Defect relations for equidimensional holomorphic maps

By Fumio SAKAI

{Communieated by S. Iitaka)

The purpose of this paper is to state defect relations for equidimensional holo-
morphic maps from a ball in C” into a projective algebraic manifold of dimension
7, generalizing results of Carlson and Griffiths [1].

Denote by B[R] the ball of radius B (0<R<+o0) in C* Let W be a pro-
jective algebraic manifold of dimension n. We shall consider holomorphic maps
S B[E]-W. We assume f to be non-degenerate in the sense that the Jacobian
of f does not vanish identically. For an effective divisor D on W, the defect
6(D) is defined by

d(D)=1~lim sup IND, )/ T(D, )],

where N(D,r) is the counting function for D and T(D,r) is the order function for
J with respect to the associated line bundle [D] (see §2). Then §(D)<1, and
8(D)=1 if fIB[R]) does not meet D. Further if T(D,r)—+co as r—RE, we have
0<d(D). In case BR=-+oo, the inequality 0<d(D)<1 always holds. If D consists
of irreducible divisors D, ---, D,, then

iZl {lim inf [7(D;, )/ T(D, ) }6(D) 4(D) -

We say that D has simple normal crossings if each D; is non-singular and D has
normal crossings.

Let L be a line bundle on W. For any positive integer m, we mean by mlL
the tensor product L®". We employ the notion of L-dimension x(L, W) of W
introduced by Iitaka [4] (see §1, for the definition). Roughly speaking #(L, W) is
the polynomial order of dim HY(W,(D(mL)) as a function of m. In particular,
&L, W)=n if and only if

Ii"rﬂfgp m~ dim HY W, O(mL)>0.
For a divisor D, we put «(D, W)=«({D], W).
We shall prove the following defect relation in §4.
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THEOREM. Let W be ¢ projective algebraic manifold of dimension n and let
f+ BIR1->W be a non-degenerate holomorphic map. Let D be an effective divisor
on W. Assume that D has simple normal crossings and x(Ky+D, W)=n, where
Ky is the canonical bundle of W. Then we have

. Ty 7)1
<
o\D)lim sup — 5SSt

where

AD)=lim inf [T(D’ 7)/log —(R—i;)?] .

r—>R

Here if R=-co, we understand that 2(D)=-+oco, and this result was announced
in [11]. Moreover, we shall see that either if R=-+occ, or if A(D)=+4occ in case
R< +oo, the strict inequality 6(D)<1 holds. So there is no non-degenerate holo-
morphic map which omits D (cf. [10]). In ease R=+oo, D=D;+---+D, and each
D; belongs to the complete linear system [L|, where L is a positive line bundle
such that kL-+Ky is also positive, the above defect relation was first obtained by
Carlson and Griffiths [1].

COROLLARY. Let f: B[R]—P, be a non-degenerate holomorphic map. Let
H,, ---, H, be hyperplanes in general position in P,. Then

k 1
215(H1)§7’L+1+7 ,
where 2=lim ;nf [T(H, r)/log _ZR——lr)—“]’ with the hyperplane bundle H.

For n=1, R=1, this result was given by Nevanlinna in {7], [8].

In §5, we shall deal with the case of singular divisors. In the above theorem,
if the divisor D has general singularities, we must add a remainder term S(D)
depending on the singularities of D, to the right hand side of the defect relation.
After the author had written this paper, he learned that Shiffman [14] has also
obtained a defect relation for singular divisors.

1. Notations and preliminaries. Let W be a projective algebraic manifold of
dimension n. Cover W by coordinate neighborhoods {U.} with holomorphie coordi-
nates (w.,...,w? in U.. A holomorphie line bundle is given by transition fune-
tions {l.s} with respect to {U.}. Let L’ be a line bundle given by {l;;}. We define
L=+L’ to be the line bundle determined by {{,5l/5}. A holomorphic section ¢ of L
is given by holomorphic funetions ¢, in U, satisfying oa=lsgos in U,NUs. Denote
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by HYW, (L)) the linear space consisting of all holomorphic sections of L. More-
over a holomorphic section ¢ defines a divisor {¢) on W. Denote by |L| the com-
plete linear system of all effective divisors (o) for o € HY(W,O(L)).

A metric in L is a collection of positive C=-functions a. in U, such that a,=
lagl2ae in U.NUs Denote by d¢ the real differential operator (+/—1 [47)(@3—3a).
Then the real (1, 1)-form dde°log a. belongs to the Chern elass ¢, (L) € H2W, R) (de
Rham cohomology). A real (1,1)-form o=(+/—1/27) X, i dwi AAWY is positive
(semi-positive), written w>0 (w=0), if the Hermitian matrix (g;;) is positive definite
(positive semi-definite) on W. We shall say that L is positive if there exists a
positive real (1,1)-form representing ¢,(L). The length }¢| of a holomorphic section
o of L is defined by |o|>=]0.|?/a. in U, with respect to a metric {a.} in L.

