Defect relations for equidimensional holomorphic maps

By Fumio SAKAI

(Communicated by S. Iitaka)

The purpose of this paper is to state defect relations for equidimensional holomorphic maps from a ball in C^n into a projective algebraic manifold of dimension n, generalizing results of Carlson and Griffiths [1].

Denote by B[R] the ball of radius R $(0 < R \le +\infty)$ in \mathbb{C}^n . Let W be a projective algebraic manifold of dimension n. We shall consider holomorphic maps $f: B[R] \to W$. We assume f to be non-degenerate in the sense that the Jacobian of f does not vanish identically. For an effective divisor D on W, the defect $\delta(D)$ is defined by

$$\delta(D) = 1 - \limsup_{r \to R} \left[N(D, r) / T(D, r) \right],$$

where N(D,r) is the counting function for D and T(D,r) is the order function for f with respect to the associated line bundle [D] (see § 2). Then $\delta(D) \leq 1$, and $\delta(D) = 1$ if f(B[R]) does not meet D. Further if $T(D,r) \to +\infty$ as $r \to R$, we have $0 \leq \delta(D)$. In case $R = +\infty$, the inequality $0 \leq \delta(D) \leq 1$ always holds. If D consists of irreducible divisors D_1, \dots, D_k , then

$$\sum\limits_{i=1}^k \{ \liminf_{r \to R} \left[\left. T(D_i, r) \middle/ T(D, r) \right] \right\} \delta(D_i) \! \le \! \delta(D)$$
 .

We say that D has simple normal crossings if each D_i is non-singular and D has normal crossings.

Let L be a line bundle on W. For any positive integer m, we mean by mL the tensor product $L^{\otimes m}$. We employ the notion of L-dimension $\kappa(L,W)$ of W introduced by Iitaka [4] (see §1, for the definition). Roughly speaking $\kappa(L,W)$ is the polynomial order of dim $H^0(W,\mathcal{O}(mL))$ as a function of m. In particular, $\kappa(L,W)=n$ if and only if

$$\lim \sup_{m \to +\infty} m^{-n} \dim H^0(W, \mathcal{O}(mL)) > 0.$$

For a divisor D, we put $\kappa(D, W) = \kappa([D], W)$.

We shall prove the following defect relation in §4.

THEOREM. Let W be a projective algebraic manifold of dimension n and let $f: B[R] \rightarrow W$ be a non-degenerate holomorphic map. Let D be an effective divisor on W. Assume that D has simple normal crossings and $\kappa(K_W + D, W) = n$, where K_W is the canonical bundle of W. Then we have

$$\delta(D) \leq \limsup_{r \to R} \frac{-T(K_w, r)}{T(D, r)} + \frac{1}{\lambda(D)}$$

where

$$\lambda(D) = \liminf_{r \to R} \left[\ T(D, \ r) / \text{log} \ \frac{1}{(R-r)^n} \ \right].$$

Here if $R=+\infty$, we understand that $\lambda(D)=+\infty$, and this result was announced in [11]. Moreover, we shall see that either if $R=+\infty$, or if $\lambda(D)=+\infty$ in case $R<+\infty$, the strict inequality $\delta(D)<1$ holds. So there is no non-degenerate holomorphic map which omits D (cf. [10]). In case $R=+\infty$, $D=D_1+\cdots+D_k$ and each D_i belongs to the complete linear system |L|, where L is a positive line bundle such that $kL+K_W$ is also positive, the above defect relation was first obtained by Carlson and Griffiths [1].

COROLLARY. Let $f: B[R] \to P_n$ be a non-degenerate holomorphic map. Let H_1, \dots, H_k be hyperplanes in general position in P_n . Then

$$\sum_{i=1}^k \delta(H_i) \leq n+1+\frac{1}{\lambda}$$
,

where $\lambda = \liminf_{r \to R} \left[T(H, r) / \log \frac{1}{(R-r)^n} \right]$, with the hyperplane bundle H.

For n=1, k=1, this result was given by Nevanlinna in [7], [8].

In §5, we shall deal with the case of singular divisors. In the above theorem, if the divisor D has general singularities, we must add a remainder term S(D) depending on the singularities of D, to the right hand side of the defect relation. After the author had written this paper, he learned that Shiffman [14] has also obtained a defect relation for singular divisors.

1. Notations and preliminaries. Let W be a projective algebraic manifold of dimension n. Cover W by coordinate neighborhoods $\{U_{\alpha}\}$ with holomorphic coordinates $(w_{\alpha}^{1}, \ldots, w_{\alpha}^{n})$ in U_{α} . A holomorphic line bundle is given by transition functions $\{l_{\alpha\beta}\}$ with respect to $\{U_{\alpha}\}$. Let L' be a line bundle given by $\{l'_{\alpha\beta}\}$. We define $L\pm L'$ to be the line bundle determined by $\{l_{\alpha\beta}l'_{\alpha\beta}\}$. A holomorphic section σ of L is given by holomorphic functions σ_{α} in U_{α} satisfying $\sigma_{\alpha}=l_{\alpha\beta}\sigma_{\beta}$ in $U_{\alpha}\cap U_{\beta}$. Denote

by $H^0(W, \mathcal{O}(L))$ the linear space consisting of all holomorphic sections of L. Moreover a holomorphic section σ defines a divisor (σ) on W. Denote by |L| the complete linear system of all effective divisors (σ) for $\sigma \in H^0(W, \mathcal{O}(L))$.

A metric in L is a collection of positive C^{∞} -functions a_{α} in U_{α} such that $a_{\alpha} = |l_{\alpha\beta}|^2 a_{\beta}$ in $U_{\alpha} \cap U_{\beta}$. Denote by d^c the real differential operator $(\sqrt{-1}/4\pi)(\bar{\partial}-\partial)$. Then the real (1,1)-form $dd^c \log a_{\alpha}$ belongs to the Chern class $c_1(L) \in H^2(W, \mathbb{R})$ (de Rham cohomology). A real (1,1)-form $\omega = (\sqrt{-1}/2\pi) \sum_{i,j} g_{ij} dw_{\alpha}^i \wedge d\overline{w}_{\alpha}^j$ is positive (semi-positive), written $\omega > 0$ ($\omega \ge 0$), if the Hermitian matrix (g_{ij}) is positive definite (positive semi-definite) on W. We shall say that L is positive if there exists a positive real (1,1)-form representing $c_1(L)$. The length $\|\sigma\|$ of a holomorphic section σ of L is defined by $\|\sigma\|^2 = |\sigma_{\alpha}|^2/a_{\alpha}$ in U_{α} with respect to a metric $\{a_{\alpha}\}$ in L.

The canonical bundle K_W of W is defined by transition functions $k_{\alpha\beta} = \det (\partial w^i_{\beta} / \partial w^j_{\alpha})$. A volume form Ω is an (n, n)-form given by a metric $\{b_{\alpha}\}$ of K_W . Namely we can write

(1)
$$\mathcal{Q} = b_{\alpha} \prod_{i=1}^{n} (\sqrt{-1}/2\pi) dw_{\alpha}^{i} \wedge d\overline{w}_{\alpha}^{i}, \text{ in } U_{\alpha},$$

where $b_{\alpha}>0$ and $b_{\alpha}=|k_{\alpha\beta}|^2b_{\beta}$ in $U_{\alpha}\cap U_{\beta}$.

