sunctions are scalar multiples of multiplicative characters.

PrOOF. Let A be a k-algebra. Then Hom (Spec 4, G,.)=Hom,, &[T, T71, 4)=
U(A). Therefore if k is algebraically closed and if A and B are finitely generated
over k, we get the result from Proposition 7. In the general case in which % is not.
algebraically closed, by elementary theory of Galois cohomology, we complete the
proof.

7. Let V be an algebraic variety. Then by the universality of the quasi-Alba-
nese map, we obtain

PROPOSITION 8.
ULV, On)=T(V, O =Hom (V, G,) = Hom ( Ay, G =UT( Ay, Oayh -

Denote by Homg, (jv, G.) the group of rational homomorphisms: Ay —G.. Then
we have by Proposition 8

Homg: ( Ay, Ga) = UV, O) -

Since Hom,, (jv, G.) i1s a free abelian group Z?, we indicate the Z-base of it.
by my, ---, mz. Then

Ty=(My, v, M)t Vo GuX oo XGu=Hy.

We say that v is the universal torus of V and 7y is the universal torus map.
Tlien EZ; dy=Yv and =T, T, Ay—Fy is the epimorphiim. Hence:
Avr = ATy where A° is a quasi-abelian variety such that U (_A4°, O))=k*.
Let ¢: V—T be a morphism from V into an algebraic torus 7. Then there is.
a homomorphism 901:u~4V—>T such that ¢=¢,-ay+c. Since UITV:JT"XEI vy and
Hom,g, (JF, G.) =0, we have the homomorphism ¢, : v — T such that ¢,(z, ¥) =0,y).
This establishes the universality of (J'y, o). Tvxv, = T v, XLy, Is equivalent to
the unit theorem. We indicate by g(V) the dimension of &'y. Then g(V)—¢(V)=
sV, @ V)—g(V)=p(V) if and only if jyzufl"xffv, where J° is an abelian
variety.
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8. Let V be a complete non-singular variety with ¢(V)=0 and D= é D; a reduced
divisor on V. Write V=V—D and assume dima,(V)=1. Then E(V)gl. Hence
we have D'= ilpjgﬁ such that g(V—D")=1. Let V'=V—D'DV. The quasi-
Albanese map Ja_V»: V’—>J[VV/=G,,L is surjective. Write j: VC . V/ and B=ay(V).
J induces jy : B—>@G,, and E(V)=k(V)=k(V) « Dk(B) « 2 k(G.,). Since E(V")/k(G,)
is the algebraically closed extension, k(B)=k(G,). B is normal. Hence B=G,—
{ps, +--, p. Let V* be the fiber product of V/ with V over G,,. Then V*C_, V/
is the open immersion satisfying VCV*CV’ and qgV=qV* If V=P" we have
V=V*. Let D; be defined by the homogeneous polynomial F; of degree d;. Then,
letting d,=g.c.d. (dy, dv), do=do/ds, di=d,/8s, We get a morphism & : P*—~Dy,U D, — G,
sending pHF?ﬁ(p)/Fg'l(p), which is the quasi-Albanese map of P*—D,UD; by the
following observation: Let V=P*—D, D=Dy+ --- +D, where the D; are defined
by irreducible homogeneous polynomials F; of degree d;. Then

'V, 0=l F7; Sda=0,ack?.
Denoting by m;= (w0, **+, Gir)y ** 05 Mpma ={(Bro1,00 ** *5 Gpm1ro)y Mr=(Crs05 ***, Ay} € Z7
the Z-base of Ker (ZT+1——10—>Z; ag, * -+, &)= S a;d;), we have
V—G,=Yv
w w

» > (¢1(p)> Y Sbr(p)) H
where g[},Z:ng,o . Fii’r-

PropOSITION 9. Let V=P "—(Dy+ --- +D,) such that dim ay(V)=1. Then,
letting 6,=g.c.d. (do, d;), df=d;/d;, dif =ds/5;, we have d=d! and

F?gzangi-l—ﬁijz’, where a;, Bk .
Proor. Let V/'=P"—(Dy+Dy), V'=P*—(Dy-+D;). Then
blay (V1) =R (FS FE) =klay (V) =hlay, (V") =k(F Y F) .
Hence, there are a;, g;, 75, 8;€k such that

Fd(; Fd(') a1

i eF B,
T d; a7

Fii riF+ a;F ot

Since Fy, Fi, F; are distinct irreducible polynomials, we conclude that 7;=0 and
di=d’.
Note that dy/g.c.d. (do, d;)=d./g.c.d. {d, d;) and dy/g.c.d. (do, di)=d;/g.c.d. (dy, d;).
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Hence, there are mutually coprime numbers a, b, ¢ and an integer ¢ such that
do=abe, d,=bce, d;=ace.