The canonical bundle Ky of W is defined by transition functions k.p=det Bwi/ow?).
A volume form Q is an {(n, n)-form given by a metric {8} of K. Namely we can
write

(1) 0=b. 1 (V=1 r)duiAdwi, in Us,

where b,>0 and by=1k.e|?s in U, N Up.

Let D be a divisor on W. Denote by [D] the associated line bundle. We say
that D has normal crossings if D is given by w;---w;=0 with local coordinates
{(wy, -, w,). If moreover each irreducible component of D is non-singular, we say
that D has simple normal crossings.

For a line bundle L on W, the L-dimension x(L, W) of W is defined as follows
(see Titaka [4]). If there is a positive integer m, such that dim H*(W, O{m,L))>0,
we have the following estimate

am*<dim H(W, O(mm,L)) <pm*,

for any large integer m, where «, 8 are positive constants and r a non-negative
integer. Define «(L, W)=¢. If dim H°(W,((mL))=0 for every integer m, put
(L, W)=—oco. For a divisor D, we define «(D, W) to be (D], W). Note that
k(L, W) takes one of the values —,0,1, ---,n. In particular, (L, W)=1 if and
only if there exists a positive integer m such that dim H°(W,(O(mL))=2. More-
over the equality (L, W)=n= holds if and only if

lim sup m dim HYW, O(mL))>0.

m—4-co

The Kodaira dimension k(W) of W is by definition, #(Ky, W).
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LEMMA 1. Let L be a line bundle on W satisfying (L, W)=n and L, an arbi-
trary line bundle on W. Then dim HYW,()(mL—Ly))>0 for a large integer m.

PrOOF. Take a non-singular hyperplane section H on W. Then m[H]—L,— Ky
is positive for every large integer m. By Kodaira vanishing theorem, there is a
large integer m, such that dim HYW, O{mH]—Ly))>0. On the other hand, we
have shown in [10], Lemma 2, that dim H{W, O{m.L—[H]))>0 for a large integer
m,. Thus, letting m=m,m,, we obtain dim HYW, )(mL—L,))>0. Q.E.D.

Let z=(2y, +--,2,) be coordinates of C*. We shall use the following notations

(ef. 111, [2D):
lzlP=lz 2+ - - +]2.]%,
p=dd*lz|*,  P=9¢",
¢=dd* log [2]*,
7=dslog [lz]* A",
Blrl=fze C"llz] <1},
aBlri={z€ C"|llz]| =1},
Xir1=XnB[r], for a subset X in C™.

DEFINITION. For an integrable function g on 8B[r], define

mz,(w:g g7

aBlr]

It is shown in [1] that I, (1)=1.
For a function g(r) on B[R], r<R, we mean by O(g(r)), any function A{r)
such that the quotient |h(r)}/]g{r)] is bounded as r—R.

2. The first main theorem. Let W be a projective algebraic manifold of dimen-
sion n. We shall consider equidimensional holomorphic maps f: B[R]-W, with
0<R<+co. We say that f is non-degenerate if the Jacobian of f does not vanish
identically. If f is non-degenerate, denote by R, the ramification divisor of f
defined by the Jacobian of f.

DEFINITION. Let f: B[R]—>W be a non-degenerate holomorphic map. Let D
be a divisor on W and let ¢ be a holomorphie section of [D] which defines D. For
0<r<R, define
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N(D,r) =§T < j ¢”‘1>t‘1dt , {eounting function)
o \J 7#Dl¢]

m(D, )=, (log (1/f*|])) ,

r

Nl(r)=§ <§R Ugb”‘1>t*1dt , (ramification term)
FLe

0

where f*D is the divisor on C* defined by ¢ o f.

In what follows in this paper, we assume that 0¢ f*D and 0¢ R;. Otherwise,
some modifications are needed in the above definition. If D is an effective divisor,
by multiplying a metrie in [D] by a constant, we can make jj¢|<1. Then log (1/lef)=
0, from which follows that m(D, r)=0.

DEFINITION. Let L be a line bundle on W and o a real (1,1)-form representing
the Chern class ¢;(L). Let f:B[R]--W be a holomorphic map. For 0<r<R,
define

o

T(L, T>:S G . f *wA(ﬁ“‘l)t‘idt {(order function) .
Bli

0

For a divisor D, put T(D,r)=T({D],r). Note that T(L, r} is well defined up to
an O(1) term {((1], p. 573).