Let D be a divisor on W. Denote by [D] the associated line bundle. We say that D has normal crossings if D is given by $w_1 \cdots w_j = 0$ with local coordinates (w_1, \dots, w_n) . If moreover each irreducible component of D is non-singular, we say that D has simple normal crossings.

For a line bundle L on W, the L-dimension $\kappa(L,W)$ of W is defined as follows (see Iitaka [4]). If there is a positive integer m_0 such that $\dim H^0(W,\mathcal{O}(m_0L))>0$, we have the following estimate

$$\alpha m^{\kappa} \leq \dim H^0(W, \mathcal{O}(mm_0L)) \leq \beta m^{\kappa}$$
,

for any large integer m, where α , β are positive constants and κ a non-negative integer. Define $\kappa(L,W)=\kappa$. If dim $H^0(W,\mathcal{O}(mL))=0$ for every integer m, put $\kappa(L,W)=-\infty$. For a divisor D, we define $\kappa(D,W)$ to be $\kappa([D],W)$. Note that $\kappa(L,W)$ takes one of the values $-\infty$, $0,1,\cdots,n$. In particular, $\kappa(L,W)\geq 1$ if and only if there exists a positive integer m such that dim $H^0(W,\mathcal{O}(mL))\geq 2$. Moreover the equality $\kappa(L,W)=n$ holds if and only if

$$\limsup_{m\to +\infty} m^{-n} \dim H^0(W,\mathcal{O}(mL)) > 0.$$

The Kodaira dimension $\kappa(W)$ of W is by definition, $\kappa(K_{\overline{W}}, W)$.

LEMMA 1. Let L be a line bundle on W satisfying $\kappa(L, W) = n$ and L_0 an arbitrary line bundle on W. Then dim $H^0(W, \mathcal{O}(mL-L_0)) > 0$ for a large integer m.

PROOF. Take a non-singular hyperplane section H on W. Then $m[H]-L_0-K_W$ is positive for every large integer m. By Kodaira vanishing theorem, there is a large integer m_0 such that dim $H^0(W, \mathcal{O}(m_0[H]-L_0))>0$. On the other hand, we have shown in [10], Lemma 2, that dim $H^0(W, \mathcal{O}(m_1L-[H]))>0$ for a large integer m_1 . Thus, letting $m=m_0m_1$, we obtain dim $H^0(W, \mathcal{O}(mL-L_0))>0$. Q.E.D.

Let $z=(z_1, \dots, z_n)$ be coordinates of \mathbb{C}^n . We shall use the following notations (cf. [1], [2]):

$$\begin{split} \|z\|^2 &= |z_1|^2 + \dots + |z_n|^2 \,, \\ \varphi &= dd^c \|z\|^2 \,, \qquad \Phi = \varphi^n \,, \\ \psi &= dd^c \log \|z\|^2 \,, \\ \eta &= d^c \log \|z\|^2 \wedge \psi^{n-1} \,, \\ B[r] &= \{z \in C^n | \|z\| < r\} \,, \\ \partial B[r] &= \{z \in C^n | \|z\| = r\} \,, \\ X[r] &= X \cap B[r] \,, \qquad \text{for a subset } X \text{ in } C^n. \end{split}$$

DEFINITION. For an integrable function g on $\partial B[r]$, define

$$\mathfrak{M}_r(g) = \int_{\partial B[r]} g \cdot \eta$$
.

It is shown in [1] that $\mathfrak{M}_r(1)=1$.

For a function g(r) on B[R], r < R, we mean by O(g(r)), any function h(r) such that the quotient |h(r)|/|g(r)| is bounded as $r \to R$.

2. The first main theorem. Let W be a projective algebraic manifold of dimension n. We shall consider equidimensional holomorphic maps $f: B[R] \to W$, with $0 < R \le +\infty$. We say that f is non-degenerate if the Jacobian of f does not vanish identically. If f is non-degenerate, denote by R_f the ramification divisor of f defined by the Jacobian of f.

DEFINITION. Let $f: B[R] \to W$ be a non-degenerate holomorphic map. Let D be a divisor on W and let σ be a holomorphic section of [D] which defines D. For 0 < r < R, define

$$N(D,r) = \int_0^r \left(\int_{f^*D[t]} \phi^{n-1} \right) t^{-1} dt$$
, (counting function)

$$m(D, r) = \mathfrak{M}_r(\log (1/f^* || \sigma ||))$$
,

$$N_{\scriptscriptstyle 1}(r) = \int_{\scriptscriptstyle 0}^r \!\! \left(\int_{\scriptscriptstyle R_f[t]} \!\! \phi^{n-1}
ight) \! t^{-1} dt$$
 , (ramification term)

where f^*D is the divisor on C^n defined by $\sigma \circ f$.

In what follows in this paper, we assume that $0 \notin f^*D$ and $0 \notin R_f$. Otherwise, some modifications are needed in the above definition. If D is an effective divisor, by multiplying a metric in [D] by a constant, we can make $\|\sigma\| \le 1$. Then $\log (1/\|\sigma\|) \ge 0$, from which follows that $m(D, r) \ge 0$.

DEFINITION. Let L be a line bundle on W and ω a real (1, 1)-form representing the Chern class $c_1(L)$. Let $f: B[R] \rightarrow W$ be a holomorphic map. For 0 < r < R, define

$$T(L,r)\!=\!\int_0^r\!\!\!\left(\int_{B[t]}f^*\omega\wedge\phi^{n-1}\right)\!\!t^{-1}\!dt\qquad ({\rm order\ function})\ .$$

For a divisor D, put T(D, r) = T([D], r). Note that T(L, r) is well defined up to an O(1) term ([1], p. 573).

THEOREM 1 (First Main Theorem, see [1], [2] for a proof). Let D be a divisor on W and let $f: B[R] \rightarrow W$ be a non-degenerate holomorphic map. Then

(2)
$$m(D, r) + N(D, r) = T(D, r) + O(1)$$
 (0 < r < R)

where O(1) is a constant depending on D but not on r.

COROLLARY. If D is effective, then

(3)
$$N(D, r) \le T(D, r) + O(1)$$
.

PROOF. Since D is effective, as noted above, we can make $m(D, r) \ge 0$.

LEMMA 2. Let L_1 , L_2 be line bundles on W. Suppose that dim $H^0(W, \mathcal{O}(L_1-L_2)) > 0$. Let $f: B[R] \to W$ be a non-degenerate holomorphic map. Then we have

$$T(L_2, r) \leq T(L_1, r) + O(1)$$
.

PROOF. By hypothesis, there exists an effective divisor $Z \in |L_1 - L_2|$. Therefore we get $0 \le N(Z, r) \le T(L_1 - L_2, r) + O(1)$, which implies $T(L_2, r) \le T(L_1, r) + O(1)$.

