On some degenerate oblique derivative problems

By Kazuaki TAIRA

({Communicated by D. Fujiwara)

§1. Introduction and statement of the main results.

In this paper we shall prove the regularity, existence and uniqueness theorems
for some degenerate oblique derivative problem with a complex parameter (Theorem
1). In the non-degenerate case such theorems were obtained by Agranovié and
Visik [8]. Further we shall give two applications of these theorems. First we
shall derive some results on the angular and asymptotic distributions of eigenvalues
and the completeness of eigenfunctions of some degenerate oblique derivative prob-
lem (Theorem 2). In the non-degenerate case such results were obtained by Agmon
[1], [2]. Next we shall give the existence and uniqueness theorem for the heat
equation with some degenerate oblique boundary condition (Theorem 3). In the
particular case such theorem was obtained by It6 [10].

We now start to formulate the precise results. Let 2 be a bounded domain
in R™ with boundary I" of class C*. Q=0QUTI is a C>®-manifold with boundary.
Let a(x), blz) and c{x) be real valued C>-functions on I, n the unit exterior normal
to I" and 7{z) a real C=-vector field on I". We shall consider the following oblique
derivative problem: For given functions f and ¢ defined in 2 and on I' respec-
tively, find a function % in £ such that

(A+Hu=f in 2,

()
=¢ on I'.

r

QuEa(Z—Z +ru) +{(b+ic)u

Here 2=Re*? with R=0 and 0<6<27 and A=0%/oa}+0%/pai+ - +0%0xE.

If a{x)+0 on I", then the problem (x) is coercive and the following results are
valid for any s=2 (ef. [15] Chap. 2, Théorém 5.1 and Théoréme 5.3; [3], Theorem
4.1 and Theorem 5.1):

i) For any solution u € H* () of () with fc H*2(Q) and ¢¢€ H**2(]") where
t<s, we have u ¢ H*(Q) and the a priori estimate

lullfeo S Coa (| f s 20y + | Pllps~si2 lullgee)
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holds for some constant C;;>0 depending only on 2, s and £.

i) If fe H=¥Q), ¢ H=%2() and (f, ¢) is orthogonal to some finite dimen-
sional subspace of C=(Q)DC>I), then there exists a solution u € H*(2) of (x).

ifiy For any integer s=2, there is a constant R;(0)>0 depending only on &
and s such that if [i=R=R,(# then for any fe€ H*2() and any ¢¢€ H***I)
there exists a unique solution u € H*(Q) of () and that the a priori estimate

||u”233(9>+H]snunL2<Q><Clz )(”f”Hs 2(9)+]2]s~2||fnz,2<9> +1¢ H3—3/2<1‘>+IXIS_S/ZMI%Z(I‘))

holds for some constant Ci,(6)>0 depending only on ¢ and s. Here H*() (resp.
H#(I")) stands for the Sobolev space on 2 (resp. I} of order s and || fzso (resp.
| lgsim) is its norm.

If a{x) vanishes at some points of I”, then the problem () is non-coercive. In
this case the problem (+¥) was investigated by a few authors, e.g., It5 [10], [11]
and Kannai [14]. It6 [10], [11] treated the problem {(+) in the case that y(z}=0
and ¢(x)=0 on I'. Under the assumptions that a(x)=0 on I", that b(x)=0 on I
and that a{z)+b(x)=1 on I', he proved the regularity, existence and uniqueness
theorems for the problem () (see [10], Theorem 5 and Theorem 8; [11] Chap. 1II,
Theorem 1.2, Theorem 1.8 and Theorem 5.5). Kannai [14] studied the regularity
of the solutions of the problem (x). However, the results corresponding to the
results i), ii) and iii) are not yet obtained (cf. [18], Theorem 2).

In this paper we shall prove

THEOREM 1. Let 2=Re'® with R=0 and 0<0<2r. Assume that |2]=R is so
large that the non-degenerate oblique derivative problem

A+ dv=f n 2,
_@O’UE<—§2— —l—rv)? =0 on I,
on r
has ¢ unique solution ve HQ) for all f€ L¥R) (of. the above result iii)). Further
assume that the following conditions (A) and (B) hold:
(A) alr)=0 on I.
(B) b(x)>0 om Iy={xel; alx)=0}.

Then we have for any s=2:
" for any solution we HY Q) of (x) with fe H4Q) and ¢ € H (") where
t<s, we have w € H*(Q) and the a priori estimate
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1.1 Il oo < Crall f M ero—200) + 181 Ee-1200 + [tliFrtco)

holds for some constant C,3>0 depending only on 2, s and t;
ity of feH"R), s HYT) and (f, ) is orthogonal to some finite dimen-
stonal subspace of C*(Q)PC=(I'), then there exists a solution uc H(Q) of (¥);
iil) for any integer s=2, there is a constant R.(6)>0 depending only on 6
and s such that if |A|=Rz=R,(0) then for any fc H %) and any ¢c H"12(I)
there exists a umique solution w e H*(Q) of (*) and that the a priori estimate

1.2) lulifso + [21* w22 = Coa(0) (L 3200y + 121272 f | 32000
+ 1 he—v2ry + 217729 Fm)

holds for some constant Cy(8)>0 depending only on 6 and s.

REMARK 1.1. The results i)/, i)’ and iii)’, compared with the results i), ii) and
iii}, involve a loss of 1 derivative only with respect to the boundary data ¢.

Now we shall give two applications of Theorem 1. First we shall derive some
results on the angular distribution of the eigenvalues and the completeness of the
eigenfunctions of the problem

—du=2 in 2,

(3)
=0 on I'.

,@uza(a—u +7u> + (b+ic)u
on r

We shall denote by % the linear unbounded operator in the Hilbert space L*Q)
defined as follows:

a) The domain of % is PI)={uc H2Q); PBu=0}.

b) For uec QI), Yu=—Au.

In the coercive case, i.e., in the case that a(x)#0 on I, the operator ¥ is closed
and the following results were obtained by Agmon (see [1], Theorem 4.4):

1} The spectrum of % is discrete and the eigenvalues of ¥ have finite mul-
tiplicities.

2) All rays arg 2=0 different from the positive axis are rays of minimal
growth of the resolvent. In particular, there are only a finite number of eigen-
values outside any angle: |arg A{<e, &>0.

3) The positive axis is a direction of condensation of eigenvalues.

4) The generalized eigenfunctions are complete in L2(2); they are also com-
plete in Q) in the || | z20,-norm.
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In addition Agmon [2] derived the following asymptotic formula for the distri-
bution of the eigenvalues of the problem (xx) {see [2], Theorem 15.1):

(1.3) N= 3 1 2]

— tn/z tnlz
vl Ty o

as t—> 4-oo, where {1,} is the sequence of the eigenvalues of % each repeated ac-
cording to its multiplicity and {2 denotes the volume of 2.