9. Let V; be a non-singular algebraic variety and F, a Zariski closed subset of

codim =2. Then it is easy to see that
mn(Vl_F)ZPml,m,mn(Vﬂ .

.....

But if V; is singular, this does not hold any more. For example, there exists a
surface S such that g(S—{ps, ---, »,})=0, but £S=—oo. However, we can prove

THEOREM 3. q(Vi—F)=¢Vy).

PrOOF. Let V, be a completion of V, and F, the closure of F; in V;. By
: V— V., we denote the resolution of the singularity of V, such that 7 (F)=E=

R

-21 E; and pY(V,~Vy)=D= ﬁ)l D; are divisors of simple normal crossing type, where
JI;':ﬁ'l(Vl) and p=pl|V. Vif:a prove that E,, ---, E, are Q-cohomologically inde-
pendent modulo D,, ---, D, by induction on n=dim V,=2. May assume V; to be
normal. When n=2, (E;, E,)) is a negative definite matrix by Mumford’s theorem
and (E;, D;)=0. Hence we finish the proof in this case. In the n-dimensional case
(n=3), we first assume

S B+ Y mD;=0 in HYV, Q).
Define the subset JC{1, ---, ¢ by
i€ J &= p(E;)=point.
Let W, be a prime divisor of V; such that codimw, (W,NF1)=2. By V, we denote

the proper image of W; by z'. Let f&,: V¥ — V, be the resolution of the singu-
larity of V.. Consider the relation

i (Bl Vo) + Zmiaf(Di\ V) =0 in HXVE, Q).

By induction hypothesis, if E;|V,+0, then n,=0. Choosing W, properly, we con-
clude that n;=0 if 1¢J. In fact, let p be a general point of F; and take an af-
fine neighborhood Vip) of V, with center p. Choose an irreducible local divisor
Hc Vi{p) which intersect properly with F, at p. Then the closure H of Hin V,;
can be used as W,. Hence we have only to prove under the condition that F is
finite.

Let V, be a general hyperplane section of V and define Wi=g(V,), which is

1V,

a prime divisor. Then #,=p|V, is birational, which satisfies 1) (D1 Vs) are divi-
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sors and ii) 7 (E;|W}5 is a finite set. Hence
> mE| Vet ¥ m;D; i Va=0 in HXVs, Q)
jmplies m;=0 by induction hypothesis. Thus by Theorem 1, g(V,—F)=g(V)).

COROLLARY. Let V be an algebraic variety and F o closed subset of codim =2.
Suppose that V—F is isomorphic to o quasi-abelian variety _A. Then F=.

PROOF. By the theorem above, g(V)=g(V—F)=g(l)=n, n=dim V. Hence
the inclusion j: V—FC_, V induces j*: T\(V) = To(V—F) and jy: Apr= v
Hence, ay: V»jvzj induces a5 on V-—F:j[ by the commutativity of the
diagram in Proposition 4. By the following lemma by Kawamata, we complete
the proof.

LeMMA 4. Let V be an algebraic variety and F a closed subset of V. Sup-
pose that a morphism f:V — V—F induces the isomorphism f|V—F on V — F.
Then F=.

ProOF. Take a closed point p€ F and put p’=f(p). There is p, € V—F such
that f(p)=p'. p and p, dominate p’ and so p=p, by the separability of V.
Q.E.D.
This corollary was proved in (2) under the additional assumption that j >V
is j[—equivariant.

10. Let X:j be a quasi-abelian variety, that is a G%(=T)-bundle over the
abelian variety (. Let TCP¢ be the natura! imbedding, which is 7-equivariant.
Hence, we have the P*-bundle over /4, whose structure group is 7. Thus we ob-
tain the projective non-singular variety X which is the Pt-bundle over (4. Denote
X— X by D, which is of normal crossing type. X is the compactification of X with
the smooth boundary D. We are able to verify that Q'og D= (%, n being dim X,
Therefore, K-+ D~0, qu):(?), P, (X)=1, p,(X)=1 and finally £X=0.
Actually, consider the universal covering map = : U=C™— . Then the fiber
product of U with A=X over J is TxU and Ux_X=P'xU. Let o be a
logarithmic 1-form of X along D. Then by pulling back, we get the logarithmic
1-form & on P:!XU which is invariant under translations in U and is logarithmie

along (P*'—T)xU. Denote by 2z, -+, 2, and w,, ---, w, the coordinate of U and
of A'=P?'—a hyperplane, respectively. Then
&= Z a; dwz + Z bdej s where [s 78 bje C.

[3
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Let 2z, =logw, ---, 2,=logw, which are affine coordinates of the universal
covering manifold T=Ct of T. Hence

w= i aidzi—i— % bdej
i=1+m i=1
and

2clog (D)= fi Oxdz =@ Ox .