In case $R = +\infty$, we obtain the following

PROPOSITION 1. Let D be an effective divisor on W. Let $f: \mathbb{C}^n \to W$ be a non-degenerate holomorphic map such that $f(\mathbb{C}^n) \cap D \neq \emptyset$. Then

$$\liminf_{r\to+\infty} [T(D,r)/\log r] > 0.$$

PROOF. Because $f(C^n) \cap D \neq \emptyset$, we have $f^*D \cap B[t_0] \neq \emptyset$, for a large t_0 . Hence

It follows that

$$N(D, r) \geq c_1 \log r + c_2$$
,

where c_2 is a constant. Combining this with (3), we obtain the desired inequality.

COROLLARY. Let L be a line bundle on W such that $\kappa(L, W) \ge 1$. Let $f: \mathbb{C}^n \to W$ be a non-degenerate holomorphic map. Then

(5)
$$\liminf_{r \to +\infty} [T(L, r)/\log r] > 0.$$

PROOF. Since $\kappa(L, W) \geq 1$, there is a positive integer m such that $\dim H^0(W, \mathcal{O}(mL)) \geq 2$. So there are two linearly independent sections $\sigma_0, \sigma_1 \in H^0(W, \mathcal{O}(mL))$. Choosing constants c_1, c_2 , we can find an effective divisor $Z = (c_0\sigma_0 + c_1\sigma_1)$ with $f(C^n) \cap Z \neq \emptyset$. The assertion follows from Proposition 1. Q.E.D.

Let Ω be a volume form on W. For a non-degenerate holomorphic map $f: B[R] \to W$, define a function ξ on B[R] by $f^*\Omega = \xi \cdot \Phi$.

PROPOSITION 2. We have

(6)
$$T(K_{W}, r) + N_{1}(r) = \mathfrak{M}_{r}(\log \sqrt{\xi}) + O(1)$$
.

PROOF. Writing Ω in the form (1), we obtain the following current equation $dd^{\circ} \log \xi = R_f + f^* dd^{\circ} \log b_{\alpha}.$

By integrating this twice, we obtain (6) (see [1], for details).

3. The second main theorem. In this section, we shall prove the following

THEOREM 2 (Second Main Theorem). Let W be a projective algebraic manifold of dimension n. Let D_1, \dots, D_k be non-singular divisors on W such that $D = D_1 + \dots + D_k$ has only normal crossings. Let L be a line bundle on W such that $\kappa(L, W) = n$ and let $f: B[R] \to W$ be a non-degenerate holomorphic map. Then

Case 1, $R < +\infty$. For given $\nu > 1$, $\beta > 0$, the inequality

(7)
$$T(D, r) - N(D, r) + N_1(r) \leq -T(K_W, r) + O(\log T(L, r)) + O(1) + \frac{1}{2} (\nu + 1) (\beta + 1) \log \frac{1}{(R - r)^n}$$

holds for $r \notin E$, where E is a union of intervals in [0,R) such that $\int_E d(1/(R-r)^\beta) < +\infty$.

Case 2, $R = +\infty$. For given β , $0 < \beta < 1$, the inequality

(8)
$$T(D, r) - N(D, r) + N_1(r) \le -T(K_W, r) + O(\log T(L, r))$$

holds for $r \notin E$, where E is a union of intervals in $[0, +\infty)$ such that $\int_E d(r^{\beta}) < +\infty$.

PROOF (For background, see Carlson and Griffiths [1], Kodaira [6]). It suffices to prove when L+[D] is positive. In fact, for a line bundle L_0 such that $L_0+[D]$ is positive, since $\kappa(L,W)=n$, we obtain by Lemmas 1, 2,

$$T(L_0, r) \leq O(T(L, r)) + O(1)$$
.

Thus, if the inequalities (7), (8) are valid for L_0 , these are valid for L.

Assume now that L+[D] is positive. Choose metrics $\{a_{i,\alpha}\}$ of $[D_i]$, for each i and let $\{\prod_{i=1}^k a_{i,\alpha}\}$ be a metric of [D] with respect to an open covering $\{U_\alpha\}$ of W. Put $\omega_i = dd^{\alpha} \log a_{i,\alpha}$, for each i and $\omega_D = \omega_1 + \cdots + \omega_k$. Then we can find a real (1,1)-form ω representing $c_1(L)$ such that $\omega + \omega_D > 0$.

DEFINITION. Let σ_i be a holomorphic section of $[D_i]$ which defines D_i , for $i = 1, \dots, k$. Define

$$\rho_i = \rho_{D_i} = \frac{1}{\|\sigma_i\|^2 (\log \|\sigma_i\|^2)^2}, \quad \text{for } i = 1, \dots, k.$$

We put $\rho_D = \prod_{i=1}^k \rho_i$ and $\rho = c\rho_D$, for a suitable constant c.

DEFINITION. Set

$$\tilde{\omega} = \omega + dd^c \log \rho$$
,

$$\tilde{T}(r)\!=\!\int_0^r\!\!\!\left(\int_{B\lceil t\rceil}\!f^*\tilde{\omega}\wedge\phi^{n-1}\right)\!t^{-1}\!dt\;.$$

Lemma 3. Let Ω be a volume form on W. Letting the constant c sufficiently small, we have

$$\widetilde{\omega}^n > \rho \Omega$$
.

PROOF. By definition

$$dd^c \log \rho = dd^c \log \rho_D = \omega_D - \sum_{i=1}^k \left(1/\log \frac{1}{\|\sigma_i\|} \right) \omega_i + \sum_{i=1}^k \tau_i$$
,

where $\tau_i = [\log \|\sigma_i\|^2]^{-2} d \log (1/\|\sigma_i\|) \wedge d^c \log (1/\|\sigma_i\|)$. We can make

$$\omega_0 = \omega + \omega_D - \sum_{i=1}^k \left(1/\log \frac{1}{\|\sigma_i\|} \right) \omega_i > 0,$$

by multiplying the metrics $\{a_i\}$ by constants such that $\|\sigma_i\|$ are sufficiently small for $i=1,\dots,k$, because $\omega+\omega_D>0$. Note that $\tau_i\geq 0$ and $\widetilde{\omega}=\omega_0+\sum\limits_{i=1}^k\tau_i$. Since $1/\rho_D>0$ on W-D, it follows that $(1/\rho_D)\widetilde{\omega}^n>0$ on W-D. Consider a point $x\in D$. Because D has simple normal crossings, we may assume that $x\in D_i$, for $i=1,\dots,j$ and $x\notin D_i$ for $i=j+1,\dots,n$ and we can choose local coordinates (w_1,\dots,w_n) centered at $x\in D$ such that $D_i=\{w_i=0\},\ i=1,\dots,j$ at x. Hence

$$\tau_i/\rho_i = (\sqrt{-1}/\pi a_i(x))dw_i \wedge d\overline{w}_i$$
, $i=1,\dots,j$.

