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Let P{x,D) be a pseudodifferential operators having constant multiple real
characteristics. We shall discuss, micro-locally, regularity and propagation of
singularities of solutions for Pz, D)u=f. From these results we shall obtain infor-
mations on local solvability of the equation Pz, D)u=f.

Duistermaat-Hérmander [2] studied operators with simple characteristics and
obtained results that singularities of u (i.e. WF(u)=singular spectrum of u) pro-
pagate along the bicharacteristic strips. Chazarain [1] studied operators with con-
stant multiple real characteristics satisfying the Levi’s condition on lower order
terms and generalized Duistermaat-Hormander’s results.

In this paper we shall discuss operators satisfying conditions on lower order
terms different from the Levi’s condition. The result in this paper are proved by
micro-localizations, localizations in (%, £)-space, which have been shown by recent
investigations of many mathematicians to be powerful in order to study regularity
and propagation of singularities.

Let S={(z, &); &,=0} be a characteristic manifold of P(x, D). Then, according
to the result in Sato, Kawai and Kashiwara [7], we can write P{x, D) in a conic
neighbourhood of a point {(x,, &) € I” in the form,

Pr(», D)=Clz, D)W(z, D),

where Pr(z, D) is a micro-localization in I" of Pz, D), Clz, D) is elliptic near (zo, &)
and Wiz, D) has the form

) Wiz, D)=(DJ+ 5 Wile, D)D)

Here W;(z, D') is a pseudodifferential operator of order j. Hence, by considering
the expression (), we can give not only conditions under which singularities pro-
pagate along bicharacteristic strips but also those under which operators are micro-
locally hypoelliptic with the aid of W;{x, D).



602 Sunao OucHl

In §1 and §2 we shall investigate operators with principal symbol (£,)% In
81 we construct parametrices for the operator Pz, D). In §2 we reduce Pz, D)
to D,-I. In §3 and §4 we shall give conditions under which Pz, D) is transformed
to those considered in §1 and §2. In particular, in §4 conditions will be given
by the principal symbols and lower order symbols of P{z, D) by making use of
Leibniz’ formula of pseudodifferential operators. In §5 we shall make a remark
about local solvability and give examples of operators satisfying conditions in §3
and §4.

The announcements of the most part of this paper are found in Ouchi [6].

§0. We shall use the standard notations. Let R" be n-dimensional Euclidean
space, and #={xy, %, ---,®,) be a point in E*. A multi-index is an n-tuple a=
(ay, @z, <, ) Of nonnegative integers. If a is a multi-index, we set

@ )a ol
ox /) (am)e(dwy)2(0x,)

lel=a1tazt+ -+ tay, (
=%__1£; and  De= Tf (D).

Dual variable of 2 is denoted by &=(£&,6&, ---,&,) and we denote x'=
(1, B, + o+, Tuy) aNA E'=(E;, &y, +++, Euy).

If Qis a domain in R, we denote by §)'(2) the set of all distributions on £
and by H*®Q) the Sobolev space of order s on 2. Let S7(2) be the totality of C=
functions p{x, & of (x,& such that for any compact set K in £2 and any pair of
multi-indices «, 8, there exists a positive constant C(K, «, 8) such that

%)“(—fé—)ﬁp(x, 8| <O a, 1+l e

Lr(Q) is the set of all pseudodifferential operators with symbols in S7(2). The
pseudodifferential operator Pz, D) € L7(2) with the symbol plz, & € S7(2) is defined
by

Dy

sup
zeX

P, Dyu=2x)" S S e = uOp(x, Hluly)dyds

OXR®
for any ue CP(Q).

For P(x, D) e L7(R), its symbol is denoted by ¢(P) or p(z, &). Lr(Q) is the set of
all classieal pseudodifferential operators of degree m, that is, the symbol ¢{P) of
Pz, D)e L™) has the asymptotic expansion

o(P)=p(x, $)~k2mpk(x, &),
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where p,(z, &) is homogeneous of degree k with respect to & We shall denote the
principal symbol of Plz, D)€ L (2) by o,(Plx, D).

We shall miero-localize definitions of L7,(2) and Lr(Q). If Plz, D) is a pseudo-
differential operator, the essential support of P(z, D) (ess. supp P) is the smallest
closed cone in @X (R*—{0}) outside of which the symbol ¢(P) is rapidly decreasing.
Let I be an open cone in 2X (R*—{0}). L7,(Q, ") (Lr(Q,I') is the set of all P(z, D) €

m5(2) (resp. L2{(2)) such that ess.supp P is contained in 7.

Finally let us recall that any continuous linear operator K: CP(2)—9) (22),
defined by a distribution kernel ke §)(2,x2,) is said to be properly supported if
the two projections suppk—2, and suppk—; are proper mappings. It is well
known that for any pseudodifferential operator P(z, D), there exists a properly
supported pseudodifferential operator P’(z, D) such that

P(x,D)=P'(z, D)+ K,

where K is an operator with C= kernel.