We wish to generalize Ueno’s theorems concerning subvarieties of an abelian
variety ([5], Theorem 10.3).

THEOREM 4. Let W be a closed subvariety of the gquasi-abelian variety jf
Put r=dimW. Then qy(W)g(’;), 2, W)z=1, B (W)=1, and &(W)=0. Moreover,

the following conditions are equivalent to each other:
a) W is a quast-abelian variety,

b) q‘i(W):<Z>, Jor some 1€ (1, 7],

¢) p,(W)=1,
d) P.(W)=1, for some m=1,
e} E(W)=0.

Proor. Clearly, a) implies b), ¢), d) and e). e) implies d), which yields ¢).
Let W be a closed subvariety of dimension ». Choose a general point p € W, around

which we take a system of local parameters (Ci, ---, &p a1, =+, ) Such that
Lon=+++» =, =0 define W. Let z:C™—_4 be the universal covering map.
Choose p,€ 77 p) and assume 2z (p)= --- =2,(p,)=0. Hence (2, ++-, 2,) can be

regarded as the system of local analytic parameters around p. By performing a
suitable linear transformation we have {;=z;—¢;(z;, * -, 2,), where ¢,;(0)=0 and
99,/02,(0)=0 for any 7, l€[1, n]. The dz; are logarithmic 1-forms and hence dz;|W
are elements of T,(W). Since d¢,, ---, d, are linearly independent holomorphic
1-forms of W around p, dz|W, ---, dz,|W are also linearly independent. By

de, | W— lil%?lezllW:O for jel[r+1,n],
= 1
we get
3 5j,l—2(ﬁlW>dzllW=—‘i%[W-dzilW.
+ 0z i=1 0%,

Thus for l€[r+1, n], we have

da W= 3 Aults, -+, C)-dad W,
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where the A4,; are holomorphic functions suech that A,(0)=0, dz,|W, -, dz.|We
T, (W), which are linearly independent. Hence g, (W)=r. Similarly,

ToA W) 3 ldei Ad2)| W, -+, (d2,m A2 W,
which are linearly independent. Hence qi(W)g<:> .
Now, assume W satisfies the condition ¢). Then
(dzsA -+ Adz, Ad2) | W=ay, [ deu A -+ Ade,) | We T (W)=klda,A «-- Ndz W),
where a;,;€k. On the other hand,
(dzaA -+ Az Nd2) W= A daA -+ Nde)|W .

Hence, =A,,=a1,;. From this, A4;,=0 follows, because 4,,(0)=0. In the same

way, we get A;;=0. Thus dz, |W= --- =dz,/W=0. This means that
YW)cig,u= --+ =2,=0} near p,.
{#r1= +++ =2,=0} is of dimension 7 and is irreducible. Hence 2" {W)={2,1.= --*

=2,=0}, and so W is a quasi-abelian variety whose uniformizing parameters are

21, ++, 2. Similarly, we can show that qi(W)=<:> yields a).

COROLLARY. Let W be an r-dimensional closed subvariety of an algebraic
torus T=G2. Assume iW=0. Then W=G}, and T= WxGy.

PROOF. By the proof of Theorem 4, W is defined by the following equations
fIlw:’f'i:I where 1<j<n—7r.

The elementary divisors of the matrix (m,;;) are denoted by d;, ---, d.—,. Then
changing the coordinates, we have wl=1. Since W is irreducible, d;==1. Q.E.D.

THEOREM 5. Let W be an r-dimensional closed subvariety of J If i=E(W)>0,
then there exists an étale covering «: j*—nj such that n‘l(W)zjlx W, where
chjz that is a quast-abelian variety of dimension n—Eg.

Proof is easy and so omitted.

THEOREM 6. Let J be a quasi-abelian variety and ¢ : j[—» W a dominant
strictly rational map. Then EW=0.

ProOOF. Let X be the compactification of ij defined in the beginning of
§10. Let W* be a compactification of a non-singular model of W with smooth
boundary 4. ¢ determines the rational map @:X—> W*. Performing monoidal
transformations we have 7i:X*— X such that $=%-7' is a morphism. Let w€
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Te......nW), which determines ¢*{w) € T.....om0.....0(X). Then using the notation
in [2], we can write

Pro=qa; <
‘On the other hand,

) ®mn
dw“/\»--) + <.+, where a;ck.
Wi,

o=t (L p N e mE2)
1
Hence, letting (w)=L, we have

Supp (¢*(L)) CR;.
Therefore,

1< P, (W) =lw{vL) <lz{d*(vL)) <lomRz) =1 for some m, .
Next we consider open subvarieties of a quasi-abelian variety.

PROPOSITION 10. Let D be a reduced divisor of an algebraic torus G=. Let
V=G*—D. Then the following conditions are equivalent to each other:

a) D=, in other words, V=G,
b) Gi(V)-——CZ'), Jfor some i<l nl,
e) p(V)=1,

d) P,(V)=1, for some m=1,

e) EV=0.