In the mon-coercive case, i.e., in the case that a{x) vanishes at some poinis of
I', the problem (++) was investigated by a few authors, e.g., It [10], [11] and Kaji
[13]. It6 [10], [11] treated the problem () in the case that y(x)=0 and c(zx)=0
on I'. Under the assumptions that a(z)=0 on I', that b(x)=0 on I" and that
a(x)+b(x)=1 on I', he proved that ¥ is a self-adjoint operator in L2(2), that the
estimate (Uu, u)r2,=0 holds for any ue G (A) and that the results 1) and 4) hold
(see [10], Theorem 10; [11} Chap. II, Theorem 7.4). Here (, );2, is the inner
product in L%(2). Kaji [13] implicitly treated the problem (xx). Under the as-
sumptions that a{z)=0 on I and that b(x)>0 on I'y={& € I"; alx)=0}, he proved
that the operator ¥ is closed and that the resuits 1) and 2) hold (see [13], Theorem.
1 and Theorem 3).

In this paper we shall prove

THEOREM 2. 1) Assume that the following conditions (A) and (B) hold:
(A) a(r)=0 on I'.
(B) blx) >0 on Iy={xel; alx)=0}.

Then the operator U is closed and the results 1)-4) hold.
i) In addition to the conditions (A) and (B), asswme that the following con-
dition (C) holds:

© div r(x) =0 on I'.

Here divy is the divergence of the vector field y with respect to the Riemamnnian
metric of I’ induced by the natural metric of R".

Then the asymptotic formula (1.3) holds.

The proof of Theorem 2 ii) gives an additional result (see §7, Theorem 7.3).

COROLLARY. Assume that the conditions (A), (B) and (C) hold. Then the
adjoint operator A* of A in the Hilbert space L2(Q) is given by the following:
¢) The domain of A* s
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:0} i
r
d) For ve QHU*), Aro=—4Iv.
In particular, if r(x)=0" and clx)=0 on I', then U is a self-adjoint operator
bounded below.

Qe = {v € H(Q); a(—;’%—w) + (b—ic)

REMARK 1.2. By the last statement, we can define the half power (A+k)i/2
of the positive self-adjoint operator (X +k) for some constant k. Further the opera-
tor 1(U+k)M2 generates a group of unitary operators of class (Cy). Hence, by the
well-known procedure (cf. {201, §2; [21] Chap. 8, §1), we can apply corollary to a
mixed problem for the wave equation and obtain the existence and uniqueness
theorem and the energy inequality (ef. [11], Chap. IV).

Next, as another application of Theorem 1, we shall give briefly the existence
and uniqueness theorem for the heat equation with the boundary condition .
Let 0<T<oo, Q=02x%10, T[ and F=I"X]0, T[ (the lateral boundary of Q). We
shall consider the following mixed problem: For given functions f, ¢ and u, de-
fined in @, on 3 and on 2 respectively, find a function % in Q such that

ou .
2% _ pu= ,
o u=f n @

() =¢ on X,

z

{ Bu=aqa (%;i +7’u> + (b+ic)u

{ Ulymo =1%o on £.

If a(x)0 on I", then the following result is valid for any even integer s=>2
{ef. [3], Theorem 11.1; {15] Chap. 4, Théoréme 5.8):

5) TFor any fe H>*/%(Q), any ¢ € H=+12s/2714( 3} and any u, € H*t{Q) satisfying
the compatibility conditions (1.4) below, there exists a unique solution u € Het2s/2H1(Q)
of {#xx). For the definitions of the spaces H®*#/%(Q) and He1/2s12t14(3) we refer
to Lions and Magenes [15] Chap. 4, §2.

The compatibility conditions. There exists a function w € H**2:/271(Q) such that

-CB’LU:QS, w!t:l):u() ’

/0
61< ;tv —Aw)

1) In this case, the condition (C) is automatically satisfied.

. .8 1
35S =0 » 0§.7<E— e

t=0
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where 8,=0/6t.

REMARK 1.3. In the case s=0 the result 5) remains valid with (1.4) replaced
by the following:

(1.4) Bw=4, Wmg =10

(see [15] Chap. 4, Théoréme 4.3).

In the case that a(z) vanishes at some points of I', the problem (x**) was in-
vestigated by It6 [10], [11]. He treated the problem (+#x) in the case that r(z)=0
and ¢(z)=0 on I'. Under the assumptions that a(x)=0 on I', that b(zx)=0 on I
and that a(x)+b{x)=1 on I', he constructed the fundamental solution of the prob-
lem (s#x) (see [10], Theorem 1).

Arguing as in the proof of Théoréme 5.8 in Chap. 4 of [15], we obtain from
Theorem 1 iii)’

THEOREM 3. Assume that the following conditions (A) and (B) hold:
(A) a{x)=0 on I'.
(B) b(z) >0 on Fy=xel; alx)=0}.

Then we have for any even integer s=2:

5)  for any f€ H***Q), any ¢ € H 4212314 3y and any u, € H+(Q) satisfy-
ing the compatibility conditions (1.4), there exists a unique solution u € He2s12+1(Q)
_ of the problem (xxx).

REMARK 1.4. The result 5)’, compared with the result 5), involves a loss of 1
derivative only with respect to the lateral boundary data &.

REMARK 1.5. In the case s=0 Theorem 3 remains valid with (1.4) replaced
by (1.4).

The plan of the paper is the following: In Section 2 we reduce the problem
(*) to the study of a first order pseudodifferential operator on the boundary by
means of the Dirichlet problem and the non-degenerate oblique derivative problem.
In Sections 3-5 we make this study. In doing so, we use Theorem 4.2 of Hérman-
der [9] in Section 3 and Theorem 8.1 of Melin [16] and a method of Agmon and
Nirenberg [1], [2] in Section 4. This is the main part of the paper. In Section 6
we combine the results Sections 2-5 to prove Theorem 1. In Section 7 we prove
Theorem 2.

I would finally like to thank Professors Daisuke Fujiwara and Kbichi Uchiyama
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for suggestions which led to improvements in part iii)’ of Theorem 1. I would
algo like to thank Professor Atsushi Inoue for his advice and constant encourage-
ment throughout the work.

§2. Reduction to the boundary.

First we consider the Dirichlet problem: For given ¢ € H*Y2(]") with s€R,
find w in 2 such that

2+ Hw=0 in 2,
(I)

w|p=¢ on 1.

From Proposition 1.1 in Chap. III of Grubb [6] and Theorem 4.1 of Agranovi¢ and
Vigik {3], we obtain

THEOREM 2.1 {Poisson operators). Let 2=Re!’ with R=0 and 0<0<2z. Then
we have:

i) for any s€ R, there is a linear map PA): H V) — H*(2) such that for
any ¢ € HYD), w=P e is a unique solution of (1) and that the estimate

(2.1) Catlolgs—vem Zlwlaso ZColplgs—12y

holds for some constant Cp >0 depending only on 2 and s;
i) for any integer s=2, there is o constant Rs;(6)>0 depending only on €
and s such that if |i\l=R=R;(0) then the a priori estimate

2.2) HMI%s:g;HMﬂ[M%2@éczz(ﬁ)(lsol%s—uz(rﬁ1213‘”2190132@

holds for some constant Cy,(0)>0 depending only on 6 and s.
Further it follows from Theorem 1.1 in Chap. III of [6] that for any s€ R the
mapping T(4)=BP):
0 .
2.3) o ‘@Q(ZW:a(g (PA)e) 1 Lt r</>> +(b+ic)e
is continuous from H*"V2(I") into H*~3/%(I}. More precisely, T(2) is a first order
pseudodifferential operator on I" (cf. [8], Theorem 2.1.4; [19], Theorem 14).