THEOREM 1 (First Main Theorem, see [11, [2] for a proof). Let D be a divisor
on W and let f: BIR1-W be a non-degenerate holomorphic map. Then

(2) m(D, r}+ ND, r)=T(D, r)+0(Q1) 0<r<R)
where O(1) is a constant depending on D but not on r.
COROLLARY. If D is effective, then
(3) ND,r)<TD,r)+0{1).
Proor. Since D is effective, as noted above, we can make m({D, r)=0.

LEMMA 2. Let Ly, L, be line bundles on W. Suppose that dim HY (W, O(L,—Ly)) >
0. Let f : BIR}—=W be a non-degenerate holomorphic map. Then we have

T(Le, 7)< T(Ly, 1) +0(1) .

ProOOF. By hypothesis, there exists an effective divisor Z€|L;—L,]. There-
fore we get 0<XN(Z, 1)< T(L;—L,, v)+0(1), which implies T(L,, )< T(L,, v)+0(1).

In case R=+co, we obtain the following
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PrOPOSITION 1. Let D be an effective divisor on W. Let f: C"—>W be a non-
degenerate holomorphic map such that f(C")ND+. Then

(4) lim inf [T(D, r})/log v]>0.

F—rfco

PROOF. Because f(C*) N D+, we have f*DN Bli,]+ &, for a large £,. Hence

j ¢”_1ZS ¢ l=¢; >0,  for t>t,.
F*Dli] 7*Dltg]
It follows that
N(D,r)=c; log r+e,,
where ¢, is a constant. Combining this with (8), we obtain the desired inequality.
COROLLARY. Let L be a line bundle on W such that (L, W)=1. Let f:C"—
W be a non-degenerate holomorphic map. Then
(5) lim inf [T(L, r)/log ¥1>0.

Proor. Since #(L, W) =1, there is a positive integer m such that
dim HYW,(O{mL))=2. So there are two linearly independent sections o,,0:€
HYW,O(mL)). Choosing constants ¢;, ¢, we can find an effective divisor Z=
(eooo+c10y) With AIC"Y N Z#¢. The assertion follows from Proposition 1. Q.E.D.

Let 2 be a volume form on W. For a non-degenerate holomorphic map
f: BIR]—W, define a function & on B[R] by f*2=¢£-0.

ProrosITION 2. We have
(6) T(Kw, 7)+ Ni(r) =T, {log v &) +0(1) .
ProOF. Writing 2 in the form (1), we obtain the following current equation
dde log E=R,+f*dd° log b .

By integrating this twice, we obtain (6) (see [1], for details).

3. The second main theorem. In this section, we shall prove the following

THEOREM 2 (Second Main Theorem). Let W be a projective algebraic manifold
of dimension n. Let Dy, ---,D, be mon-singular divisors on W such that D=
Di+---+D, has only normal crossings. Let L be a line bundle on W such that
elL, W)=mn and let f:BI[RI-W be a non-degenerate holomorphic map. Then

Case 1, R<-+oo. For given v>1, >0, the inequality
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(7) (D, r)— N(D, 1)+ N, (r) = — T(Ky, v)+O(log T(L, r))+0{1)

1 1
= 241 log ———
+5 b+ (g+1) log B—r)
holds for ¢ E, where E is a union of intervals in [0, R) such that S d1/(B—rf) <

E
+oo.
Case 2, R=+oo. For given B, 0<8<1, the inequality
{8) TD,r)—N(D, r)+ Ni(r) = — T(Ky, ) +O0(log T(L, 1)),

holds for r¢ E, where E is a union of intervals in [0, +oo) such that j‘ dirf)<

B
+oo.

ProoF (For background, see Carlson and Griffiths [1], Kodaira [6]). It suffices
to prove when L+[D] is positive. In fact, for a line bundle L, such that L,+[D]
is positive, since (L, W)=n, we obtain by Lemmas 1, 2,

(Lo, 1) =O(T(L, 7)) +0(1) .
‘Thus, if the inequalities (7), (8) are valid for L,, these are valid for L.
Assume now that L+[D)] is positive. Choose metries {a;..} of [D;], for each ¢
k
and let {1}1 @) be a metric of [D] with respect to an open covering {U.} of W.

Put w;=dd’log a;., for each ¢ and wp=w,;+---+w,. Then we can find a real
{1,1)-form o representing ¢;(L) such that o+wp>0.