In the following, if no remarks are made, P=@ means that P—@ is an operator
with C= kernel and all operators will be regarded as properly supported, after
adding operators with C= kernel, if it is necessary.

§1. In this section we construet parametrices for some operators which have
principal symbols (£,)%.

Let us consider pseudodifferential operators Pi{z, D), P*(x, D) with the follow-
ing symbols:
1.1) PHw, &) = (&) P+ b (e, &) (k>2),
1.2) PP, &) = (&) + B, &) (8,)F 1+ bi-2(a, &) (k=3),
where bi(x, &) (¢=1,2,8) are positively homogeneous of degree j in &.

We shall give sufficient conditions under which parametrices of Pz, D) exist.
First let us consider Pi(z, D).

PROPOSITION 1.1. Suppose that Imbi ;(x, &,0)%0 for all &+0. Then there
exists o parametric E'(z, D)e L% (R} (o={(k—~1)/k) such that
1.3) Pz, D)E'(x, D)=EYx, D)P'(x, D)=1

PROOF. First we shall show that there exist constants C>0 and R>0 such
that
1.4 (& F bl O1=CllE g (IE[=R).
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Set bi_i(x, & =c(x, &)+ —1d(z, &). From the assumption d{z,&’,0)+#0, so there
is 7 such that for any compact set Kc@2
(1.5) ld@, &, 0|>rle’*t  for xzcK.

Now

(1.6) Pz, &) =|(&) +elz, &) +v —1d(z, &)
201([(§n)k+c(wi E)I+Id(xa SH)
>Cll(&a) 4 clx, 8]+ d(@, &, 0)]— & d(x, £)]),

td

where d(z, E)zg Eg—d(x, g, sg,)ds. Since for any >0,

0
&0z, &)< Mg, el 2 < el + Cale) [Ea1,
we have from (1.5) and (1.6)
{1.7) [P, 1= Coll (€0 +olw, &) | +7ie [P —elgl* T — Cle) 1615 ).
If |&./<ol&’| for some >0 and e is small, there is 7>0 such that
1.8 ('@, 8= Coll(Ea)*+clw, S|+ FIENT—Cole) €15,
Since le(x, &)< M'|€[** we have for small 2>0
P, §)[= ColaléalF— ABL 6P+ FIE[ 7 — Cole) |€al*).
If we choose 2 so that 7—iM' >0, then we can find C, and R, such that
1.9) Ip'x, §)[=Cyll&alF+ 1871,

when [£]|>R, and |&,]<d]&'].
In the case |£,[>45]¢'|, we can get easily the estimate similar to (1.9), since

(1.10) 1D (%, &) >8P~ M (g

Hence the estimate (1.4) holds.
Next we shall show that for any compact set K in 2

(1.11) ](%)(%)ﬁmx B / (@, 8) ] <Cupglél e (o={—1)/k)

for any x€ K and [§[=>R. If «;#0 for some j#mn or §8,;#0, then

£V () me
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Hence for z¢ K

K%)(%)%m 8| <Cusxle1.

Consequently in this case we have for z¢ K

112 (Z)(Z ) vea)s <x,s>}s—@%i—’g§%@gca,ﬁ,xisl~w

If «;=0 for j#n and B;=0, then for z¢ K

l(@a) P8 l<CMK a1l [,

So in this case we have for [¢|>R, and ¢ K

(1.13) ](ag >“”pl<x, £ / P, &) | <G {8 [F16 | E[21e1) O £, 87140
< B xl1Ea (1, 187150 + 2] 1)
< Clpp 8]0,

Combining (1.12) with (1.13), we have (1.11).

Therefore, it follows from the estimates (1.4) and (1.11) that there exists a
parametrix Bz, D)€ L;%V(Q) (p=(k—1)/k) which satisfies (1.4) by Theorem 4.2 of
Hérmander [4].

As for P%*(x, D) we can show

PROPOSITION 1.2. Suppose that Imbi_,(x, &,0)£0 for all 5’;&0. Ther there
exists ¢ porometriz E*z, D)e L% 2(Q) (p=(k—2)/k) of P(x,D

Proor. It follows from the same arguments as in the previous proposition
that there are constants C; and R, such that

(1.14) &) +bia(m, )12 CillEal 181D (]2 Ry).

Hence
[98(z, &)= (&a)"+b3(x, £) (&) + b} s, §)]
>Cy([&alF+181F72) — Colg, [P

Consequently, the estimate
(1.15) 0%, )1 = Co([&, 1%+ 187 [*3)

holds for |£|>R.,.
We can also prove that for any compact set K in 2
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(1.16) [(;—E)Z—:;)’gpﬁ(x,s>/p2<x,s>lsca,ﬂ,xxsi-ma* (o=k—2/k) (weK)

for |£]>R,. Existence of a parametrix E?(z, D)€ L;%2(2) of P*(x, D) follows from
the estimates (1.15) and (1.16) and Theorem 4.2 of Hormander [4].