Thus

$$(1/\rho_D)\widetilde{\omega}^n = \frac{\binom{n}{j}j!\,\omega_0^{n-j}}{\rho_{j+1}\cdots\rho_k}(\tau_1/\rho_1)\wedge\cdots\wedge(\tau_j/\rho_j)>0$$
, at x .

Therefore we get $(1/\rho_D)\tilde{\omega}^n > 0$ on W. Taking the constant c sufficiently small, we obtain $(1/\rho)\tilde{\omega}^n > \Omega$. Q.E.D.

Lemma 3 gives $(f^*\tilde{\omega})^n \geq f^*(\rho\Omega) = (\rho \circ f) \xi \Phi$, where ξ is defined as in Proposition 2. If we write $f^*\tilde{\omega} = \sum_{i,j} h_{ij}(\sqrt{-1}/2\pi)dz_i \wedge d\bar{z}_j$, then $(f^*\tilde{\omega})^n = (\det(h_{ij}))\Phi$. Since $\tilde{\omega}$ is semi-positive, it follows that trace $(h_{ij}) \geq n(\det(h_{ij}))^{1/n}$. Hence

(9)
$$f^*\widetilde{\omega} \wedge \varphi^{n-1} = (\operatorname{trace}(h_{ij})) \Phi \geq n(\det(h_{ij}))^{1/n} \Phi \geq n((\rho \circ f)\xi)^{1/n} \Phi.$$

DEFINITION. Set

$$egin{align} &\varPsi(r)\!=\!\int_{B^{[r]}}(n(\rho\circ f)\xi)^{1/n}arPhi\ , \ &\mathcal{Z}(r)\!=\!\int_{0}^{r}\varPsi(t)t^{-(2n-1)}dt\ , \ &\mu(r)\!=\!2n\mathfrak{M}_{r}(n((\rho\circ f)\xi)^{1/n})\ . \end{split}$$

LEMMA 4. We have

$$d\Psi(r)/dr = r^{2n-1}\mu(r)$$
 ,

$$d\mathcal{Z}(r)/dr = r^{-(2n-1)} \Psi(r)$$
.

PROOF. An easy computation shows that

$$\Phi = \varphi^n = \frac{nd\|z\|^2 \wedge d^c\|z\|^2}{\|z\|^2} \wedge \varphi^{n-1}$$
 ,

from which we have by Fubini's theorem,

$$\Psi(r) = 2n \int_0^r \left(\int_{\partial B\lceil t \rceil} (n((\rho \circ f)\hat{\xi})^{1/n}) d^c ||z||^2 \wedge \varphi^{n-1} \right) t^{-1} dt.$$

Since $\eta = d^c \log ||z||^2 \wedge \psi^{n-1} = ||z||^{-2n} d^c ||z||^2 \wedge \varphi^{n-1}$ on $\partial B[t]$, we obtain

$$\Psi(r) = \int_{a}^{r} \mu(t) t^{2n-1} dt,$$

which implies the first equality in Lemma 4. The second equality is clear.

Next we shall prove the following inequality.

(10)
$$\Xi(r) \leq T(L, r) + T(D, r) + O(1)$$
.

By integrating (9) twice, we get $\mathcal{Z}(r) \leq \tilde{T}(r)$. Using the fact

$$\tilde{\omega} = \omega + \omega_D - \sum_{i=1}^k dd^c \log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right)^2$$
,

we obtain

$$\begin{split} T(L,r) + T(D,r) - \tilde{T}(r) &= \sum_{i=1}^k \int_0^r \left(\int_{B[t]} dd^c \log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right)^2 \wedge \phi^{n-1} \right) t^{-1} dt \\ &= \sum_{i=1}^k \int_0^r \left(\int_{\partial B[t]} d^c \log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right)^2 \wedge \phi^{n-1} \right) t^{-1} dt \\ &= \sum_{i=1}^k \int_{B[\tau]} d \log \|z\|^2 \wedge d^c \log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right) \wedge \phi^{n-1} \\ &= \sum_{i=1}^k \int_{B[\tau]} d \log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right) \wedge d^c \log \|z\|^2 \wedge \phi^{n-1} \\ &= \sum_{i=1}^k \mathfrak{M}_r \left(\log \left(\log \left(\frac{1}{\|\sigma_i\|^2} \right) \right) \right). \end{split}$$

Making the metrics as $\|\sigma_i\| \leq e^{-1}$, by multiplying again by constants, the right hand side is non-negative. Combining these inequalities, we obtain (10).

We need the following

LEMMA 5 (Nevanlinna [7], p. 253). Let g(t), h(t) and $\alpha(t)$ be positive, continuous and increasing functions for $0 < t < +\infty$ such that g'(t) and h'(t) are continuous and $\int_{-\infty}^{+\infty} dt/\alpha(t) < +\infty$. Then the inequality

$$g'(t) \leq h'(t) \alpha(g(t))$$

holds for $r \notin E$, where E is a union of intervals in $[0, +\infty)$ such that $\int_{\mathbb{R}} dh < +\infty$.

PROPOSITION 3. Case 1, $R < +\infty$. For given $\nu > 1$, $\beta > 0$, the inequality

(11)
$$\mu(r) \leq (R-r)^{-(\nu+1)(\beta+1)} R^{(\nu-1)(2n-1)} \Xi(r)^{\nu^2}$$

holds for $r \notin E$, $E \subset [0, R)$ and $\int_E d\langle 1/(R-r)^{\beta} \rangle < +\infty$.

Case 2, $R = +\infty$. For given β , $0 < \beta < 1$, the inequality

(12)
$$\mu(r) \leq \mathcal{Z}(r)^{\nu^2}, \qquad \nu = (4n-2)/(2n-2+\beta)-1$$

holds for $r \notin E$, $E \subset [0, +\infty)$ and $\int_E d(r^\beta) < +\infty$.

PROOF. In case $R < +\infty$, put $s = (R - r)^{-1}$. Then Lemma 4 implies

$$d\Psi(s)/ds = s^{-2}r^{2n-1}\mu(s)$$
, $dE(s)/ds = s^{-2}r^{-(2n-1)}\Psi(s)$,

where we write G(s) = G((sR-1)/s) for $G = \Psi$, Ξ and μ . Two usages of Lemma 5 yield, if we put $h(s) = s^{\beta}/\beta$, $\alpha(s) = s$ and first $g(s) = \Psi(s)$

$$d\Psi/ds \leq s^{\beta-1} \Psi^{\nu}$$
,

and then $g(s) = \mathcal{E}(s)$

$$d\mathcal{Z}/ds \leq s^{\beta-1}\mathcal{Z}^{\nu}$$
.

outside E. Combining these, we obtain (11).

In case $R=+\infty$, letting $h(r)=r^{\beta}/\beta$, $\alpha(r)=r^{\nu}$, $\nu=(4n-2)/(2n-2+\beta)-1$, we can similarly obtain (12) (cf. [6]).

LEMMA 6. Case 1, $R < +\infty$. The inequality

(13)
$$\mathfrak{M}_{r}(\log \sqrt{(\rho \circ f)\xi}) \leq \{(\nu+1)(\beta+1)/2\} \log (1/(R-r)^{n}) + O(\log T(L,r)) + O(1)$$

holds outside E.