Next we consider the non-degenerate oblique derivative problem: For given
fe H¥Q) with s=2, find v in £ such that
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A+dv=f in 2,
(II)

Bow= (-*-H’?)) =0 on I
r

Here 2=Re¢* with R=0 and 0<8<2x.

Note that the mapping T,(3)= B, P(A): H V) — H*3%([") is a first order
elliptic pseudodifferential operator on I” (cf. §3, (8.1)). Now it is easily seen (ef. [19],
Theorem 10) that for given f¢€ H*~%(2) with s=2 there exists a solution ve H(Q)
of (II) if and only if there exists a solution ¢ € H*"Y/2(I") of the following equation:

2.4) - BCAE,Sf on [,

where C(2): H*%(R")— H*(R* is the fundamental solution of (i+4) and E,:
H%(2) — H*"*(R") is a well-known extension map defined for any positive integer
k=s—2 (cf. [15] Chap. 1, Théoréme 8.1; [17], p. 340).

Hence we obtain from Theorem 3.3 (ii) in Chap. I of [6] and Theorem 4.1 of
[3] the following

THEOREM 2.2 (Green operators). Let i=Re*® with R=0 and 0<0<2zx. Assume
that 1A|=ER is so large that the problem (II) has a unique solution v¢& H2RQ) for
all fe LAQ). Then we have:

1 for cmy s=2, there is a linear map G,(2): H2(Q)— H*(Q) such that for
any e H=¥Q), v=0G,A)f is a unique solution of (II) and that the estimate

(2.5) Cos(0) M Al zs-200 S W0l o0y S Coa(O) | f 1 ro—200,

holds for some constant Cyu(0)>0 depending only on 6 and s; furthermore,
v=GA) f can be expressed as follows (see (2.4)):
2.6) GoA f=CAE,fo— PATo(A~HBoCA) E,f))

where To(A)™t: H*33{[") — H*"VT) is the tnverse of Tu(A);
i) for any integer s=2, there is a constant B,{0)>0 depending only on 0 and
s such that if [2|=R=R,(6) then the a priori estimate

2.7 [olEs @+ A1 [vliE2i0, < Coal0) (| F ra-200, + 1212 f R 20))

holds for some constant Cy(6)>0 depending only on 6 and s.
Arguing as in §2 of Kaji [13], we can easily obtain from Theorem 2.1 i) and
Theorem 2.2 1) the following

PROPOSITION 2.3. Let 2=Re' with BR=0 and 0<0<2x. Assume that |2|=R is
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so large that the problem (II) has a unique solution ve HQ) for all fe L2(Q).
For given fe H" Q) with s=2 and given ¢ H U there exists a solution
u € H{Q) of the problem

A+ Hu=f in 2,
()

fBuEa(—gl—i—ru)-i—(b-Hc)u on I,
n

r
Sor some t<s if and only if there exits a solution ¢ € HY2(I") of the equation
TAo=¢— (b+ic)v|, on I,

where v=0,{A) f € H*(9).
Furthermore, the following relations hold:

2.8) u—v=LPRA)e m Q.

2.9) p=(u—)|p on I'.

§3. Hypoellipticity of 7(4).

The principal symbol of the pseudodifferential operator T(2)=RBP(1) defined
by (2.3) is

3.1 alx)(|&l+ir(x, &)

{cf. [8], p. 202). Here x={xy, 3, * -, Z,—1) are local coordinates in I and &=(&,, &,,

-+, &,-1) are the corresponding dual coordinates in the cotangent space T*I” and

[&] is the length of & with respect to the Riemannian metric of I’ induced by the

natural metric of R*, and y(x, & is the principal symbol of the vector field y(x)/i.
The second symbol of T(2) is

8.2) blx)+ %a(x)(lél'zwx(é, £)— (n—1) M(x)) +ic(x)

+a pure imaginary term of order 0 independent of 2

(ef. [5], §3). Here M(x) is the mean curvature at = of the hypersurface I'CR*
and w, is the second fundamental form at x of I”, and £ is the tangent vector of
I’ at x corresponding to € € T*I" by the isomorphism: TXI'— T,I" induced by the
Riemannian metric of I" where T.I" and T*I" denote the tangent space of I" at
z and the cotangent space of I' at 2 respectively.



268 Kazuaki TARA

Let T(2)* denote the formal adjoint of T(2). Using (3.1) and (8.2), we can
write down the symbol of T(A)*. Its principal symbol is

8.3) alx)(jg]—ir(, &) -
The second symbol is

(3.4) biz)+ %a(x) (1&]"20,(&, &) — (n—1) M(x)) — div ay(z) —ic(x)

-+a pure imaginary term of order 0 independent of 4.

Here div ay is the divergence of the vector field ay with respect to the Riemannian
metric of 7.
Now we can prove

PROPOSITION 3.1. Let 1=Re with R=0 and 0<8<2x. Assume that the fol-
lowing conditions (A) and (B) hold:

(A) a(z)=0 on I.
B) blz)>0 on Dy={xel; alx)=0}.

Then we have for any s€ R:
i) of e Q) and T(Ayec HYXI), then it follows that ¢ € H* " 2([");
i) if ¢ @I and TA)*¢ € H=V2(I), then it follows that ¢ € H—*tV{I),

ProOF. i) It is easily seen from the conditions (A) and (B) that the symbol
of T(2) (see (3.1) and (3.2)):

alx)(|§l+ir(e, &)+ <b(x) + %a(x)(lsl‘zwf(é, &) — (n—1) M) +ic(z)
+a pure imaginary term of order 0 independent of 2> +lower order terms

satisfies the conditions of Theorem 4.2 of Hormander [9] with m’=0, p=1 and
6=1/2. See the proof of Theorem 8.1 of Kannai [14]. Hence there exists a
parametrix E(2) € (L)} 15(I") (for the definition, we refer to {91, p. 158} of T(2) such
that the symbol of E{(2) T(2)—1I is 0, where I denotes the identity operator. Since =
EMNTRe)+UI—EAX T and T()ee H= VI, it then follows that ¢ € H*"V/*([).

i) The proof is similar to that of part i). It follows from the condition (A)
that |grad a{x)|? < Calz) for some constant C>0 and hence that [divar{z)|=
C’(alz)++/a (@) for some other constant C’>0. Hence, as in the proof of part i),
it is easily seen that the symbol of T(2)* (see (3.3) and (3.4)):
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a(@) (1§l —ir(x, &)+ ble) + —l—a(x)(lél’zwx(é, §)— (n—1) M) —div ay () — ic(x)
2

-+a pure imaginary term of order 0 independent of 2> +lower order terms

also satisfies the conditions of Theorem 4.2 of [9] with m’=0, p=1 and §=1/2.
Thus the proof is concluded exactly as in part i).

§4. Estimates for T(1).

Let A=(1—4')"% where 4’ is the Laplace-Beltrami operator corresponding to
the Riemannian metric of I". The following lemma is essentially due to Melin [16].

LEMMA 4.1. Let 2=Re*® with BR=0 and 0<<0<2x and let s€ R and t<s. There
are constants Cy >0 and Ciy depending only on A, s and t such that the estimate

(4.1) Re (4** T(2)¢, @)z Z Culolie—12a — Chlolii-120

holds for any @€ C=(") if and only if the following conditions (A) and (B) hold:
(A) alx)=0 on I'.