REMARK 1.3. Proposition 1.1 (resp. 1.2) is also valid when P!z, D) (resp.

P2z, D)) has lower order terms.

§2. In this section we shall give conditions under which operators P are
transformed to D,-I (I is the identity matrix). We can investigate propagation
of singularities of solutions u¢e JY(Q) of Plx, D)u=f. We shall treat operators
P3{z, D) and Pz, D)€ L*Q) which have principal symbols (£,)% and lower order
symbols of the following form:

(2'1) ps (x’ S) = (&n)k+ bli—Z(x) E) (En) + Ci_g(x, S) (kzg))
2.2) Pz, &)= (E)F+Hbi-s(w, &) (8,)2 b s(w, §) (6a) +Chsl, &) (B24),
where bi(z, £) (=4, 5, 6) are positively homogeneous of order j in & and ci(x, & € Si(Q)

(i=1,2).
First we shall give a condition for Pz, D).

PROPOSITION 2.1. Suppose that Imbi s(x, &,0)£0 for all &0 in 2.1). Then
we can find E*(z, D)€ L;%2(Q) and E3(z, D)€ L5(Q) (o={k—2)/(k—1)) such that

2.3) E3(z, D)P3(z, D)=D,E*x, D)

and E*x, D) and E*®, D) are invertible.
Before proving Proposition 2.1, we shall give a lemma which will be used in
the proof of Proposition 2.1 and Proposition 2.3 given later.

LEMMA 2.2. Let H(z, D)={H;;(x, D)) {1<4,5<s) be a matriz of pseudodifferential
operators and its elements H,;{x, D) belong to L5(Q). Then we can find an inver-
tible operator Ulw, D)=(U;x, D)) A<1, j<s, Uy{z, D) € L(Q)) such that

2.4) (Dy- I+ H{x, D))U(x, D)=Ulz, D)D,.

PrOOF. We shall construct Uz, D)~ §0U_7(sc, D), U_yislw, D) e Lo7(9) (1<,
7=
Jj<s), so as to fulfill

(2.5) (Dp- I+ H{w, D))Uo(z, D)=Us(w, D) Dy- I (mod L;°(£2))
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2.6) (D, I+ Hiz, D)>< z Ui, D))z( z Uerlo, D))Dn- T (mod Li;**+2(@)).

To do so we shall solve the equation concerning symbols (vo.:,;(®, &)

1 0} ¢ _
@.7) V=1 'ax_nuo,i,j(x, &+ m§1 By E)Uoum.; (0, £) =0,

Uo,1,5(%’, 0, &) =0,
First we shall show that for any compact set K in £
2.8) M <|det (uois(m, E)I<Mx (v K),
and ;@ &) € Sp(2), that is,

2.9) |(—a"’g>(:—x)ﬁuw 8| <Cesslitigh ™ e k).

Let us show (2.8). By an elementary fact in the theory of linear ordinary dif-
ferential equations we have

2.10) det {0, ) =oxp ( — [ £ ¥ 7Thi e, 9 ).

The estimate follows immediately from (2.10), because k; ;(z, & € SH{2).
We derive the estimate (2.9) by induction on |e| and |8]. In fact, when ja|=
181=0, obviously (2.9) holds. Differentiating (2.7) with respect to & we have for

any «

ox, /\ 0§ o0&
(i)uw 0, ) =0.

2.11) Vl?i< a Xi)auo’i’j(x’ &+ ?‘i‘l hiom(, a(“@“)auo,m,j(% £) =%a,0(%, &),

13
Now we assume that (2.9) holds for |e|<p and |8|=0. Since h;.(z, & € SHQ), we
have |vaolm, &< Cx(l+ig))#e for x¢ K. Integrating (2.11), we have (2.9) for
la]=p+1,|8]=0. Hence (2.9) is valid for any « and |B{=0.
Now we assume that (2.9) is valid for |aj=0, #/<p (8,=0). Differentiating
{2.7) with respect to z’, we have

8 s 8’
o1r T o) ot 9+ Z hunle, G | amstim, ©=v0 2,8,

’

( 2 )" U507, 0, 8) =0,

oz’

where |v,,2(x,&)|<Cx (€ K) because of inductive hypothesis and the fact that
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him€S3(2). Integrating (2.12), we have (2.9) for |a|=0, |5'|=p+1, 8,=0. It fol-
lows from (2.12) that (2.9) is valid for |a]=0 and 8,=1. Differentiating with respect
to z,, we can show by induction on 8, that for any 8

8

(2.13) }(%) tassl®,8) | <Cosx  (@EK).