DEFINITION. Let o; be a holomorphic section of [D;] which defines D;, for i=
1,.--,k Define

1

Ne 2o s fi2y2 ? { ':1’ . L.
lo:li2(log o; %2 or 1

pi:pDiz

k
We put pp=1I p; and p=cpp, for a suitable constant ec.
=1

DEFINITION. Set
G=wt+ddlog p,

T(r)= S:(Smf*@/\w‘l) -1t .

LEMMA 8. Let 2 be a volume form on W. Letting the constant ¢ sufficiently
small, we have
"> pf .
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PROOF. By definition

k k
dde log p=dd° log pp=wp— Zl<1/log )wr}— Z)lz-,f ,

1
ol
where «;=[log ||¢:{|212d log (1/lo:l}) Ad log (1/}je:]l). We can make

4=1

om0t op— 3, (1/10g >wi>0,

1
foall
by multiplying the metrics {a;} by constants such that [o;] are sufficiently small
for i=1, ---, k, because o+wp>0. Note that ;=0 and ZB:wO—}-iZ;z'i. Since 1/pp>
0 on W—D, it follows that (1/p,)@">0 on W—D. Consider a point x€ D. Because
D has simple normal crossings, we may assume that x € D;, for ¢=1,.--,7and z¢ D;

for i=j+1, ---,n and we can choose local coordinates (w,, ---,w,) centered at =z
such that D;={w;=0}, 1=1, ---,7at z. Hence

il pi= (v —1/za;(@))dw; Adw; , 1=1,.--,7.

n .
glwg !
(9)9 ’

Pi+1*** Ok

Thus

(L/pp)a"= (ed/od N Aleslp) >0, at .

Therefore we get (1/pp)@">0 on W. Taking the constant ¢ sufficiently small, we
obtain (1/p)a™>0. Q.E.D.

Lemma 3 gives (f*&)"=s*(0R)=(pof)£0, where & is defined as in Proposition
2. If we write f*a= Zh”(«/ 1/27)dz; AdZ;, then (f*@)"=/(det (h;;))®. Since @ is
semi-positive, it follows that trace (h;) =n(det (h;;))/". Hence

(9) FraNgrt=(trace (hi;) @ =n(det (b)) "0 =n({e o F)E)"0 .

DEFINITION. Set

w):jm( (oo £)E)H0

E(r) :Sr T (f)i- @Dt
o

p(r)=2nM,(n((p o £1E)"} .
LEMMA 4. We have

¥ (r)ldr=r="p(r),
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dE(r)[dr=r=@DT ().
PrROOF. An easy computation shows that

ndllz)2Adelz]?
izll?

from which we have by Fubini’s theorem,

O=p"= Ap™t,

@’(7‘):2%3.:(&}3“ n{(p o FEMde |22 A ™ 1> 1dt .
Sinee p=d° log [z|*A¢n~t=]zl|"*"d*|z[*Ap"~ on 8B[i], we obtain

Tir)= S pleds

0

which implies the first equality in Lemma 4. The second equality is clear.
Next we shall prove the following inequality.

(10) E(r£TL, r)+TD,n+0() .
By integrating (9) twice, we get S(r)<T(r). Using the fact

. - dde log log () )
m—arHOD_gl og(og(w—)) s

we obtain
(L, 7)+ T(D, 7)— :EIS <Lm dde log <10g< 1 2>>2/\¢'“'1>t‘1dt
= 5[] 102 (o (o)) = Yo
=§1L dlog ]2 Ade 10g<10g<u Mz))/\w—
=3 Ssmdk’g (108 (57 ) ) log el nge
= 106 (o277

Making the metries as [o;] <e™, by multiplying again by constants, the right hand
side is non-negative. Combining these inequalities, we obtain (10).
We need the following

LEMMA 5 (Nevanlinna [7], p. 258). Let g{t), h(t) and «(t) be positive, continuous
and increasing funciions for 0<t<<-+co such that g’(t) and K'{t) are continuous
400
and 5 dtjalt)<+oo. Then the inequality
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g =W E)elglt)
holds for r¢ E, where E is a union of intervals in [0, +-oo) such that S dh<+oco.
E

PrOPOSITION 3. Case 1, R<+co. For given v>1, >0, the inequality

(11) Iz (7') é (R_ 7')_ {(+1) (B+1) R {v-1) (2n—-1) 5(7-) »2

holds for r¢ B, EC[0,R) and S A(1/(R—7)%) < +co.

E
Case 2, R=+4oo. For given 8, 0<8<1, the inequality

(12) plr) S8, v=(n—2)/@n—2+p -1

holds for r¢ E, EC[0, +<) and S d(rf) <+ oo.