PRrOOF. a) implies b), ¢), d) and e). e) implies d) and d) yields ¢). Hence it
suffices to prove that b) implies a) and that ¢ implies a). Let Gr=

Spec k@, -+, #n, 121, -+, 1z, Then dmyjay, ---, doojx. € To(GL). By ge€
Koy, -+, @, Y24, ---, 1/z,] we denote the defining equation of D. Then dg/g¢
T.{V), and
,dl/\dﬁ/\ . /\ﬂ_—_zi. dz, A oo /\dﬁeTn(V) ,
g 2 i X1 X,
2; being elements of k. Hence
Z; 99 =+29 for ¢=1,2 ---,n.
ax,;
Since g=3 a2 --- z/*, we have
g _ . iy in_ iy in
i = T @t B A Y Gt

ox;
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Accordingly, a;(7;F2;)=0 for any J={(j;, +--, J.). Hence if j;#=*2;, then a,=0.

In other words, if a;#0, then j1==%2;, jo==%24, +--, j,==+2,. Hence g turns out

to be a unit and so D{g)=¢J. Similarly, the condition b) implies that D(g)=.
Q.E.D.

THEOREM 7. Let i=k(Gi—D)=0. Then there exists a reduced divisor D,CGE
such that V=GL *xXV,, where V=G *~D,. Hence V, is of hyperbolic type.

Proor. By the fundamental theorem of logarithmic Kodaira dimension ({2}
Theorem 5), we have a proper birational morphism g: V*— 7V and a surjective
morphism f: V*— W in which V* is non-singular, W is an irreducible construc-
tible set of dimension &, any general fiber V#=7"1(w) is a non-singular variety
with (V¥ =0. Let V,=p(V¥), which is a closed subvariety of dimension n—=&.
Since w is a general point, p¢~*(V,) is an irreducible variety of dimension n—&k.
Then VicpV,) leads to the fact that Vi=p (V) =V.,XyV* Hence, p|VE:
V%V, is proper birational. Thus #(V,)=#&(V%*) =0. Denoting by V, the closure
of V, in G2, we have 0<k(V,)<k(V,)=0, and so #(V,)=0. Hence by Theorem 4
we have V,=Gr*. Furthermore, &(Gr*—Gr*nND)=k(V,)=0 implies Gx*ND=3
by Proposition 10. Thus V,=V,=G%* and G%=G=%*xG% by Corollary to Theorem
4. Hence we have a reduced divisor D,CGE such that V=G5 *x (G:—D;) by the
following easy lemma.

LEMMA 5. Let V and W be algebraic varieties and D an trreducible divisor
of VX W such that DIVXw=VXw for any general point we W. Then D=V XD,
D, being an trreducible divisor of W.

COROLLARY. Let D be a union of hyperplanes L; (0<j5<t) in P*. Then V=
A*XGEX V., where V, is of hyperbolic type which caon be realized as a complement
of a union of hyperplanes in P*~* 8,

Proor. Consider the affine space 4**! whose n-dirensional linear subspaces
determine the points of P». Let ka; be the 1-dimensional vector space 4™ cor-
responding dually to L;. Let 1+7=dim (ka,+ --- +ka,). Then choosing a suitable
homogeneous coordinates of P”, we have the equations:

XOZO Of LO N
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i ainj::O Of L, (1_$_’1:§t) .

Therefore, V=A4**x V",
V’:Spec k[xly AR xr, 1/3717 Tty 1/xn 1/ Z ar+1,jxj9 Tty 1/ Z at»jxj]CGrm .

Hence by Theorem 7, V=G~ *xXV,, where e=g(V’). Q.E.D.

PROPOSITION 11. Let D be a divisor of an abelian variety A and V=_J—D.
Then the following conditions are equivalent to each other.

a) V=,

b) EV=0.
If #=k(_A—D)>0, then there is an unramified covering map = : A’ — A such
that A'= A X A, and D=D,x A, D, being a reduced divisor < .

ProoF. By w( A)=0, E(A—-D)=«D, A) (Example 4, [2]). If D#{, then
&(D, A)>0 and |2D| has no base points. Thus we have the morphism f=@,p:
A — B for sufficiently large m. Then B is of dimension #=#(D, ) and a general
fiber (A,=7"1(b) is an abelian subvariety f{,. Hence D=f"1(D,), D,c A, Q.E.D.

REMARK. T. Fujita proved that the similar statement as Proposition 11 holds
for a quasi-abelian variety. Note that Proposition 10 cannot be generalized for
a quasi-abelian variety. For instance, let V=an elliptic curve—one point. Then
P, V=1 but gV=1.
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