Repeating this arguments, we shall be able to show (2.9). Thus u,,,;(z, &) € Sy ).
Secondly we assume that U_,(z, D) € L;7"(2) (0<r<k) have been so constructed

that they satisfy (2.6). We shall find U_g.y (@, D) 50 as to satisfy (2.6). Set
k k
F-ieen (e, =o( 1D+ Hla, DY 35, U D) )=( 5, Uoslo, D) )0 ).

Considering (2.6), we shall solve the equation

1 0 L
= U 0,55 (% &) F 2 i, E) U 1 i (%, E) = — - sy (2, &),
2.14) vV~1 2oz, =

Ui (7, 0, £)=0.

If we can show Y%-g4u).:;(®, &) € S,°*0(Q), (2.6) is valid. In fact, by making use
of the arguments similar o those used in proving u,.:;(x, &) € Sp(R2), and in view
of the fact that f_u.n(x, & e S;p%(0) which follows from the assumption, we
‘obtain that w_gy,:,;(, & € S5 (Q). Thus we have Ulz, D)~T§ U_{z, D) satisfying
2.4).

Finally we shall show that Ulx, D) is invertible. Set U’{z, D)Né1 U_;(z, D).
In view of (2.8) and by Theorem 4.2 in Hormander [4] there is E,(z, D) such that
Usle, D) Ey(x, D)= Eyx, D)U,(x, D)=1. Hence

{2.15) Ey(x, DUz, D)=I+ Eyz, D)U' (, D).
Since Ey(x, D)U' (2, D) € L;#(2), from (2.15) left parametrix E(x, D) of Ulx, D) exists.

We can easily show that Elx, D) is also a right parametrix. Thus the proof is
complete.

PROOF OF PrOPOSITION 2.1. Set @iz, D)=D:*+Biz,D). In view of
Imbi_.(z, &,0)0 and k>3, it follows from Proposition 1.1 that there exists a para-
metrix RB(x, D} € L;%2(Q) (o=(k—2)/(k—1)) of Q*(x, D). Hence

(2.16) E'(x, D)P*(, D) =Rz, D)@ (z, D) D+ Ci—(v, D))
=D.+H'(x, D),



Regularity and propagation of singularities of solutions 609

where H'(z, D)= Rz, D)C} (s, D) € L3(2). We apply Lemma 2.2, and have R*x, D) €
L)) such that R%*(x, D)(D,+ H(x, D))=D,R*x, D). Therefore,

2.17) Rz, D)R'(z, D\P*z, D)=D,R?x, D).

If we set E3(w, D)=R*(», D)R'(v, D)€ L;*®(Q) and E%, D)=R?(x, D)€ L3(%2), they
fulfill the conditions in Proposition 2.1.

Next let us consider the operator P4z, D). If we set u,=u and u,=D,u=D,u,,
the equation Pz, D)yu=Jf is equivalent to the system of equations:

2.18) Mz, D)(Z‘>=< ?p )
where
— Dn » _I
219 M DI=(gy "1 ey B e DD B D) )

We shall consider the operator M(x, D) instead of P4z, D). As for Mz,D) we
have

PROPOSITION 2.3. Suppose that Imb}_s(x, &,0)£0 for any & +#0. Then there
exist invertible matrices of pseudodifferential operators Et(x, D) and E*(x, D) such
that

2.20) Ex, D)M(z, Dy=D,- IE*(x, D).

PROOF. Since Imbi_s(x, &, 0)+0, applying Proposition 1.1, we have a parametrix
Rz, D)€ L;*9(Q) (o=(k—38)/(k—2)) of (D,)*2+Bj(®, D). Set

< (L 0
2.21) R, D) _< 0 maD) >
Then
(2.22) Rz, D\M(x, D)=D, -1+ H{z, D),
where
N 0 , .y
®2) Hi, D)—<R3(x, D)Cis{x, D), E(z, D)Bis(z,D) )

All of the elements in H(z, D) belong to L5(®). So we apply Lemma 2.2, and
have R%(x, D) such that

2.24) R3(x, D)R*(z, D)M(x, D)=R*(x, D) (D,z-I—F Hz, D)=(D,-I)R*(x, D).
If we set Etx, D)=R%x, D\R*(z, D) and E‘(z, D)=R’(z, D), they have properties
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mentioned in Proposition 2.3.

§3. In the previous sections we constructed parametrices of P'(z,D) and
P2z, D). And we constructed invertible pseudodifferential operators which reduce
P3(z, D) and Pi(z, D) to D,-I. We shall give conditions under which an operator
Pz, D) with constant multiple real characteristics is transformed by Fourier integral
operators micro-locally to one of P(z, D), P*(x, D), P%(z, D) and P*(z, D) considered

in previous sections.