E
ProOF. In case R<+oo, put s={R—7)"l. Then Lemma 4 implies
AT (s)/ds=s2r*1u(s), dE(s)jds=s"r~ @D (g),

where we write G(s)=G{(sR—1)/s) for G=¥, 5 and g. Two usages of Lemma 5
yield, if we put h(s)=s/8, a(s)=s and first g(s)=T(s)

AT [ds<sf1y»
and then g(s)=25F/(s)

dE/ds<sP1E>,

outside E. Combining these, we obtain (11).
In case R=-+oo, letting hl{r)=rf/B, a(r)=r>, v=(4n—2)/2n—2+8)—1, we can
similarly obtain (12) (cf. [6]).

LEMMA 6. Case 1, BE<+oo. The inequality
13y M, (log V(o > & <{p+1)(8+1)/2} log (1/(R—1)")+O(log T(L, 7)) +0(1)
holds outside E.
Case 2, R=+oo. The inequality
(14) M, (log v/ {pof)€) <O(log T(L, 7))
holds outside E.

Proor. Case 1. The left hand side of (13)
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I

n/2)M,(log n((p o £HE)M") — (n/2) log n

n/2) log (M. (n{{p o f1§)1"))

{by concavity of logarithmic function)

(n/2) log p(r)— (n/2) log 2n

n2) (v+1)(8+1) log (1/(R—7))+O(log T(L-+D, r)+0(1)

{
(

iIA

I

IA

(by (10), (11))
<(n/2){v+1)(8+1) log (1/(R—7))+O(log T(L, r)}+0(1)
(by Lemmas 1, 2).

‘We can similarly prove Case 2.
Now we proceed to the proof of Theorem 2. We have by definition
o k —_
log v o =log (1/]¢])—log (1,1:11 log (1/]le:]))+log v ¢ /2.
It follows by integrating on oB[r],

m(D, r)=M,(log Vo o f)+M,(log ( I:I 1 * el +0() .

Using the concavity of logarithmic function and (8), we easily get
m(D, r) <M, (log Vo o £)+0(log T(D, r))+0(1) .

Combining this with (2), Proposition 2 and Lemma 6, we obtain Theorem 2.
Q.E.D.

4. Defect relations. Let W be a projective algebraic manifold of dimension =.
Let f: BIR]-W be a non-degenerate holomorphic map.

DEFINITION. Let D be an effective divisor on W. Define the defect of D by
d{D)=1- lim %up [INWD,r)/T(D, r)].
REMARK. It is clear that ¢(D)<1. In particular, if f omits D, then §(D)=1.
In case lim Sup T(D, r)=++o0, it follows from (2) that
o(D)=lim %nf [m(D,r}]T(D,r)],
from which follows 0<d(D)<1. In case R=-+co, the inequality 0<6(D) <1 always
holds. In fact if f omits D, we have seen that §(D)=1 and if fIB[R))ND+#U, by

Proposition 1, T(D, r)—>-+oo as r—>+co and then we have 0<48(D) from the above
remark. If D=D,+---+ D, is the irreducible decomposition of D, we have shown
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in [11] that
(15) Zij{lmlnf[T(Dz, )/ TD, r)}6(D)=6(D) .

DEFINITION. Let L be a line bundle on W. Define
7i(L)=lim ;nf (N[ T(L, ],

A(L)=lim in [T(L, 7)/log (in case B<+oo).

1
(R—m)" ]
For a divisor D, we put 7,(D)=y:((D]) and 2(D)=2(D)).

THEOREM 3 (Defect Relations). Let W be a projective algebraic manifold of
dimension n. Let Dy ---,D, be non-singular divisors on W such that D=
D+ ---+ D, has normal crossings. Assume that «(Ky+D, W)=n. Let f: B[R]—
W be a non-degenerate holomorphic map. Then

Case 1, B<+co.

(16) D)+ (D) {HI?j{up [—T(Ky, n)/TD, ")+ 1/2(D)) .
Case 2, R=+oo,
amn (D) +r.D) éﬁm sup [—T(Kw, 7)/T(D,7)].

Proor. Case 1. If 2(D)=0, the inequality (16) imposes no restriction on o(D).

So we may assume A(D)>0 and then T(D,r)—>+co as r—R. Let L=Kyp+[Dl.