Case 2, $R = +\infty$. The inequality

(14)
$$\mathfrak{M}_r(\log \sqrt{(\rho \circ f)} \xi) \leq O(\log T(L, r))$$

holds outside E.

PROOF. Case 1. The left hand side of (13)

$$\begin{split} &= (n/2) \mathfrak{M}_r(\log n ((\rho \circ f) \xi)^{1/n}) - (n/2) \log n \\ &\leq (n/2) \log \left(\mathfrak{M}_r(n ((\rho \circ f) \xi)^{1/n}) \right) \\ &\text{ (by coneavity of logarithmic function)} \\ &= (n/2) \log \mu(r) - (n/2) \log 2n \\ &\leq (n/2) (\nu + 1) (\beta + 1) \log (1/(R - r)) + O(\log T(L + D, r) + O(1) \\ &\text{ (by (10), (11))} \\ &\leq (n/2) (\nu + 1) (\beta + 1) \log (1/(R - r)) + O(\log T(L, r)) + O(1) \\ &\text{ (by Lemmas 1, 2)} \,. \end{split}$$

We can similarly prove Case 2.

Now we proceed to the proof of Theorem 2. We have by definition

$$\log \sqrt[4]{\rho} = \log \left(1/\|\sigma\|\right) - \log \left(\prod_{i=1}^k \log \left(1/\|\sigma_i\|\right)\right) + \log \sqrt[4]{c}/2.$$

It follows by integrating on $\partial B[r]$,

$$m(D,r)\!=\!\mathfrak{M}_r(\log\sqrt{\rho\circ f})+\mathfrak{M}_r(\log\,(\mathop{\textstyle\prod}_{i=1}^k\log\,(1/f^*\|\sigma_i\|)))+O(1)\ .$$

Using the concavity of logarithmic function and (3), we easily get

$$m(D, r) \leq \mathfrak{M}_r(\log \sqrt{\rho \circ f}) + O(\log T(D, r)) + O(1)$$
.

Combining this with (2), Proposition 2 and Lemma 6, we obtain Theorem 2.

Q.E.D.

4. Defect relations. Let W be a projective algebraic manifold of dimension n. Let $f: B[R] \rightarrow W$ be a non-degenerate holomorphic map.

DEFINITION. Let D be an effective divisor on W. Define the defect of D by

$$\delta(D) = 1 - \limsup_{r \to B} [N(D, r)/T(D, r)]$$
.

REMARK. It is clear that $\delta(D) \le 1$. In particular, if f omits D, then $\delta(D) = 1$. In case $\limsup_{r \to 0} T(D, r) = +\infty$, it follows from (2) that

$$\delta(D) = \liminf_{r \to R} [m(D, r)/T(D, r)]$$
,

from which follows $0 \le \delta(D) \le 1$. In case $R = +\infty$, the inequality $0 \le \delta(D) \le 1$ always holds. In fact if f omits D, we have seen that $\delta(D) = 1$ and if $f(B[R]) \cap D \ne \emptyset$, by Proposition 1, $T(D, r) \to +\infty$ as $r \to +\infty$ and then we have $0 \le \delta(D)$ from the above remark. If $D = D_1 + \cdots + D_k$ is the irreducible decomposition of D, we have shown

in [11] that

(15)
$$\sum_{i=1}^{k} \{ \liminf_{r \to R} [T(D_i, r)/T(D, r)] \} \delta(D_i) \leq \delta(D) .$$

DEFINITION. Let L be a line bundle on W. Define

$$\gamma_1(L) = \liminf_{r \to R} \left[N_1(r) / T(L, r) \right]$$
 ,

$$\lambda(L)\!=\! \liminf_{r\to R} \left[\, T\!\left(L,r\right)\!/\!\log \frac{1}{(R\!-\!r)^n} \, \right], \qquad \text{(in case } R\!<\!+\infty) \; .$$

For a divisor D, we put $\gamma_1(D) = \gamma_1([D])$ and $\lambda(D) = \lambda([D])$.

THEOREM 3 (Defect Relations). Let W be a projective algebraic manifold of dimension n. Let D_1, \dots, D_k be non-singular divisors on W such that $D=D_1+\dots+D_k$ has normal crossings. Assume that $\kappa(K_W+D,W)=n$. Let $f:B[R]\to W$ be a non-degenerate holomorphic map. Then

Case 1. $R < +\infty$.

(16)
$$\delta(D) + \gamma_1(D) \leq \{ \limsup_{r \to R} [-T(K_W, r)/T(D, r)] \} + (1/\lambda(D)).$$

Case 2, $R = +\infty$.

(17)
$$\delta(D) + \gamma_1(D) \leq \lim \sup_{r \to +\infty} \left[-T(K_W, r) / T(D, r) \right].$$

PROOF. Case 1. If $\lambda(D)=0$, the inequality (16) imposes no restriction on $\delta(D)$. So we may assume $\lambda(D)>0$ and then $T(D,r)\to +\infty$ as $r\to R$. Let $L=K_W+[D]$. Since $\kappa(L,W)=n$, by Lemmas 1, 2, we see that $T(L,r)\to +\infty$ as $r\to R$. Then by (7),

$$\begin{split} T(D,\,r) - N(D,\,r) + N_1(r) & \leq -T(K_{\rm W},\,r) + O(\log\,T(L,\,r)) + O(1) \\ & + \frac{1}{2} \langle \nu + 1 \rangle (\beta + 1) \,\log\,(1/(R - r)^n) \;, \end{split}$$

for $r \notin E$. Dividing this by T(D, r) and passing to the limit, we get

(18)
$$\delta(D) + \gamma_1(D) \leq (-T(K_W, r)/T(D, r)) + \frac{1}{2} (\nu + 1)(\beta + 1)(1/\lambda(D)) + O(\log T(L, r)/T(D, r)) + O(1/T(D, r)).$$

Given $\varepsilon > 0$, letting r sufficiently close to R, we may assume

$$(\log T(L,r))/T(L,r) < \varepsilon$$
.

Note that $T(L, r)/T(D, r) = (T(K_W, r)/T(D, r)) + 1$. Hence we obtain

$$\begin{split} \delta(D) + \gamma_1(D) \leq & (1 - \varepsilon c_1) \left(-T(K_W, r)/T(D, r) \right) + \varepsilon c_1 + c_2 (1/T(D, r)) \\ & + \frac{1}{2} (\nu + 1) (\beta + 1) (1/\lambda(D)) \ , \end{split}$$

where c_1 and c_2 are constants. Taking the limit as $\varepsilon \to 0$ and $r \to R$ $(T(D, r) \to +\infty)$ and letting $\nu \to 1$, $\beta \to 0$, we obtain (16).

We can similarly prove Case 2 (cf. [11]). Q.E.D.

COROLLARY. Under the hypothesis of Theorem 3, either if $R=+\infty$ or if $\lambda(D)=+\infty$ in case $R<+\infty$, then

$$\delta(D) + \gamma_1(D) < 1$$
.