DEFINITION 3.1. An operator Pz, D)€ L™(2) has constant multiple real charac-
teristics, if the principal symbol p.(x, &) is decomposed into

(3.1) D, &)= (p1)™1(p%)"2(p%)"s - -+ (p)™s,

where pi(z, £) has the following properties:

Each pi(z, & is real valued, positively homogeneous in & and grad.e p*(x, §) is
not parallel to ﬁ)l &dx; on the characteristic manifold Z’piz{(ac, & e O (R*—1{0});
v, &) =0} and if j#k, 3,03 =0

Let Plx,D)c L*(£) have constant multiple real characteristics. In a conie
neighbourhood I" of (xo, &0) € 2 We can factorize the principal symbol p,(z, & as
follows:

3.2) Dul, & =alx, &gz, &)™,

where ¢lx,£) is real valued, positively homogeneous of order 1 in &, g(x,, &)=0,
grad .5 q(®, &) 1 not parallel to ilfidxi and a{z,&) is real valued positively
homogeneous of order (m—m;) in & ;;d alz, &)#0 on I.

In order to micro-localize operators in our study we introduce two smooth
functions ¢(x, &) and gz, & with the following properties:

They are nonnegative, ¢(x, &) equals to 1 on a conie neighbourhood Iy (I'iCl)
of (x, &) and its support is contained in I', and gz, &) equals to 1 on a conie
neighbourhood I', (I, I';) of (%, &) and its support is contained in I';.

In the proof of the following thecrems we shall use a lemma due to Egorov
3] and Duistermaat and Hormander {2]:

LEMMA 8.2. There is a bijective homogeneous canonical transformation y from
a small conic neighbourhood I' of (xy, &) to a conic meighbourhood I of {X=0,
B'=5}, 8,=0} such that Qox~'=2E,. And there exists a Fourier integral operator
U associated with y such that
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(8.3) UU* and U*U are pseudodifferential operators and c(UU*)
is 1 on I' and o(U*U) is also 1 on I', where U* is the adjoint
of U.

(3.4) For any T(x, D) e L*Q,T), (X, D)=UT(x, D)U* e L™, "), {

being some neighbourhood of X=0, and its principal symbol
telX, 5) is tuoy (X, 8) on . In particular ¢{UQ(x, D)U*) is
g, on I

Concerning micro regularity of solutions wc¢ D'2) of Plz, Dyu=f, we have

THEOREM 3.3. Suppose that there exist Bi(x,D)e Li(Q) with the principal
symbols bi(w, &) such that one of the following conditions holds:

(8.8)  G(=, D)Px, D)=Gz, D)Ay(w, D)Qy(x, D)™+ B (2, D) (mod L™*Q, I')),
mpz2 and Im b,y (z, £)50 on Z,NT",

(3.6) G(z, D) Pz, D)=G(z, D) A,(x, D)Q,(x, D)™+ B%_4(x, D)Q,(x, D)™s—1
+B5, o(x, D) (mod LR, I"), m,;>8 and Imbi_,(z, &0 on 2N,

where Ay(w, D)(Qy(x, D)) is an operator with the symbol ale, &)¢(x, &) (resp. q(x, &)o(z, &)
and Z,={(z,&); qlz,&=0}.

Then for every solution we ) (2) for Plz, Dyu=f we have (WFu)—WEF(f))n
3,=0.

PRrOOF. Let the condition (3.5) hold. Let us transform Pz, D) by the operators
U and U¥* in Lemma 3.2 and elliptic pseudodifferential operators. Set P(X, D)=
UP{x,D)U*. We have

8.7 G(X,D)P(X, D)=UG(x, D) A.(x, D)Qo(w, D)™ U*
+UBL,_;(x, D)U* (mod L™, I))
=G(X, D)A(X, D)Q(X, D)™
+BL(X, D) (mod L™2(2, I'),

where G(X, D)=UG(x, D)U*, A(X, D)=UA,(X, D)U* and B! ilX, Dy=UB% _,(x, D)U*.
Since A(X, D) is elliptic in the conic neighbourhood IFy=y(I"y) of {X=0,58'=F} &,
=0}, we can define an operator A;Y(X,D) with the symbol &(X,5)¢g(X,5).
o(A;(X, D)P(X, D)) is (8,)*+a(X, £)bL_(X, 5)+lower orders, on I';. Since a(X, 5)
is real valued, from the assumption Im @(X, &, 0)~1b%_(X, &/, 0) 0.

Now we note that Proposition 1.1 can be micro-localized. The operator
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A;Y(X,D)P(X, D) satisfies the condition in Proposition 1.1 in [, so there is a para-
metrix E(X, D) such that

(3.8)  E(X, D)4 (X, DX, D)=(A;"(X, D)P(X, D)E(X, D)=I (mod L;=(3, ['5)).

Therefore, for every solution @€ 9 (@) of G(X, D\P(X, D/ii=f we have (WF(@)—
WF(fnl,=¢. This implies that for every solution uwe §)'(@2) of Plx, Du=f,
(WFu)—-WF([)NT=D.