(B) blx) >0 on Iy=wel; alz)=0}.

Here ( , )iz, 18 the inner product in L2(T).

PrRoOOF. First note that by the same argument as in the proof of Theorem 7
of Fujiwara [4] we can localize the estimate (4.1). Now we find from (3.1) and
(3.8) that the principal symbol g (x, €) of Re (A=1T(2)) is

4.2) 0z, &) =alx)lgl® .

Hence ¢,,=0 on the space of non-zero cotangent vectors T*I'\0 if and only if
a{x)=0 on I, ie., the condition (A) holds. Thus we assume that the condition
(A) holds. Let X={(, &€ T*I'\0; ¢ulz, &§=0}. Then it follows from (4.2) that
2={{z, &) € T*I\0; alz)=0}. Further it follows from the condition (A) that
lgrad a(x)|2<Ca(x) for some constant C>0, which implies that a{x) vanishes at
least to the second order. Taking this into account, we obtain from (3.1), (3.2),
(8.3) and (3.4) that the real part of the second symbol of Re (42-1T(2)) on X is

blz)lg[>t .
Hence, applying Theorem 3.1 of Melin [16] to Re (4*'T(1)), we find that the
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estimate (4.1) holds for any ¢e C=(I") if and only if the conditions {A) and (B)
hold. In fact, it is sufficient to note that ‘f}quS:o on X, since a{x) vanishes at
least to the second order. For the definition of rI’T’rlﬁquS, we refer to [16]. The
proof is complete.

From Lemma 4.1, we can obtain

PROPOSITION 4.2. Let 1=Re* with R=0 and 0<0<2x and let sc R, t<s and
t*<—s. Assume that the conditions (A) and (B) hold. Then:
i) Sfor all o€ H YY) such that T(i)¢ € HY3I) we have the estimate

(4.3) lolgo-vzr < Cp (| T(A) @l ]s—vzm + @l h~vzr)

Jor some constant Ci,>0 depending only on 2, s and t;
i) for all ¢ € H2(I") such that T(2)*¢ c H*t12(["} we have the estimate

{4.3)* [@lf—srrin, éC’f;(l T(Z)*Sbl%—s“/z(r) + [ Ger1s2)

Jor some constant CE>0 depending only on 2, s and t*. Here T(1)* is the formal
adjoint of T().

PROOF. i} First assume that ¢ € C°(I"). Then, using Schwarz’ inequality, we
obtain from (4.1) the estimate (4.3).

Now we drop the assumption that ¢c C=(I'). Let ¢¢ H*1%([') such that
T(A)pe H>=Y2(I"). Then by the remark after Lemma 1.4.5 of Hoérmander [8] we
can find ¢*¢ C=(I") with 0<e<1 such that ¢*—¢ in HY2(") and T{A)e*— T(A)e
in H*Y%([") when ¢—>0. Therefore, applying the estimate (4.3} to ¢o=¢° and let-
ting ¢— 0, we obtain the estimate (4.3) for ¢ € H*V2([") such that T(i)p € H—1Y2(I).

il) First assume that ¢e C=("). Then, applying the estimate (4.1) with
t=1t*42s to p=A'"%¢, it follows that

(4.4) Re (472 T(*¢, ¢) 2 = Cu| 472G he-vizer — Chl A2 P e reavizer,

since
Re (4*7'T(2)¢, @)y =Re (T(2) A*"*¢, )12, =Re (A= T(2)*¢, B) 2z, -

Hence, using Schwarz’ inequality and the fact that for any ¢ ¢ R the mapping
A2 HoR( — HO(I') is an isomorphism, we obtain from (4.4) the estimate
{(4.3)*. The assumption that ¢ € C=(I") can be dropped just like part i). This com-
pletes the proof.

To study the estimates (4.3) and (4.3)* for [2] sufficiently large, we use a
method of Agmon and Nirenberg, that is, we introduce an auziliary variable (cf.
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{11, 121, [41, [158]).
Let S be the unit cirele S=R/2rZ. We consider the Dirichlet problem: For
given g€ H*12(["xS) with sc R, find % in £x.S such that

<A e” s > w=0. in 2x8,
I
Wpys= on I'XS.

Here 0<6<2x and y is the variable in S. Note that for 0<#<2r the operator
4—¢t%%jay? 18 elliptic on 2xS.

From Proposition 1.1 in Chap. III of Grubb [6], we obtain

LEMMA 4.3. Let 0<0<2zx. For any sC R, there is a linear map 515(0):
HHY ' Sy — H* (2% 8) such that for any & H12(I'x S), 71;:,@(6)@ s @ unique
solution of (III) and that the estimate

Cial0)7 8] ms—v2irx sy SNW 1 moons) < Cus(0) |l ms—vizirxcsy

holds for some constant C,(0) depending only on 6 and s.
Recall that for any s€ R the mapping T(6)=BP6):

¢a.@@<@>¢=a(% (P63

+r¢> +(b+ic)

I'x8

is continuous from H*12(I'x S) into H*%%(I'x S) and further that 7(6) is a first
order pseudodifferential operator on I"xS (ef. §2).
For the relation between T(6)=BP(0) and T()=RBP (1), we have

LEMMA 4.4. Let 0<60<2x and le Z. For any ¢€ C=(I), we have
{4.5) T(0) (pQe™) = T(2)pRe™ ,
where 21=1%"°,

Proor. It is easily seen by definition that @(0) (eReit) = P(ApRe’r and hence:
that T(6)(pQe) = T(2)p®eiv, which completes the proof.
The principal symbol of the pseudodifferential operator T1(6) is

(a(w)(1512+772)1’2+ia(w)r(x, 9 it 0=r;
P o e LA
o) sgn | AL ) T g
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{cf. [12], §4). Here 5 is the covariable corresponding to y<S in the cotangent
space T*S and e¢¥=p+iv (0<0<2n).
The second symbol of T(8) is

{ bla) + %a(wxuevw)-lmz(é, 8)— (n—1) M) +icl)

+a pure imaginary term of order 0 if f=r;
(4.7) 1 . s 2
b(x) + Ea(x)((lélz—e”’n )Tlw.(8, §)— (n—1)Mlx))+alz) sgnv

xa real term of order O+ic(x)
-4-a pure imaginary term of order 0 if 6+#=

{cf. [5], §3).
Let A=(1—4’—5%/oy?)t2. Just like Lemma 4.1, we can obtain from (4.6) and
4.7)

LEMMA 4.5. Let 0<0<2r, sC R and t<s. There are constants Cu0)>0 and
".(6) depending only on 6, s and t such that the estimate

4.8) Re (A% 1T(0)8, 3) r2irxs) < Caal0)|81s-1/2erx sy — Clal0) [ B-v2ercs)

holds for any &€ C(I'xS) if and only if the following conditions (A) and (B)
hold:

(A) a(z)=0 on T.
(B) b{x) >0 on Iy=fxel; alz)=0}.
Here { , )i2rxs 18 the inner product in L¥I'XS).