PROOF. We prove the case in which $R < +\infty$. Assume that $\delta(D) + \gamma_1(D) \ge 1$. Then by (18), since $\lambda(D) = +\infty$, we have

$$T(D, r) \le -T(K_W, r) + O(\log T(L, r)) + O(1)$$

and then

$$T(L, r) \leq O(\log T(L, r)) + O(1)$$
.

Since $T(L, r) \to +\infty$ as $r \to R$, this is a contradiction.

REMARK. In case $R < +\infty$, if f omits D, then

$$\lambda(K_{\overline{w}}+D) \leq 1.$$

In fact, as in the proof of the above theorem, putting $\delta(D) = 1$, we obtain

$$T(L,r)\!\leq\!\frac{1}{2}(\nu+1)(\beta+1)\,\log\,(1/(R-r)^n)+\varepsilon c_1T(L,r)+c_2\,,$$

from which we have the assertion. Note that in this case, we have shown in [10] that $R < R_0$, where R_0 depends on W, D and $|J_f(0)|$ (the Jacobian of f).

Example 1. Let $W=P_n$ and D_i a non-singular hypersurface of degree d_i , for $i=1,\cdots,k$ such that $D=D_1+\cdots+D_k$ has normal crossings. Put $d=d_1+\cdots+d_k$. Let H be the hyperplane bundle of P_n . Then it is well known that $K_{P_n}=-(n+1)H$, $[D_i]=d_iH$ and [D]=dH. If d>n+1, clearly $K_{P_n}+[D]=(d-n-1)H$ is positive, and then $\kappa(K_{P_n}+D,P_n)=n$. Let $f:B[R]\to W$ be a non-degenerate holomorphic map. Our defect relation becomes

$$\delta(D) + \gamma_1(D) \leq \frac{n+1}{d} + (1/\lambda(D))$$
.

By (15), we get $d_1\delta(D_1) + \cdots + d_k\delta(D_k) \leq d\delta(D)$. Note that $\gamma_1(D) = \gamma_1(H)/d$, $\lambda(D) = d\lambda(H)$.

Putting these together, we obtain

$$\sum_{i=1}^k d_i \delta(D_i) + \gamma_1(H) \leq n + 1 + (1/\lambda(H))$$
.

If f omits D, then

$$\lambda(H) \leq 1/(d-n-1)$$
.

This is also a consequence of (19).

REMARK. As we have noted in [11], Theorem 3 holds under the hypothesis $\kappa(q_0K_W+q_1D_1+\cdots+q_kD_k,W)=n$, where q_0,\cdots,q_k are rational numbers. In fact, it suffices to put $L=q_0K_W+q_1[D_1]+\cdots+q_k[D_k]$ in the above proof. In particular, either if $R=+\infty$, or if $\lambda(D)=+\infty$ in case $R<+\infty$, the condition $\kappa(K_W+qD,W)=n$ implies that $\delta(D)< q$. If $\kappa(W)\geq 0$, then $\kappa(K_W+D,W)=\kappa(K_W+qD,W)$ for any positive rational number q (cf. [10], Lemma 5). Hence taking $q\to 0$, we conclude that $\delta(D)=0$.

- 5. Singular divisors. Let W be a projective algebraic manifold of dimension n and D an effective divisor (reduced) on W. In this section, we shall study the situation in which D has general singularities. For simplicity's sake, we shall consider a non-degenerate holomorphic map $f: C^n \to W$. We use a desingularization $\pi: W^* \to W$ of D satisfying
- (20) $\begin{cases} \text{(i)} & \pi \text{ is a composite of monoidal transformations,} \\ \text{(ii)} & \text{let } D^* = \text{the support of } \pi^*D, \text{ then } \pi: W^* D^* \to W D \text{ is biholomorphic,} \\ \text{(iii)} & D^* \text{ has simple normal crossings.} \end{cases}$

We want to apply Theorem 3 to the map $\tilde{f} = \pi^{-1} \circ f$. Even if f is holomorphic,

 \tilde{f} may be meromorphic. So we must prove Theorems 1 and 2 for meromorphic maps. This can be done along the line of Shiffman [13] and Noguchi [9]. Note that \tilde{f} is holomorphic outside an analytic subset $S(\tilde{f})$ of codimension ≥ 2 . Then, for a divisor Z^* on W^* , \tilde{f}^*Z^* becomes a divisor on C^* and the ramification divisor $R_{\tilde{f}}$ can be defined naturally. For a real (1,1)-form α representing the Chern class $c_1(L^*)$ of a line bundle L^* on W^* , the induced form $\tilde{f}^*\alpha$ is locally integrable on C^* (cf. [13]). So we can define the functions N, T and N_1 for \tilde{f} , and we denote these by

 $N_{\tilde{f}}$, $T_{\tilde{f}}$, $N_{1,\tilde{f}}$, respectively.

LEMMA 7. Let Z be a divisor on W. Then

$$N(Z,r) = N_{\tilde{f}}(\pi^*Z,r)$$
.

RROOF. This follows from the equation

$$f^*Z = \tilde{f}^*\pi^*Z$$
.

LEMMA 8. Let L be a line bundle on W. Then

$$T(L,r) = T_{\tilde{t}}(\pi^*L,r)$$
.

PROOF. Let ω be a real (1,1)-form representing $c_1(L)$. Then outside $S(\tilde{f})$, we have $f^*\omega = \tilde{f}^*\pi^*\omega$. So these are equivalent as currents in C^n .

Let R_{π} be the ramification divisor of π determined by the Jacobian of π . We can easily show the following

LEMMA 9.

$$R_f = R_{\tilde{f}} + \tilde{f} * R_{\pi}$$

$$K_{W^*} = \pi^* K_W + [R_{\pi}]$$
.

DEFINITION. Set $\mathcal{E}_D = \pi^* D - D^* - R_\pi$. Define

$$S(D) = \limsup_{n \to +\infty} \left[(T_{\hat{f}}(\mathcal{E}_D, r) - N_{\hat{f}}(\mathcal{E}_D, r)) / T(D, r) \right] \,.$$

Note that $[\mathcal{E}_D] = \pi^* (K_W + [D]) - (K_{W^*} + [D^*]).$

Now we state our defect relation for singular divisors.

THEOREM 4. Let W be a projective algebraic manifold of dimension n and D an effective divisor on W. Assume that $\kappa(K_W+D,W)=n$. Let $f: \mathbb{C}^n \to W$ be a non-degenerate holomorphic map. Then

(21)
$$\delta(D) + \gamma_1(D) \leq \{ \limsup_{r \to +\infty} [-T(K_{\mathbb{W}}, r)/T(D, r)] \} + S(D).$$

PROOF. Letting $L=\pi^*(K_W+[D])$, we apply Theorem 2 to the map $\tilde{f}: \mathbb{C}^n \to W^*$ and D^* , where $\pi: W^* \to W$ is a desingularization of D as in (20). Then

$$T_{\bar{f}}(D^*, r) - N_{\bar{f}}(D^*, r) + N_{1, \bar{f}}(r) \leq -T_{\bar{f}}(K_{W^*}, r) + O(\log T_{\bar{f}}(\pi^*(K_W + D), r)))$$

holds for $r \notin E$. Using Lemma 2, we obtain

$$N_1(r) = N_{1,\tilde{f}}(r) + N_f(R_{\pi}, r)$$
,

$$T_{\tilde{f}}(K_{W^*}, r) = T_{\tilde{f}}(\pi^*K_{W}, r) + T_{\tilde{f}}(R_{\pi}, r)$$
.