When the condition (3.6) holds, we can show that P(x,D) is transformed to
the operator with the symbol (5,)™+b3(X, 5)(5,)™ 1 +b} 4(X, 5)+lower order terms,
Imb _,(X,5,0)0, on I, by the method similar to that used above. So in this
case the statement of theorem is also valid.

As for propagation of singularities, we have

THEOREM 3.4. Suppose that one of the following conditions holds:

{8.9) G(z, D) P(x, D)=G(x, D) Ay(x, D)Qo(x, D)™+ B}, s(x, D)Q(, D)
{mod L™2(2,1)), m;=>3 and Imbi .z, §=x0 on 2,NI,,
(3.10) G(x, D) P(x, D)=G(x, D) As(x, D)Qo(x, D)™t + Bi—s(z, D)Qo (%, D)?

+ B8 s, D)Qelz, D) {mod Lr3(Q,I"), my=4 and
Im b sz, )0 on XN .

Then (WEFw)—WF(f)nI, is contained in X, and invariont wunder the
Hamiltonian vector field H, for every solution u¢ (@) of Pz, D)u=f.

ProOOF. By making use of Fourier integral operators U and U* and division
by elliptic operators, we can show this theorem by the method similar to that in
the previous theorems. In fact, when the condition (3.9) holds, Plx,D) is trans-
formed to the operator with the symbol (B )b (X, B)E,+lower order terms,
Imbi (X, &,0)0, in [';, when the condition (8.10) holds, P(z, D) is transformed
to the operator with the symbol (B4 b5 ( X, 5) (5,2 +be (X, 5)E,+lower order
terms in I’,. Combining these facts with Propositions 2.1 and 2.3, we can easily
show the statements of this theorem are valid.

§4. In this section we shall express the conditions in Theorems 3.3 and 3.4 in
terms of the symbol plz, E}~k§n 2w, & of Plx, D).

Let Pz, D)€ L™(£) have constant multiple real characteristics. So p.(z, &)=
(p)™i(p%™s - - - (p*)™s such that pi(z, &) satisfies the conditions in Definition 3.1. Let
(0, £0) € X g Then, as in §3, we can factorize p*(z, & =s(z, £)glx, &) in a small
conic neighbourhood I' of (z, &) such that s(z,&)#0 in I' and g(x,, &)=0 and
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ymmam%gdmnMpmmM¢oégu% Iy and Iy (T30 0, G, D), Aelw, D) and
Qo(x, D) are the same as in §3.

Now we shall give an elementary lemma:

LeMMA 4.1. Let Qi(x, D)€ L3i(®) (i=0,1,2,---,k) and have principal symbol
gz, E) omd no lower order symbols Set L"(ac, D)=Qx, D)Q Yz, D) - - - Q*x, D) and a‘
o (LM, D)) = 1Mz, &)~ znwag Sot8itsak -+, Then we have '

4.1 Bz, 8 =q", 8)q'(x, &) - -+ ¢*(x, &),

3 — o1 9 0 ) 3
“.2 e 8= 2 (B Aaemeeng h%qw,s)}

and, if @'z, D)=@x, D)= .- =Qx, D)=Q(, D) and k=4,

k—1(k—2)(k—3) /2 1 a8 ?
8 <7=1 V1 &, 9l )

¢°(x, &)glx, &**4-0(g").

(4.3) e, &)=

q(®, 8) )2

Proor. (4.1) and (4.2) follow immediately from Leibniz formula. We shall
prove (4.3) by induction on k. For k=4, we have

0
08

Assume that (4.8) holds for k=m. Since

(4.4 _2<xs——3( g Zr gle, s)) ", £ +0(g).

I7(x, &) =q", &glz, &)™

and

™, (=, 5):_7.%__(._";___1)_ o, )(é 7

(wE) xf)qxf"‘2+0(”‘)

we have
4.5 7% (2,9

—Im _.ﬁ_,.aﬁ_. i &
—Iro(, &)qla, &) + (z Pt - q(x,a)

=1 T
+|oc| =2 ! <—%> > 9@ ¢)
_ ) (m

mm—1){(m—2) /2 1 G ] 2 o
- (Evrss a5 0 ) 2 St 7

ls»l (xy E)
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mim Y8 (5 AL 60w ) ) o', Bale, 9740
= 7

(mrDmim—1)(m—2 /& 1 9 0 q(x,a)Z
7

= & \7=1 '\/—-_16—57_(1(90’ & ox
Xz, &)qlx, &)™+ 0(g™%).