ProoF. First note that just like (4.1) we ean localize the estimate (4.8). Let
ilx, & n) denote the real part of the prinecipal symbol of T(6) (see (4.6)). Then
the principal symbol u(, &, 1) of Re (A21T(6)) is

4.9 Toslx, &, 7)=Dulz, &, p)(1E12+72) 22,

Since 0<8<2r, it is easily seen from (4.9) and (4.6) that §,.=0 on the space of
non-zero cotangent vectors (T*I'xT*S)\0 if and only if a(z)=0 on I, ie., the
condition (A) holds. Thus we assume that the condition (A) holds. Let

S={, &, y,0) e (T XT*S)\0; fale, & 7)=0} .
Since 0<<§<2r, it then follows from (4.9) and (4.6) that
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S={, & v, 7)€ (T*I'x T*S)\0; alz)=0} .

Therefore, as in the proof of Lemma 4.1, we obtain from (4.6) and (4.7) that the
real part of the second symbol of Re (42-1T()) on I is

b(@)([&12+p7 22 .
Hence the proof is concluded exactly as in Lemma 4.1.

Using Lemma 4.4 and Lemma 4.5, we can prove

PROPOSITION 4.6. Let 1=1%%* with l€ Z and 0<0<2zx. Assume that the con-
ditions (A) and (B) hold. For any s=1/2, there is a constant R;(0)>0 depending
only on 6 and s such that if [A1=12=R;(0) then:

i) for all o€ H*= V(") such that T()pe H=YI) we have the estimate

(4.10)  lolhe-v2y+ 12172l e = Cus(0) (| T(A)plhs-1r2ay + 21 T (R R2r)

Jor some constant C;(0)>0 depending only on 6 and s;
i) for all ¢ € H-=H2(I") such that T{A)*¢ € H+U2(I") we have the estimate

(4.10)* [P E—st+rizm, < CE T(2)* 15+ 121
Jor some constant CE>0 depending only on 2 and s.

Proor. i) As in the proof of Proposition 4.2 i), it is sufficient to prove the
estimate (4.10) when ¢e C=(I"). Let A([2)=0—4’+|2)¥2. For the relation be-

tween /A'/2 and A°'2(|2]) when s=1/2, we have (see the proof of Proposition 4
of [4]):

(4.11) AT12(GRe) = 4712 2]) g Qe e C=() .
Hence, using (4.5) and (4.11), we obtain

A= T(60) (p®ei™y) = A2 HT(DeQe™) = 42~ 2)) T(D) @™ ,
which gives
(4.12) (A=71T10) (9®e'™s), eQei™) s2rxsy=2r(A*H(|2]) T2, ¢)r2cr -

For the relation between the norms | |gs-vzpxs and | |gs—v2p, when s=1/2,
we have ([4], Proposition 4):

(4.13) Citlo@e | gs-112 x5y < [olEs—v2+ 12152 pl 52
ZCulo®e ys-120rvs

where C,>0 is some constant depending only on s. In view of (4.11), this can be
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rewritten as follows:

(4.14) 2rCigh| A=~H2( ])¢1L2<I’><|¢IH8 1/2<F>+12]8-1/21¢|L2<I’)
L2l A V3282 peC=(I) .

Further, if s=1/2, we have ({4}, Corollary 5):

(4.15) lo@e]g- uz(ms—[% lole »

where C,;>0 is some constant independent of [1|=I2.
In the case s>1/2, applying the estimate (4.8) with £=1/2 to F=¢Re'* and
using (4.12) and (4.13), it follows that

Re (42-(12)) T(Ap, @)z = <40 ¢

= l@s-viz g+ 1215720l ke ) — CllB) @132 -
27Cyq

Hence, taking |i]=I? so large that

C44( ) Hig 1/2>C/( )

4rCys

we have

(416)  Re (A*=(2)) T2 sohmz—gl@mm Ve + fﬁ RYIETEI I

Since
(A=A T e, @)z = {4122 T(A)e, 4 *[2])¢) 2 ,

using Schwarz’ inequality and the inequality (4.14) with ¢=T(2)¢ and ¢=¢, we
obtain from (4.16) the estimate {4.10) for s>1/2.

In the case s=1/2, applying the estimate (4.8) with t=0 to F=¢Re¥ and using
(4.15), it follows that

Re (T(1)9, )20 2 Carl6) I 2oery— -0 1 a,

2z(2]
Hence, taking [i]=I? so large that
C44(0) > 024(0)047
2 2712

we have

(4.17) Re (T(2)¢, ¢)i2r 04;(") lplZe -
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Thus, using Schwarz’ inequality, from this we obtain the estimate (4.10) for s=1/2.
i) As in part i), it is sufficient to prove the estimate (4.10)* when ¢ e C={I").
In the case s>1/2, applying the estimate (4.16) to o=A"%(]2])¢, we have

48 ReLHIATAN, P
1— Zs C44(6) — 1-2s 2
O\ =220 p - vy + o e [T AT (2D S e
7Cys

since

Re (4*7H|2]) T(2)9, p)rar=Re (T A*(|2))¢, )2y
=Re (4 2) T(A)*¢, &)rzer -

Hence, using Schwartz’ inequality and the fact that for any ¢ € R the mapping
A2([2]): Hot#([")— H(I") is an isomorphism, we obtain from (4.18) the estimate
(4.10)* for s>1/2.

In the case s=1/2, applying the estimate (4.17) to ¢=¢, we have

Re (T()*¢, &)z =Re (T(A)¢, ¢)zm= l¢]L2(F> .

Thus, using Schwarz’ inequality, from this we obtain the estimate (4.10)* for
s=1/2. The proof is complete.

§5. Solvability of T(2).

For any s¢€ R we introduce the linear unbounded operator I (2): H*1¥I) —
HH3) defined as follows:

a) The domain of ¢ (2) is DI (A))={pc H~V2(I); T(Apc H12().

b) For @6@3‘ )y T (De=T(2)e.
Since T (A))DC=(), it follows that DG (1) is dense in H*2{[) and hence
that there exxsts the adjoint operator '(3)* of ¢ (2) with respect to the pairing
of HY2([") and H™*V2([").

Similarly, for any s€ R we introduce the linear unbounded operator I (1)*:
Hs+12([ — H—st12([") defined as follows:

¢) The domain of (¥ is PG (A" =1¢ec H=12D); TQA)*pe H-12()}.
Here T(A)* is the formal adjoint of T(3).

d} For ¢e DI (A)%, T1(H*¢= T(2)*¢.

For the relation between g a* and G4()*, we have (ef. [12], the proof of
Theorem 3.2)
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LEMMA 5.1. A*CT(0)*.
In view of Lemma 5.1, by the well-known procedure, we can obtain from
Proposition 4.2 and Proposition 4.6 the following

PROPOSITION 5.2. Let 1=Re'® with R=0 and 0<8<2x. Assume that the con-
ditions (A) and (B) hold. Then for any s€ R the operator I (A): H V[ —
H="12(I") s closed and has the following properties:

I} The null space JUT (1) of G'(2) and the null space JUL (A*) of its adjoint
operator T ()* are finite dimensional.

ity The range RG () of ) in HYT) is closed and has finite codi-
mension. More precisely, R(T(2) is the orthogonal complement of JUT (A)*), thus,
codim R (T (2) =dim JUT ()*).

iy For any s=1/2 there is a constant Rs(6)>0 depending only on 6 and s
such that if 1=1%" with 1€ Z and |2|=1=R;(0) then the operator < () is one to
one and onto.