Since x(L, W)=n, by Lemmas 1, 2, we see that T(L, r)—>+co as r—E. Then by (7),
T(D,r)—ND, r)+ N, (r)< —T(Ky, r)+0(og T(L, r))+0(1)

b (E+D) log (U/B=7)),

for v¢ E. Dividing this by T(D,r) and passing to the limit, we get
(13) D)+ 711D =(—T{Kw, r)/T(D, 1))+ ;(V‘*‘l)(ﬁ“f"l)(l/l(l)))
+0(og T(L, r)/T(D, m}+0Q/T(D, 1)) .
Given ¢>0, letting r sufficiently close to B, we may assume
{tog T{L, m))/T(L, ) <e .
Note that T(L, v}/ T(D, r)={(T{Kw, )/ T(D, r))+1. Hence we obtain
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(D) +7:(D) £ (L —eey)(— T (K, r)/ T(D, v)) +ec1+c.(1/ T{D, 7))
1

+5 LD ED WD),

where ¢, and ¢, are constants. Taking the limit as ¢—»0 and r—R (T(D, r)— -+ o)
and letting v—1, §—0, we obtain (16).
We can similarly prove Case 2 (cf. {11]). Q.E.D.

COROLLARY. Under the hypothesis of Theorem 38, either if RB=+oo or if
AD)=+o0 in case R<+co, then
oD)+7 (D)<,

Proor. We prove the case in which R<+oo. Assume that §(D)+y(D)=1.
Then by (18), since 2(D)=-co, we have

T(D, 7 =—T( Ky, r)+0log T(L, 7)) +01),
and then
T(L, r)£0{og T(L,r))+0({) .
Since T(L,r)—>+cc as r—R, this is a contradiction.
REMARK. In case R<4co, if f omits D, then
(19) AKy+D)<1.

In fact, as in the proof of the above theorem, putting ¢(D)=1, we obtain
T(L, r)g%(w}— D{B+1) log 1/ (R—7r)") +ec; T(L, 7) +¢; ,

from which we have the assertion. Note that in this case, we have shown in [10]
that R<R,, where B, depends on W, D and [J/(0}] (the Jacobian of f).

Example 1. Let W=P, and D; a non-singular hypersurface of degree d;, for
9=1, +--, k such that D=D,+ - -+ D, has normal crossings. Put d=d,+.--+d;. Let
H be the hyperplane bundle of P,. Then it is well known that Kp =—(n+1)H,
[Di]=d:H and [Dl=dH. If d>n-+1, clearly Kp +[Dl=(d—n—1)H is positive, and
then x(Kp,-+D,P,)=n. Let f:B[Rl-W be a non-degenerate holomorphic map.
Our defect relation becomes

a(D>+r1<D>g"T“+<1/z<D>> :

By (15), we get d,6(Dy)+ - - - +d,3(D) <ds({D). Note that y(D)=y.(H)/d, 2(D)=da(H).
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Putting these together, we obtain
13
E_:ldia(Di)‘*'Tl(H)é’n‘l'l‘f'(1/2(H)) .

If f omits D, then
AH) L1/ d—n—-1) .

This is also a consequence of (19).

REMARK. As we have noted in [11], Theorem 3 holds under the hypothesis
elg Ky+aq. D+ - - - +q. Dy, W)=n, where q,, ---, ¢, are rational numbers. In fact, it
suffices to put L=qKwp+aq.[Di]+ - - - +¢,{D,] in the above proof. In particular, either
if R=+o0, orif A(D)=+co in case R<+oo, the condition #(Ky+gD, W)=n implies
that 6(D)<q. If x(W)=0, then x{Ky+ D, W)=x(Ky-+qD, W) for any positive ration-
al number g (cf. [10], Lemma 5). Hence taking ¢—0, we conclude that ¢(D)=0.

5. Singular divisors. Let W be a projective algebraic manifold of dimension %
and D an effective divisor (reduced) on W. In this section, we shall study the
situation in which D has general singularities. For simplicity’s sake, we shall
consider a non-degenerate holomorphic map f: C*—W. We use a desingulariza-
tion = : W*—>W of D satisfying

(i) = is a composite of monoidal transformations,
{20) <(ii) let D*=the support of =*D, then r : W*—D*—~W—D is biholomorphie,
(iiiy D* has simple normal crossings.

We want to apply Theorem 38 to the map f=="'of. Even if f is holomorphic,

!
w

f may be meromorphic. So we must prove Theorems 1 and 2 for meromorphic
maps. This can be done along the line of Shiffman [13] and Noguchi [9]. Note that
f is holomorphic outside an analytic subset S( f) of codimension =2. Then, for a
divisor Z* on W*, f*Z* becomes a divisor on C* and the ramification divisor R; can
be defined naturally. For a real (1,1)-form « representing the Chern class ¢,(L*) of
a line bundle L* on W*, the induced form f*« is locally integrable on C* (cf.
[18]). So we can define the functions N, T and N; for f, and we denote these by
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Ny, Ty, N 7, respectively,
LEMMA 7. Let Z be a divisor on W. Then
N(Z,r)=Np(z*Z,v) .
RRrRooF. This follows from the equation
J*Z=f*r* 7.
LEMMA 8. Let L be a line bundle on W. Then
T(L,»)=Tz*L, 7).