Therefore,

$$T(D, r) - N(D, r) + N_1(r) \le -T(K_W, r) + O(\log T(K_W + D, r)) + T_f(\mathcal{E}_D, r) - N_f(\mathcal{E}_D, r)$$
.

Here we use Lemmas 7, 8 freely. This gives the defect relation (20) similarly as in the proof of Theorem 3. Q.E.D.

COROLLARY. Under the hypothesis of Theorem 4, if $\kappa(K_{W^*}+D^*,W^*)=n$, then we have

$$\delta(D) < 1$$
.

PROOF. As in the above proof, by putting $L=K_{W^*}+[D^*]$, we obtain

$$T(D, r) - N(D, r) + N_{1,\tilde{f}}(r) \le -T(K_{W}, r) + O(\log T_{\tilde{f}}(L, r)) + T_{\tilde{f}}(\mathcal{E}_{D}, r) - N_{\tilde{f}}(\pi^*D - D^*, r)$$
.

Noting that $N_{1,\hat{f}}(r) \ge 0$ and $N_{\hat{f}}(\pi^*D - D^*, r) \ge 0$, we get by passing to the limit,

$$\delta(D) \leq \{-T(K_{\mathbf{W}}, r) + O(\log T_{\tilde{r}}(L, r)) + T_{\tilde{r}}(\mathcal{E}_{D}, r)\}/T(D, r)$$
.

Suppose that $\delta(D)=1$, then we have

$$T(D, r) + T(K_{\mathbf{W}}, r) - T_{\tilde{f}}(\mathcal{E}_{D}, r) \leq O(\log T_{\tilde{f}}(L, r))$$
,

from which follows

$$T_{\tilde{t}}(L,r) \leq O(\log T_{\tilde{t}}(L,r))$$
.

By (5), we see that $T_{\bar{f}}(L,r) = T_{\bar{f}}(K_{w^*} + D^*,r) \to +\infty$ as $r \to +\infty$, a contradiction. Q.E.D.

Example 2. Let $W=P_n$ and D_i a hypersurface of degree d_i , for $i=1, \dots, k$. Put $D=D_1+\dots+D_k$ and $d=d_1+\dots+d_k$. Then our defect relation becomes

$$\delta(D) + \gamma_1(D) \leq \frac{n+1}{d} + S(D)$$
,

and

$$\sum_{i=1}^k d_i \delta(D_i) \leq n+1+dS(D).$$

Now we see the process of the desingularization (20) precisely. We can find a sequence of monoidal transformations $\pi_i: W_{i-1} \to W_{i-1}$ with non-sigular centers C_{i-1} , for $i=1,\dots,l$ such that

- (i) $W_0 = W$, $W_l = W^*$ and $\pi = \pi_l \circ \cdots \circ \pi_1$,
- (ii) $D_0 = D$ and let $D_i =$ the support of $\pi_i^*(D_{i-1})$,
- (iii) $D_l = D^*$ has simple normal crossings.

We use the following notations: \bar{D}_i =the strict transform of D_{i-1} by π_i ; E_i =the exceptional locus of π_i , i.e., $\pi_i^{-1}(C_{i-1})$; δ_i =the codimension of C_{i-1} in W_{i-1} ; ν_i =the

multiplicity of the singular locus of D_{i-1} along C_{i-1} .

Then we have

$$D_i = \overline{D}_i + E_i$$
 , $\pi_i^*(D_{i-1}) = \overline{D}_i + \nu_i E_i$, $K_{W_i} = \pi_i^*(K_{W_{i-1}}) + (\delta_i - 1)[E_i]$.

Therefore

(22)
$$K_{W_i} + [D_i] = \pi_i^* (K_{W_{i-1}} + [D_{i-1}]) + (\delta_i - \nu_i)[E_i].$$

Let $\pi_i = \pi_i \circ \cdots \circ \pi_{i+1}$. We put $\tilde{E}_i = \pi_i^*(E_i)$ for $1 \le i \le l-1$ and $\tilde{E}_l = E_l$.

$$R_{\pi} = \sum_{i=1}^{l} (\delta_i - 1) \tilde{E}_i$$
,

$$\pi^*D = D^* + \sum_{i=1}^{l} (\nu_i - 1) \tilde{E}_i$$
.

Thus we have

$$\mathcal{E}_D = \sum_{i=1}^l (\nu_i - \delta_i) \tilde{E}_i$$
.

Consequently, we obtain

Proposition 4.

$$S(D) \leq \sum_{i=1}^{l} \limsup_{r \to +\infty} \left[\langle \nu_i - \delta_i \rangle \{ T_{\tilde{f}}(\tilde{E}_i, r) - N_{\tilde{f}}(\tilde{E}_i, r) \} / T(D, r) \right].$$

COROLLARY. For $y \in R$, denote by $y^+ \max\{y, 0\}$. We have

(23)
$$S(D) \leq \sum_{i=1}^{l} (\nu_i - \delta_i)^+ \limsup_{r \to +\infty} \left[T_f(\widetilde{E}_i, r) / T(D, r) \right].$$

DEFINITION. We say that D has quasi-negligible singularities if $\delta_i \ge \nu_i$ holds for $i=1,\dots,l$ ([10]).

COROLLARY. If D has quasi-negligible singularities, then

$$S(D) \leq 0$$
,

and the defect relation (21) becomes the usual form

$$\delta(D) + \gamma_1(D) \leq \limsup_{r \to +\infty} [-T(K_w, r)/T(D, r)]$$
.

Examples of quasi-negligible singularities. (i) Normal crossing is quasi-negligible, (ii) a curve has quasi-negligible singularities if and only if its singularities are

only ordinary double points, (iii) the isolated singularity $w_1^d + \cdots + w_n^d = 0$ is quasi-negligible if $d \le n$, (iv) on surfaces the singularity defined by $w_1^2 + w_2^2 + w_3^k = 0$ (type A_k) is quasi-negligible.

PROPOSITION 5 (cf. litaka [5], Lemma 3). We have the relation

$$\kappa(K_{W^*}+D^*, W^*) \leq \kappa(K_W+D, W)$$
.