Further, using (3.1) and (3.2), we can prove

COROLLARY 5.3. Let 1=Re* with R=0 and 0<9<2z. Assume that the con-
ditions (A) and (B) hold. Then for any s=1/2 the index of < (A): H* VI —
HY2(I) is equal to 0, i.e., dim JUT (1)) =codim R(T (2)).

ProoF. For any 2=R'¢® with B’=0 and 0<6'<2z, we see from (3.1) and
(3.2) that

Ja=F )+ K@i, 2,
where K1, /) is a pseudodifferential operator of order —1. Since by Rellich’s
theorem the operator K(2, ¥): H*Y*(I") > H* V3{I") is compact, it then follows
that
(6.1 Index () =Index T (7)) .

Now choose an integer I such that I2=R;(¢’), and put 2'=[%%. Then, from (5.1
and Proposition 5.2 iii), we obtain Index '(1)=0, which completes the proof.

§6. Proof of Theorem 1.

i)’ The regularity theorem for the problem (%) follows immediately from
Proposition 2.3 and Proposition 3.1 i).

We prove the a priori estimate (1.1). Assume that u is a solution in H*(Q)
of (%) with fe H*2(Q) and ¢ € H=V3[I'). Then, applying Proposition 2.3 with t=s,
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it follows from (2.8) and (2.9) that % can be decomposed as follows: u=v+PA)¢
where v=G,(A) f € H*(Q) and o= {u—v)|r € H*"V2(["). We shall denote by C a generic
positive constant depending only on 2, s and £.

First it follows from (2.5) that

6.1) vl < CUf ie-20) -
Next, since u—v=P(2)¢p, using the estimate (2.1), we obtain
(6.2) lu—v]ke < Clolke—vizr,

Further, since T(})o=¢— (b+icjv|r€ H*Y2(['}, the estimate (6.2) combined with
(4.3) gives

(6.3) lu—2)%s0 SCO T @lEs—120y + @ Fo-1120)
§C(l¢ﬁz8~1/2<r> + 10l sz + ]@!%ﬂ—llzd’)) .

Using again the estimate (2.1) with s=f and (6.1), we obtain
(6.4) 1‘}’|%1t-1/2<ngc”u—””%mméc(”u”%nm‘i‘“f”%zﬂ—zmb) s

since £<s. On the other hand, since for any s>1/2 the restriction map: v—v|r
is continuous from H*(Q) into H*>~U%(I") (cf. [15] Chap. 1, Théoréme 9.4), we obtain
from (6.1)

olrlgs—12n C< ks @0 S ClL f o2 -
Hence, carrying this and (6.4} into (6.3), it follows that
lu—vlEs 0 = CllGs—v2r + [ f [ Es-20 + [ ulke0)

which, together with (6.1), gives the estimate (1.1).

i)’ First we find from Proposition 2.3 with ¢=s and Proposition 5.2 ii) that for
given fe H*~%(Q) and given ¢ ¢ H*Y2(I") there exists a solution u € H*(Q) of (x) if
and only if ¢—(b+icvire HV¥I") is orthogonal to the null space J1(T(1)*) of
(A*. On the other hand it follows from (2.6) that

(6.5) vir=CA)E.f |r— Tol) ™ (BCQAELS) .

Further it follows from Lemma 5.1 and Proposition 8.1 ii) that U (¥ cC=(I)
and from Proposition 5.2 i) that dim J(ST (2)*) <oo, say, dim JUT(A)*) =m.

Now denote by {¢}7,cC=(I") a basis of JI{(1)*). Then we obtain from (6.5)
that ¢—(b+ic)v|r e HY3TI) is orthogonal to JUT (2*) if and only if for each
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$;€ C=(I)
(6~6)j -y, Sfj]H —s+1/20my — ms—1/2¢ ] (“)Ekflf, <b_ic)¢'j]H*8+1/2<1‘>
+ ge-12 [ To (A H P CD ELF), (b—ic)dda-stuzn=0,
where gs—1zp[ , lg-s+i2 denotes the pairing of H*"V3(I") and H—*V/¥['). Fur-

ther, arguing as in the proof of Theorem 4.5 of Taira [17], we can easily prove
that (6.6); holds if and only if

{6.7); -1z id, ¢j]H‘s+1/2([’>+H3_2<!2)((f’ 77;‘))110“3*2(.@):0 ’

where
6.8 b= — BFCU*(B—id,20)— EECQ)* @iv 7 Told)*(b—id))@0)
~ BFC* T (b= 98 ©0) — B0 (L™ (b—ide)® 3 )

and ge-20,(( , ))my+%0 denotes the pairing of H*"*(Q) and H;***(2) (cf. [7], p. 51).
Here EF: H-%2(R™ — H;***(2) is the adjoint of E, (cf. [17], p. 340), C(n*:
H{R") — H~**2(R") is the formal adjoint of C(1), T,(2)¥*: H—=+12([") — H**3/2(])
is the inverse of the formal adjoint T, (A)* of T,(4), and & is the surface measure
on I’ defined by é(g)zs gdl’, g€ C°(R").

r

Therefore we have proved that for given fe H*%(Q) and given ¢e H*Y2(I)
there exists a solution e H*(2) of (x) if and only if for each j=1, 2, ---, m, (6.7)
holds, i.e., (f,4) is orthogonal to {(®;, ¢)}ruCHy* 2 QDHT) (m=
dim JUT(2)%)

Further, since {¢;}7,cC=(I"), arguing as in the proof of Theorem 5.3 of [17],
it follows from (6.8) that {$;}7,CC=(Q).

iii) The proof of part iii)’ requires three steps.

The first step. We shall prove part iii)’ when 1=1[%% with [ € Z and 0<6<2x.
From Proposition 2.3 with ¢=s and Proposition 5.2 iii), we obtain the unique
solvability for the problem (¥) when 1=I[%% with |2|=1=R;(6) 0<6<2z).

We prove the a priori estimate (1.2). Assume that |i]=[*=max (R;(), B.(6),
R;(0)) and that « is a solution in H*(Q) of (*) with fe H*%(Q) and ¢¢€ H*M¥I).
Then, as shown in the proof of part i)/, u can be decomposed as follows: u=v+ P ()¢
where v=G, () f € H*(Q) and o=(u—2v)|p € H=Y%I"). We shall denote by C a ge-
nerie positive constant depending only on @ and s.

Since [1]={?=max (R;(0), B.(9)), it follows from (2.2} and 2.7} that

(6.9) lullgs @+ 121 ulie S CUL A hs—20, + 1215720 f 2000
+ k12, {217 0lke )

[
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Further, since T()g=¢— (b+ic)v|rc H*-V2(I") and |2|=12=max (R,(0), R.(6), R:(0)),
the estimate (6.9) combined with (4.10) gives

6.10)  fulkso+ 128wl S CUL -2+ 12772 fliR2e
T plis-vizy + 27 P T(A) 0 R20) Z O Thrs-200+ 12172 f 52000
F1plEe-2rzery+ [T 2B Lary + VI Ts-ai2n + 212 (0Ir Baer)

On the other hand we obtain from (1.25) of Agranovi¢ and Visik [3] that
[l rlEs—var + 212 lrlen S Clvlkse 1215 9]320)
which combined with (2.7) gives
[l pls1izey 121720 ooy S CUL -2+ 121572 Fli%20) -

Hence, carrying this into (6.10), we obtain the estimate (1.2) when 21=I[2¢%
with [4]=1Zmax (R(0), B,(6), R:(6)) (0<8<2x).