Proor. Let @ be a real (1,1)-form representing c,(L). Then outside S(f),
we have f*o=f*r*w. So these are equivalent as currents in C”.

Let RB. be the ramification divisor of = determined by the Jacobian of =. We
can easily show the following

LEMMA 9. R;=R;+ f*R.,
Kyp=n*Ky+[R.].
DEFINITION. Set £p=rn*D—D*—R,. Define
S(D)=lim sup UT#Ep, 7))~ N#Ep, 1))/ T(D, 7)1
Note that [Epl=r*(Ky+[Dl)— (Kp+[D*).
Now we state our defect relation for singular divisors.

THEOREM 4. Let W be o projective algebraic manifold of dimension n and D
an effective divisor on W. Assume that k(Kw+D, W)y=n. Let f:C'—>W be a
non-degenerate holomorphic map. Then

(21) o(D)+y:(D) ={lim sup [— T(Ky, v)/T(D, )} +S(D) .

r—4c0

PROOF. Letting L==*Ky-[D]), we apply Theorem 2 to the map f: C*—W*
and D*, where = : W*—W is a desingularization of D as in (20). Then

T7(D*, 7)— N;(D*, 1)+ Ny 5 (r) < — T5{Kyv, 7) +O(log T (z*(Kw+D), 7))
holds for r¢ E. Using Lemma 2, we obtain
Ni(r)=Ny,7(r)+ Ny (Be, 1)
T Kye, 1) =T (z*Ky, v)+ T#{Be, 1)

Therefore,
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T(D, r)—N(D, )+ Ny(r)< ~ T(Ky, r)+Ollog T(Kyy+D, 7))+ T#(Ep, )~ N7 (Ep, 7)

Here we use Lemmas 7, 8 freely. This gives the defect relation (20) similarly as
in the proof of Theorem 8. Q.E.D.

COROLLARY. Under the hypothesis of Theorem 4, if &{KwyetD*, W¥)=n, then
we have
aD)<1.

PROOF. As in the above proof, by putting L=Ky++[D*], we obtain
TD,r)—=ND,r)+Np;(r)£—T(Ky, r)+O0log T (L, 7))+ T#Ep, ¥) — N (z*D—D*,7) .
Noting that Ny ;(r)=0 and N;(z*D—D* r)=0, we get by passing to the limit,
§(D) £ {—T{Kw, )+ 0Qog THL, 1))+ T#Ep, N} TD, 7).
Suppose that ¢(D)=1, then we have
T(D, r)+T(Kyw, v) —T(Ep, 1) =0(log THL, 7)),
from which follows
T3#L, r)<O0(log T#(L, 7)) .

By (5}, we see that T'7(L, r)=T;(Ky++ D* r)>+ as r—+co, a contradiction.

Q.E.D.

Ezample 2. Let W=P, and D; a hypersurface of degree d;, for i=1,---, kL.
Put D=D;+---+D, and d=d,+---+d,. Then our defect relation bhecomes

3D+ < ”;1 Sy,
and
¥ d,3(D) <n+1+dS(D) .

=1

Now we see the process of the desingularization (20) precisely. We can find
a sequence of monoidal transformations =; : W,_,—~W,_, with non-sigular centers
Ciy, for i=1,-.-,1 such that

(i) We=W, W,=W* and z=rj0-+ 0m,

(ii) Dy=D and let D,=the support of =¥(D;_,),

(iii) D,=D* has simple normal crossings.
We use the following notations: D;=the strict transform of D;_;, by =;; E;=the
exceptional locus of =z, i.e., z73(C;-y); d;=the codimension of C;_, in W..,; v;=the
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multiplicity of the singular locus of D, along C;_,.
Then we have
D;=D;+E;, 7¥(Diy)=D;+v:E;,
Ky, =rHKw,_)+@:—1E].
Therefore
(22) Ky, +[Di]=r¥ Ky, ,+[Di-1))+ 0:—vi)[E] .

Let T;==T0* * * 05110 We put E"1,=7Z'3<(E¢) for 1§7;§l'—1 and E(:El.

Thus we have

Consequently, we obtain

PrROPOSITION 4.

SIS, lim 5up Llss— 0 T, )~ Ny, 7}/ T(D, 1]

=40

COROLLARY. For y€ R, denote by y+ max {y,0}. We have
H e
(23) SiD)= Zl {vs—a;)* lim sup [T;(E;, v)/T(D, 1)] .
= 700
DEFINITION. We say that D has quasi-negligible singularities if 9,=y; holds
for i=1,---,1 ([10]).
COROLLARY. If D has quasi-negligible singularities, then
S(D)=0,
and the defect relation (21) becomes the usual form
D) +1(D) éﬁmfup [~ T(Ky,v)/T(D,1)].