PROOF. Let $\Gamma_i = K_{W_i} + [D_i]$. It suffices to prove

(24)
$$\kappa(\Gamma_i, W_i) \leq \kappa(\Gamma_{i-1}, W_{i-1}),$$

for each i. By (22), we have $\Gamma_i = \pi_i^*(\Gamma_{i-1}) + (\delta_i - \nu_i)[E_i]$. If $(\delta_i - \nu_i) \leq 0$, the inequality (24) is obvious. If $(\delta_i - \nu_i) > 0$, it suffices to prove when $\kappa(\Gamma_i, W_i) \geq 0$. For an effective divisor $X \in |m\Gamma_i|$, we have $Z = \pi_{i^*}(X) \in |m\Gamma_{i-1}|$. So $X - \pi_i^*(Z) \sim (\delta_i - \nu_i)E_i$. Since E_i is exceptional, we get $X = \pi_i^*(Z) + (\delta_i - \nu_i)E_i$. Therefore the map $\pi_{i^*}: |m\Gamma_i| \rightarrow |m\Gamma_{i-1}|$ is injective. Obviously this map is surjective. Therefore in this case we obtain dim $H^0(W_i, \mathcal{O}(m\Gamma_i)) = \dim H^0(W_{i-1}, \mathcal{O}(m\Gamma_{i-1}))$. This proves (24). Q.E.D.

COROLLARY ([10]). If D has quasi-negligible singularities, then

$$\kappa(K_{W^*}+D^*, W^*)=\kappa(K_W+D, W)$$
.

REMARK. For related topics, see [12].

Finally, we estimate the term S(D) for some singular plane curves D.

Example 3. Let D be a curve of degree d in P_2 which has only ordinary singular points x_i with multiplicity ν_i (with distinct ν_i tangent) for $i=1,\dots,l$. In this case the desingularization $\pi\colon W^*\to P_2$ of D consists of blowing ups of each x_i . Put $E_i=\pi^{-1}(x_i)$ and let \overline{D} be the strict transform of D by π . Then $D^*=\overline{D}+E_1+\dots+E_l$. Let h be the least degree such that there exists a curve C of degree h which has x_i as a point of multiplicity at least ν_i-2 . If h< d-3, then $\kappa(K_{W^*}+D^*,W^*)=2$. In fact, by the assumption, we see that $\pi^*C=C'+\sum\limits_{i=1}^l (\nu_i-2)E_i$ with a curve C'. Hence from (22)

$$\pi^*C + (d-3-h)\pi^*H \in |K_{W^*} + D^*|$$

for any line H in P_2 , which shows that $\kappa(K_{W^*}+D^*,W^*) \ge \kappa(H,P_2) = 2$.

Let $f: \mathbb{C}^2 \to \mathbb{P}_2$ be a non-degenerate holomorphic map. Then

$$hT(H,r) = T(C,r) = T_f(\pi^*C,r) = T_f(C',r) + \sum_{i=1}^l (\nu_i - 2) \, T_f(E_i,r)$$

where $\tilde{f} = \pi^{-1} \circ f$ as before. Therefore

$$\sum_{i=1}^{l} (\nu_i - 2) T_{\bar{f}}(E_i, r) \leq hT(H, r) + O(1)$$
.

Noting that T(D, r) = dT(H, r), this implies

$$\begin{split} S(D) & \leq \sum_{i=1}^{l} \langle \nu_i - 2 \rangle \{ \limsup_{r \to +\infty} \left[T_f(E_i, r) / T(D, r) \right] \} \\ & \leq \frac{h}{d} \; . \end{split}$$

Thus we obtain the following defect relation

$$\delta(D) + \gamma_1(D) \leq \frac{3+h}{d}.$$

If D consists of irreducible components D_i , degree d_i for $i=1,\dots,k$. Then

$$\sum_{i=1}^k d_i \delta(D_i) + \gamma_1(H) \leq 3 + h.$$

Example 4. Let D be a curve of degree 4 in P_2 with one cusp. We represent the desingularization as follows.

$$P_{z} = W_{0} \qquad W_{1} \qquad W_{2} \qquad W_{3} = W^{*}$$

$$E_{1} \qquad E_{2} \qquad E_{2} \qquad E_{3} \qquad \bar{D}_{3}$$

$$V_{1} = 2 \qquad V_{2} = 2 \qquad V_{3} = 3$$

In this case it can be shown that $\kappa(K_{W^*}+D^*,W^*)=2$. Let $f:C^2\to P_2$ be a non-degenerate holomorphic map. Then we obtain the following defect relation

$$\delta(D) + \gamma_1(D) \leq \frac{7}{8}$$
.

First we note that $\tilde{E}_1 - 2\tilde{E}_3$ is effective, and then by (3)

$$2T_{\tilde{t}}(\tilde{E}_3,r) \leq T_{\tilde{t}}(\tilde{E}_1,r) + O(1)$$
.

Let H_0 be a line which passes through the cusp. Then $\pi^*H_0=Z+\tilde{E}_1$, with a curve Z on W^* . It follows that

$$T_{\tilde{r}}(\tilde{E}_1, r) \leq T(H_0, r) + O(1)$$
.

Putting these together, we obtain

$$2T_{\tilde{\epsilon}}(\tilde{E}_{\alpha}, r) \leq T(H_{\alpha}, r) + O(1)$$
.

Since $T(D, r) = 4T(H_0, r)$, this implies

$$S(D) \leq \limsup_{r \to +\infty} \left[T_{\tilde{f}}(\tilde{E}_3, r) / T(D, r) \right] \leq \frac{1}{8}$$
.

We obtain the desired result from Example 2.

REMARK. These examples also follow from Theorem 5.2 in Shiffman [14].

References

- [1] Carlson, J. and P. Griffiths, A defect relation for holomorphic mappings between algebraic varieties, Ann. of Math. 95 (1972), 557-584.
- [2] Griffiths, P. and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. 130 (1973), 145-220.
- [3] Harvey, R., Removable singularities for positive currents, Amer. J. Math. 96 (1974), 67-78.
- [4] Iitaka, S., On D-dimensions of algebraic varieties, J. Math. Soc. Japan 23 (1971), 356-373.
- [5] Iitaka, S., On some new birational invariants of algebraic varieties, and their application to rationality of certain algebraic varieties of dimension 3, J. Math. Soc. Japan 24 (1972), 384-396.
- [6] Kodaira, K., Nevanlinna theory (in Japanese), Seminar Notes 34, University of Tokyo, 1974.
- [7] Nevanlinna, R., Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1929.
- [8] Nevanlinna, R., Analytic functions, Springer, Berlin-Heidelberg-New York, 1970.
- [9] Noguchi, J., Meromorphic mappings of a covering space over C^m into a projective variety and defect relations, Hiroshima Math. J. 6 (1976), 265-280.
- [10] Sakai, F., Degeneracy of holomorphic maps with ramification, Invent. Math. 26 (1974), 213-229.
- [11] Sakai, F., Defect relations and ramification, Proc. Japan Acad. 50 (1974), 723-728.
- [12] Sakai, F., Kodaira dimensions of complements of divisors, to appear.
- [13] Shiffman, B., Applications of geometric measure theory to value distribution theory for meromorphic maps, Value-distribution theory, Part A, Marcel-Dekker, New York, 1974, pp. 63-95.
- [14] Shiffman, B., Nevanlinna defect relations for singular divisors, Invent. Math. 31 (1975), 155-182.

(Received April 15, 1976)

Department of Mathematics Faculty of Literature and Science Kochi University 1000 Asakura, Kochi 780 Japan