This implies that (4.8) is valid for k=m+1.
We apply Lemma 4.1 to Rz, D)=G{z, D)A.{x, D)Qs{x, D)™+. We have in I'»

(4.6) 7n(%, £) =Dpa(x, &) =a(x, E)q(x, &)™,
_mm—l /& 1 8
@ racalt =25 L L g0 65 00,9

Xa(z, Eqlx, &)™ 2+0(g™ )
and if m,>4,

(4-8) Tm—-z(x’ S) =

mu(me—1) (me—2)(me—3) (¢ 1 8 KN >
- R e CLRC LT

Xalx, & qlx, &)™+ 0g").
For the sake of simplicity we set

(4.9) S(xy E) =pm-—1(w: E) 1 3 o

oI 9,08, O

(@, &),

which is the subprincipal symbol of Pz, D).

PROPOSITION 4.2. Suppose that m;>2. Then the condition (3.5) is equivalent

to

(4.10) Im S(z, £)15,,70.
PROOF. Assume that (3.5) holds. Then we have

(4.11) Dnlx, §)=a(®, E)qlx, §)™*

and

(4.12) D1 (®, &) =1 (&, &) +brna (@, 8)-

Hence, in view of

1 o o i
(4.13) «/—:_i—axTT&pM(x’ & =mym,—alz, &)glx, &™2

1 6 a my—1
X(T:i 2 gl fh gl s>)+0(q &)

and (4.7),
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4.14) br-1(x, £)=8(x, &) (mod g™+ 7).

Thus we have {(4.10).
Conversely, assume that (4.10) holds. Set

(4.15) Bi-i(w, D)=G(x, D) P, D)— Gz, D) Ao(x, D)Qs (@, D)™.

Then
(i, D) € Lr=HQ)
and
1 d 02
2v -1 Ex D208, P

Gp(Balrn—Zl(x, D)) Epm—l(x, E) - m(x, s) ES(Q:, E) (mOd qu~1) .
Thus (3.5) follows.

PROPOSITION 4.3. Suppose that m;>38. Then the condition (3.6) holds if and
only if

(4.16) Sz, &) =dS(x, &) =d*S(x, &)= -+ - =d™28(x, &) =0
and

@1 I (sl =g 3 50 s, £) 20
hold on Z’pk.

PrOOF. Assume that (3.6) holds. Then we have (4.11),
(4.18) Dres @, 8) =B, (@, E)q(, &) [, )
and
(4.19) Pucalz, §)=Hioale, &)+ T g 0 g

R S 9 my—2
%( 7 e 10 8 00, 8 JH O 4 rasle 8
in Iy, From (4.7), (4.13) and (4.18), (4.16) follows. From (4.19) we have

1 2z 0?

420 b%n— 1S/ =D s S/ — m— ’
(4.20) 2(2) £) =P p2(2, &) o/ =1 Ex 69@6&29 1@, &)
1 d * B I
+2’\/——T17§1 6&:7657 'm——l(m; 5) 7',,,,,_2(%, EH‘O(Q k )'
Since g(x, &), alx, & and qlz, & are real valued, 7,_,(z, & and V—Li—gga—;g—-rm-l(x, &)
- TUSTY

are also real valued. So, from (4.20), (4.17) follows.
Conversely, we assume that (4.16) and (4.17) hold. Set
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(4.21) B[z, D)=G(x, D) Pz, D) —G(z, D) Ae(w, D)Qolx, D)™

Then, we have o,(B,-i(x, D)=S(x,&+0(g™™). In view of (4.16), we can find
bm—k(w, g) such that ¢,(Bp-i(z, D)) =bh-n, (@, &gz, ™. Set

| oy

(4.22) B3 o{z, D)=G(x, D) P(w, D)~ G(z, D) Ae(x, D)Qolx, D)™
_Bfn—mk(w; )QQ(”: )mk—

Then

(423) 0'12( ?n—Z(m’ -D)) :pm~—2(xa S) '_/rm—ﬂ(w) E)

A imsEy (e, g,

x(élel::l—;s—rq(x, £) ai, qla, E))+0(q"‘k‘2)-
From (4.17), Imo,(B%-2(x, D)0 on X 4.
PROPOSITION 4.4. Suppose that m,=4. Then the condition (3.9) holds if and
only if
(4.24) S, &=0 and ImdS(,&+0 on X
We shall omit the proof, because it is the same as above.

PROPOSITION 4.5. Suppose that m;=4. Then the condition (3.10) holds if and
only &f

(4.25) Six, &/ =dS(x, & =0, Imd?Slx,&+0 on X,
and
(4.26) @8~ e 3~ (s, &)
. DPm-2\Ts 2'\/:—‘_1 &= 6:876{-} Pm—1\Ty
1 2 94

s % p o (z,8)=0 5
85,‘?’11 axpax,asﬂasrp (@ &) o S

PROOF. We shall sketch the proof. Assume that (3.10) holds. We repeat the
same arguments as above and can easily show (4.25). Let us show (4.26). We
shall caleulate o,(B%-s(e, D)@s(z, D)) in I's:

(4.27) 0 p{Bos(@, D)Qo (%, D)) = Pr—2(®, §) — T'm—2{®, E)
@
bl 8 £, 7 0 4 O tl09) ) +0W

Since

{4.28) D1 (&, &) =T s, &) +b5 5, £)glm, §)%,
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1 % 62
2v =1 72:;1 81,08,

1 % 62
2V =1 7 om0,
We get (4.26), by making use of (4.6), (4.7) and (4.8). Conversely, if (4.25) and
(4.26) hold, we shall be able to show (3.10) easily by the method similar to those
in the proof of the preceding propositions.