The second step. We shall prove the @ priori estimate (1.2) when ¢=0 and
A=Re* with R=0 and 0<6<2x.

Arguing as in §§2, 4 and 5 and the first step with 2, I” and 4 replaced by
2x8S, I'xS and (4—¢99%/oy?) respectively, we obtain

THEOREM 6.1. Let 2=1%° with < Z and 0<0<2x. Assume that the Jollowing
conditions (A) and (B) hold:

(A) a{x) =0 on I'.
B) b(z)>0 on Ii={zel; alz)=0!.

For any integer s=2, there is a constant R,(0)>0 depending only on 8 and
s such that if |2|=12=R,(0) then for any fe H=*(QxS) and any $c H~2("xS)
there exists a unique solution %€ H*(2xS) of the problem

<2+A—e“’ ?22>7Z=f in QxS,
oy
.@aza<ﬁ+rﬁ>+(b+ic)ﬁ =d on I'xS,
on I'x8
and that the a priori estimate
(6.11) %)% cox s+ 1217 R2coxs) < Cor (6) (I Fl%s-2c0x0 0

+ uls_z“.}?H%z(QxS)‘*‘ |G 1%e~1i2rx sy + 1215‘1’215!i2<ms>)

holds for some constant Ce(6)>0 depending only on 6 and s.
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For each 8 with 0<0<2x, let [{6) be the smallest positive integer such that
12>R,0). Applying the estimate (6.11) with =0 to 2=I(6)%, we obtain

COROLLARY 6.2. Let 0<0<2z. Assume that the conditions (A) end (B} hold.
For any integer s=2, there is a constant Ce(0)>0 depending only on 0 and s such
that the estimate

[lioss < Cul0) (| (4= 22 )2

Hs=2(QX S)

+uanzs—ms>)

kolds for amy @€ H*(QxS) satisfying Bu=0.

REMARK 6.3. The above estimate also follows from the estimate (4.8) with
t=s—2 in exactly the same way as the estimate (1.1} was obtained from the
estimate (4.1) (see the proofs of Proposition 4.2 and Theorem 1 1.

Arguing as in the proof of Théoréme 5.1 in Chap. 4 of [15], we obtain from
Corollary 6.2

THEOREM 6.4. Let 1=Re* with R=0 and 0<0<2z. Assume that the condi-
tions (A) and (B) hold. For any integer s=2, there is a constant R0 >0 de-
pending only on 0 and s such that if |A]=R=R(0) then for all we H*(Q) satisfy-
ing Pu=0 we have the estimate

(6.12) s+ 1211032000 < Coa(0) (1 (2+ A ulEis—200 + [ 2172 (24 Al 2c0)

For some constant Ces(0)>0 depending only on 6 and s.

Hence from Theorem 6.4 we obtain the estimate (1.2) when ¢=0 and 2=Re*
with [1]=RZ=R(f) (0<6<2x).

The third step. Now we are ready to prove part iii)’ when 1= Re* with R=0
and 0<8<2r. Assume that |2]=R=R¢(0). Then by the estimate (6.12) we have
the uniqueness for the problem (x). Further it is easily seen that the mapping
g(2): HeY2(I)— H*Y¥I) is one to one. In faet, if o€ H*VAI) and G (De=
T()e=0, then it follows that w=P ()¢ ¢c H*(Q) is a solution of (x) with f/=0 and
$=0, hence by the uniqueness (as shown above) we have w=0, which gives that
¢=w|r=0. Therefore it follows from Corollary 5.3 that C'(2) is onto, which, in
view of Proposition 2.8 with t=s, proves the surjectivity for the problem (x).
Hence we obtain the unique solvability for the problem (%) when 1=Re® with |2|=
R=Rs(6) (0<0<2x).

It remains to prove the a priori estimate (1.2) when i1=Re'® with R=0 and
0<0<2r. For each 6 with 0<6<2x, let 1(6) be the smallest positive integer such
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that I2=>max (R,(0), B,0), Rs(6), Bs(0)). Now assume that |A]=R>=1{#)? and that u
is a solution in H*(Q) of the problem
{ A+Du=f in £,
Pu=¢ on I,

with fe H2(Q) and ¢ H=Y2(I"). Then we can find an integer [=1{¢) such that
P<R<ZL(I+1)2 Put 7/=I%%. Since PZRZ(I+1)2<412 and R—12<2]+1<L31, it then
follows that

(%)

(6.13) 21<412']; 2=212<9)] .

Further, since [2/|=01=l{0)*=max (Rs(0), Ri(0), RB;(9)), as proved in the first step,
it follows that there exists a unique solution we H*(2) of the problem

(2" + Hw=0 in 2,
{.(b’w=¢ on I,

and that the a priori estimate

(6.14) s+ 12" lwlF 20 < Coa6) (I8 Fs 1120, + 147 [ 2] B 2 1y)

holds for some constant Cg(0) >0 depending only on 8 and s.
First, using the first inequality of (6.13), it follows from (6.14) that

(%)

(6.15) lwliEscor+ 12101l 7200 S4°Cos (0) (16 Frs—vi2ery + |12 B R 1)
Next, putting v=u—w ¢ H*(f), it follows from () and (¥}’ that
A+ Dv=Ff—(2—)w in 2,
{.(Bv=0 on I.

Since {A|=R=1{8)2=R,(0), applying the estimate (6.12) to u=v and using the second
inequality of (6.13), we obtain
6.16)  |lvllEs+ 12 10] 200
<2C(0) (1S s-200y + [2— 2 P2l [|3s—20)
1A 2o+ 1212 A— 2wl B2i))
ZL2Cs3(0) (I f o200+ 121272 f 12000 +91 Al 1wl s 200, + 91 A1 H w3 200) -

On the other hand it follows from (1.22) of [3] that the interpolation inequality
Z [l wl%s-1-5 o) Z Cos w100+ 12wl 3200))

holds for some constant Ci;>0 depending only on s. Hence, carrying this into
(6.16), it follows that
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(6.17) lvliZs o+ 2 [vl3 20 <2Ces(0) (1 f o200+ 121°72] f3200))
+18Cs5(0) Ces (| Fro-100) + 121"l R2c0)

Since u=v+w, combining (6.15) and (6.17), we obtain the estimate (1.2) when
A=Re'® with |2]=R=1(0)% (0<6<2z). The proof of Theorem 1 is now complete.

§7. Proef of Theorem 2.

i) First it follows from Theorem 1 iii)’ with s=2 and Rellich’s theorem that
the operator ¥ is closed and that the results 1) and 2) hold (cf. the proof of
Theorem 15.1 of [2]). Further by Theorem 1 i)’ we have G CH*(Q) for any
positive integer k. Hence the first statement of the result 4) follows by combining
Theorem 1 iii)) with s=2 and Theorem 16.5 of Agmon [2], and the second one
follows by arguing as in the proof of Theorem of Agmon [1]. The result 3) is an
immediate consequence of the results 1), 2) and 4).

if) To prove the asymptotic formula (1.8), we first need two lemmas.