Examples of quasi-negligible singularities. (i) Normal crossing is quasi-negligi-
ble, {ii) a curve has quasi-negligible singularities if and only if its singularities are
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only ordinary double points, (iii) the isolated singularity w$+-.-+wi=0 is quasi-
negligible if d<mn, (iv) on surfaces the singularity defined by wf+wj+wi=0 (type
A;) is quasi-negligible.
PROPOSITION 5 (cf. litaka [5], Lemma 3). We have the relation
E(KW*_*"D*) W*) é’C(KW_*_D} W) .
Proor. Let I';=Ky,+[D;]. It suffices to prove
(24) fC(Fi, Wi) é”(ri—ly Wi‘l) s
for each ¢. By (22), we have I'i=rxFfI",_)+@:;—v)lE]. I (§;—»)<0, the in-
equality (24) is obvious. If (6;—wv;)>0, it suffices to prove when x([";, W;)=0. For
an effective divisor X ¢|mI;], we have Z=nr.(X)c|ml;_1]. So X—z}Z)~(5;—v:)E;.
Since E; is exceptional, we get X=x¥(2)+ (6;—v,)E;. Therefore the map m;:[ml’;|—
|mI;_,| is injective. Obviously this map is surjective. Therefore in this case we
obtain dim HYW,;, O(mI))=dim H*(W,_,, O{mI;—))). This proves (24). Q.E.D.
COROLLARY ([10]). If D has quasi-negligible singularities, then
(Ky++D*, WH)=k(Ky+D, W) .
REMARK. For related topics, see [12].

Finally, we estimate the term S(D) for some singular plane curves D.

Example 3. Let D be a curve of degree d in P, which has only ordinary
singular points z; with multiplicity »; (with distinet v; tangent) for 4=1,.--,I. In
this case the desingularization z: W*->P, of D consists of blowing ups of each z..
Put E;, = z"'(z;) and let D be the strict transform of D by =. Then D*= D+
E+---+E,. Let h be the least degree such that there exists a curve C of
degree h which has z; as a point of multiplicity at least v;,—2. If h<<d—3, then
£(Kp+D*, W*)=2. In fact, by the assumption, we see that n*CzC’%—i‘é (v;—2)E;
with a curve C’. Hence from (22)

7*C+({d—38—h)r*He | Kyt D*|,
for any line H in P,, which shows that x(Kup«+D¥, W* 2k (H, P,)=2.
Let f: C*—P, be a non-degenerate holomorphic map. Then

1

RT(H, v)=T(C,7)=Tsz*C,r)=THC, 1)+ X wi—2) T{E;, 1)

i=1

where f=nz"1of as before. Therefore
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S (i —2) T (B, 7) <hT(H, 7) +0(1) .

?

bt

Noting that T(D,r)=dT{H, r), this implies

IA
M~

S(D) (i —2){lim sup [THE;, )]/ T(D, )T}

=1

[l

A
SRS

Thus we obtain the following defect relation

3+h

oD +nD)= ]

If D consists of irreducible components D;, degree d; for ¢=1,---,k. Then
k
Z:ldﬁ(Di)'!—h(H) <3+h.

Example 4. Let D be a curve of degree 4 in P, with one cusp. We represent
the desingularization as follows.

pP,= W< W lc W2 X
D D, b,
IA E; E;

3

W= W+
D,
3

=2 n=2 V=

In this case it can be shown that «(Kp-+D* W*)=2. Let f:C?*—P, be a non-
degenerate holomorphic map. Then we obtain the following defect relation

6(D)+r1(D)§% .

First we note that E,—2E, is effective, and then by (3)
2T (Es, r) ST (Ey, 7)+0(1) -

Let H, be a line which passes through the cusp. Then n*H,=Z+E,, with a curve
Z on W*. It follows that

T#Eh, r) ST(H, v)+0Q) .
Putting these together, we obtain
2TJ=(E~‘33 7‘) —gT(HCb /r) +0(l) .
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Since T(D,r)=4T(H,, r), this implies

We

[1]
[2]
[3]
[4]
[5]

161
{71

[8]
£91

[10]
f11]

[12]
[13]

{14]

SID)lim sup [T, (s, 7)/T(D, r)]_s_é .

obtain the desired result from Example 2.

REMARK. These examples also follow from Theorem 5.2 in Shiffman [14].
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