(4.29) 02(Bhi-a(, D)Qo(x, D))= pp-2(e, &) —

pm—l(xy E)

—Tm-—z(x; E)"[_ 7"m,*l(x, SH‘O(Q)‘

Thus, summing up the results in §3 and this section, we have

THEOREM 4.6. Let Pz, D) have constant multiple real characteristics. Suppose
that one of conditions (4.30) and (4.81) holds:

(4.30) mp=2, ImS(x, &+0 on 2
(4.81) mp23, Sz, &) =dS(x, &)= -+« =d™2S(z, £/=0 and

1 n 62
Im <pm~2(x’ E) “2\/3 721 6,’,177657 Pm—1 (-7/', S))io on Epk'

Then (WF(w)—WEF(f) N2 =0 Jor every solution uc §)'(Q) of Plx, Du=f.

THEOREM 4.7. Let Pz, D) have constant multiple real characteristics. Sup-
pose that one of conditions (4.32) and (4.88) holds:

(4.32) m23,8(x, §)=0 and ImdS(,&+#0 on I,

(4.33) m24, Sz, &=dS(x, &)=0, Imd2S(, &0 and
Dot =575~ p it B Ly =0
TR o 12 ampee, T 8 87=1 3wedx,08508, "

on Z’pk.

Then (WF(u)—WF(f))CZ’pk 18 inv(wiant under the Hamiltonian vector field
H for every solution uc 4)'(2) of Pz, Dyu=f.

§5. In this section we shall shortly study local solvability of an eguation
Plz, Diu=f. First we give

PRrROPOSITION 5.1. Assume that P(x, D)e L™(Q) and has constant multiple real
characteristics and satisfies one of the conditions (4.30), (4.31), (4.82), (4.33) and the
Levi’s condition on 2 Then the adjoint *Plx, D) also has constant multiple real
characteristics and satisfies one of the conditions (4.30), (4.31), (4.82), (4.33) and the 2
Levi’s condition on Zpk.

The statement is clear. We refer to Chazarain [1] as to the Levi’s condition. b
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THEOREM 5.2. Assume that Plx, D) L*(Q) and has constant multiple real
characteristics and grads p(x, §)#0 on X,. Let P, D) satisfy one of conditions
(4.80), (4.81), (4.32), (4.33) and the Levi’s condition on X . Then for any x€ 0 there
exists a neighbourhood U, of x such that for every fe H(Q) (resp. f€ C™(Q)) one
can find %€ Hypm(U,) (M=max (my) (resp. u€ C=(R)) so that Plx, D)u —f n U,.

We shall be able to show Theorem 5.2 by combining functional analysis with
the results in the preceding sections and Proposition 5.1. Since proof is similar
to that in Duistermaat-Hormander [3] (see also Chazarain [1]), we shall omit the
proof. We shall note that the condition that grad pe(z,&)+#0 on X, means that
there is a sufficiently small compact neighbourhood K, of z such that no complete
bicharacteristic curve is contained in K,.

REMARK 5.3. The condition (4.80), (4.31), (4.82) and (4.83) are all invariant
under coordinate transformations, moreover they are invariant under homogeneous
canonical transformations. Though we omit proof, this fact is easily followed from
the results in §3 and §4. Invariance of the Levi’s condition is shown in Chazarain

{11
We shall give examples:

61 0w D=0y et T 0, ) | D5, Dt et g on))(v=igoy)
(D —elw ( > D2 ))F%(x, D+
62  CD)=(Di, ! ( ))3

n—1 2 /=1 2
+Fie, D) D2, —ew?( D% ) V= Z DL )+

where ¢(x)>0 and Fi(x,D) (t=1,2) are operators of order j. Set Py, D)=
Din—c(xV( 7:};31]3‘21) and Pz, D)=D,,. C'(v,D) satisfies the condition (4.33) on ¥ ,
and the condition (4.30) on Z’pz. For C%(x, D) the condition (4.81) are fulfilled on
Epl and for C%(z, D) the condition (4.32) is fulfilled on X ,.

REMARK 5.4. We can give other complicated conditions under which operators
are micro-locally hypoelliptic or singularities of solutions propagate along bicharac-
teristic strips by the techniques used in propositions in §3 and restate these condi-
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tions in terms of symbols of operators by making use of Leibniz formula. In

this paper we gave only the simplest conditions that can be easily caleulated by

Leibniz’ formula.
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