LEMMA 7.1. For all ¢, ¢ € C>(I"), we have
(1.1 (re, Plrzay =@, rPl 2y —1{o, divy-&)zea) -

In particular we have
1,,.
(1.2) Re (re, @)rzn=— > divry-o, o)z -

The proof is omitted.
LEMMA 7.2. Assume that the following conditions (A) and (B) hold:

(A) alr)=0 on I,
(B) blx) >0 on y=xel; ax)=0}.
For any

we Qe = {ue H2(9): _@uza(%% tru )+ bricu

=0} ,
r

there exists a sequence u; € C=(Q) such that Bu;=0 and u;—>u in HQ) when
j—>co.
ProoF. Take 1<0 such that part iii)’ of Theorem 1 holds for == and s=2,

and choose a sequence f; € C*(2) such that f; — (A+4)u in L) when j—>oco. Then
by Theorem 1 i)’ and iii)’ we can find a sequence u; € C*(2) such that (A+Au;=f;
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and Pu,;=0. Further the estimate (1.2) with =z and s=2 gives
”W”?ﬂ(.@)é“%‘”?ﬂ(m+1212“uj”%2<9) 22Cu(@) it

which implies that the sequence u; has a strong limit u, in H2(Q), since f; — 2+ u
in L*Q) when j—oo. Thus it follows that (A+ A)ue=lm (2+ A)u,;= (A+ NHu in L2Q)
and that Pu,=lm Pu;=0 in HY*(I"). Hence by the unigueness of the problem
{*) we have u,=u, which completes the proof.

The following theorem is the essential step in the proof of part ii).

THEOREM 7.3. Let U’ be the linear unbounded operator in L*HQ) defined as
Sollows:

¢) The domain of ¥’ is

QU= {v€H2 i Bo= a<~—rv>+ b—ic)v

=0} ]
r

d) For ve QU), Wo=—4dv.
Assume that the following conditions (A), (B) and (C) hold:

(A) alz)=0 on I'.
{B) blx)>0 on Iy={xel; alx)=0}.
{C) div y(2)=0 on I'.

Then ¥’ is the adjoint operator of ¥ in the Hilbert space L¥ Q). In particular,
of r@)=0 and clx)=0 on I, then ¥ is a self-adjoint operator bounded below.

ProoF. Let %* denote the adjoint operator of %. We have to prove that
W =U*. First we prove that AW A*. Let ve C°° YNGE). Then it follows from
Green’s formula that for all we C=(2)n P

(Hu, v)p2i0— (u, Wo)120y={(—4du, ¥)1200) — (4, — 4)12(0»

""(ull” T > <au » 'U]p) .
2D on 20

Thus, by applying the formula (7.1) to ¢=ulr and ¢=v|r, we obtain

(1.3) (W, ) 200y — (s WD) 200 = (u Ir, <—Z%—rv

(@) o),
on r 2(I)

/&y
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since the condition (C) is satisfied. Further we have

Bu a(@i +7u>+ b+icu 0
on r
= = on I’ N
Fv a(a—” -ﬂ7>+(b+ic)z7 0
on r
and by the conditions (A) and (B) we have
(@, b+1ic)#(0, 0) on I'.
Therefore it follows that
('— +7u>| > ul[’
=0 on I'.

(3 ),
on r r

Thus, carrying this into (7.3), we obtain (Mu, V)=, V)2, for all
we C=(@) N ). On the other hand we obtain from Lemma 7.2 that C=(2) n ()
is dense in g) in the || Jg2-norm. Hence we have proved that

(1.4 it veC@N G then (Uu, )2 =(u, A'v)2(p for all ue G

Now we observe that Theorem 1 remains valid with y and ¢ replaced by —7
and —c respectively and hence that Lemma 7.2 holds with ¥ replaced by %’.
Therefore, combining this and (7.4), we obtain that if v€ Q') then u, )2 =
(w, W) 20 for all ue §H). This implies that

(7.5) Wcu* .

Next we prove that %'=%*. Let ve §){U*) where §)(¥*) is the domain of A*.
Recall that Theorem 1 remains valid with y and ¢ replaced by —7 and —c¢ respec-
tively and hence that part iii)’ of Theorem 1 holds with @ replaced by &'.
Therefore, using this and Theorem 1 iii)’ with 6=r and s=2, we can find 1<0
such that the mappings A+%"): @) — L2Q) and 2+%): Q) — L2Q) are one
to one and onto. Thus there exists v,€ §)(¥’) such that (A+%)v,=(A+UA%0.
Further it follows from (7.5) that for all ue ()

((A+Wu, v—ro)z2000 = U, A+ A*)v—(A+U")vo) 12000
=0,

which gives that
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v=0v,€ PA’),

since the mapping (A+%): 9(¥) — L3(Q) is one to one and onto. Thus we have
DK PE) and hence by (7.5)

A =* .

The last statement follows from the result 2) in part i). In fact, since the
negative axis is a ray of minimal growth of the resolvent, it follows that if A=9Y*
then % is bounded below. The proof is complete.

End of proof of part ii). By Theorem 1 1)’ we have QU CH*(Q) for any
positive integer k. Further, since Theorem 1 remains valid with y and ¢ replaced
by —7 and —c respectively, we also have Q(U)cH™(Q) for any positive
integer k. Hence the asymptotic formula (1.3) follows from Theorem 7.3 and
Theorem 1 iii)’ with s=2 by application of Theorem 15.1 of {2]. The proof of
Theorem 2 is now complete.

Further we can prove the following

THEOREM 7.4. Assume that the following conditions (A), (B) and (D) hold:

(A) alx) =0 on .
(B) bz} >0 on I'y={wel; alx)=0}.
D) bl)- —‘i(z“—)div o) =0 on I'\To.

Then we have the estimate
(7.6) Re (Uu, )20 =0

for all ue QE).

ProOF. In view of Lemma 7.2, it is sufficient to prove the estimate (7.6) when
we C=(@) N PE). Since ue C=(Q) and satisfles the boundary condition:

_@uzac;ﬂ +7u>+(b+ic)u =0,
n

r

it follows from the conditions (A) and (B) that
(1.7 ulp=0 on [

and that
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i

=7 (ulr)+ <—+w )u
r a

Hence, using (7.7), (7.8) and (7.2), we obtain from Green’s formula

(7.8) _ou

on INU,.
on

r

Re(¥u, w2 =Re{—4u, 4) 120

= <?u, ﬂ-) +Re<—%l , u]r)
=\ 0x; 05 /120 onir 2

gRe<_-al 9”’[[’)

on | r 20

:S (i-idm)luyp]zdr
v\ \a 2

=0,

since the condition (D) is satisfied. (Here dI" is the hypersurface element of I'.)
Thus we have proved the estimate

Re (Uu, u)r2(0=0

for all ue C*(@)N ). This completes the proof.
Combining Theorem 7.3 and Theorem 7.4, we obtain

COROLLARY 7.5. Assume that the following conditions (A), (B), (C) and (D)’
hold:

(4) a@)=0 om I'.

(B) biz)>0 on Iy=lwel; alz)=0}.
(O] div 7(z)=0 on I.

{o) b{x) =0 on I'\T,.

Then we have the estimates:
Re (Wu, %) 12(5=0 Jor all uwe Q);
Re (U*v, v) 120 =0 for all ve G .
Here A*=9" is the adjoint operator of U in the Hilbert space L*9).
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