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Let P(x, 8) be a linear partial differential operator with real analytic coefficients.
We define for each non-singular characteristic element (i, &oo0) of Pz, d) its multi-
plicity d and irregularity =1 so that ¢=1 if and only if P(x,d) satisfies E. E. Levi’s
condition at (x,, &c0).

Then, we construet null-solutions for each characteristic surface S of constant
multiplicity. If S is regular, i.e. ¢=1, there exists a null-solution with an arbi-
trarily prescribed regularity or singularity. If S is of irregularity ¢>1, then for
each 1<s<g/(c—1) there exist an ultradifferentiable null-solution of Gevrey class
{s} and an ultradistribution null-solution of Gevrey class (s). In any case there are
infinitely differentiable null-solutions.

Lastly, we prove that there is a homogeneous solution whose singularity spec-
trum coincides with a given real bicharacteristic strip (or with a given real ele-
ment of a certain type of complex bicharacteristic strip) and having a given
regularity or singularity as in the case of null-solutions.

L. Hérmander [10], [11] has shown that there is always an infinitely differenti-
able null-solution for any linear partial differential operator with constant coeffi-
cients and any characteristic hyperplane. As far as we know, however, no proofs
have been published of the existence of infinitely differentiable null-solutions in the
variable coefficient case even for simple characteristic surfaces.V

We employ S. Mizohata’s method in [22] where he constructed finitely differ-
entiable null-solutions for simple characteristic surfaces. The method may be traced
back to J. Hadamard (51, §§49-53, P. D. Lax [18] and D. Ludwig [20]. We con-
struet a formal solution of the form

1 After the paper was completed the author was informed from Prof. J. Persson that he
had proved in [29] the existence of an infinitely differentiable null-solutions for every
totally real characteristic surface of constant multiplicity.
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0.1) U= 3 usla)0;(p()),

j=—co

where u;(x) and ¢(x) are analytic functions and @;(t) is a sequence of funections of
one variable satisfying

d

E@(t) =;(t),

0.2)
and then we prove the convergence of (0.1) in a suitable topology by estimating
the coefficients u;(x). Interesting is the fact that w;(x) do not depend on the
sequence @;(t).

When P(z,0) satisfles Levi’s condition relative to the characteristic surface S
{or the characteristic function ¢(x)), we may put u;{x)=0 for <0 and can estimate
%;(z) much more easily than the irregular case. Actually this case has been dis-
cussed by J. Vaillant [26] when the multiplicity is at most double and by J. -C. De
Paris [3], [4] when the multiplicity is arbitrary and the estimates of u; we need
are already known.

Originally Levi’s condition was introduced by E. E. Levi [19] and A. Lax [17]
in the case of two independent variables for the purpose to characterize such
weakly hyperbolic linear partial differential operators P(z,3) that the Cauchy
problem of the equation P(x,8)u=0 is correctly posed in the category of infinitely
differentiable functions. Their result has been generalized to the case of # inde-
pendent variables by S. Mizohata - Y. Ohya [23] under the restriction that the multi-
plicity of characteristics is at most double and then by J. Chazarain [1] without
the restrietion as far as the sufficiency part is concerned.

In order to apply to the construction of formal solutions (0.1) we need a de-
composition of the operator P(x,d) into a polynomial of differential operators due
to J. -C. De Paris [2]. The definition of irregularity relies also on the decomposi-
tion. The decomposition is global in the cotangential variables £&. When a char-
acteristic element (x,&0), a characteristic surface S or a characteristic function ¢
is given, it is desirable, however, to formulate the decomposition microlocally in
the sense of M. Sato-T. Kawai-M. Kashiwara [25]. J. Vaillant [26] makes an
attempt by use of the algebraic localization. We prove with the aid of a version
of Ritt’s lemma (ef. Hervé [9]) that a microlocal decomposition implies a global one
as far as the characteristic element is a non-singular point on the characteristie
variety.

In the irregular case we estimate the coefficients u;(x) by Y. Hamada’s
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ingenious method in [8]. (Cf. also Chapter II, §5.2 of M. Sato-T. Kawai-M.
Kashiwara [25].)

Null-solutions are solutions with minimal supports. In the last section we
construct solutions with minimal singularity spectra generalizing results by M.
Zerner [28], L. H6rmander [12] and T. Kawai [13]. In particular, we obtain a
necessary condition for analytic hypoellipticity.

The author wishes to thank Dr. K. Ueno for valuable discussions. He owes
also to Prof. T. Ichinose for an improvement of Proposition 3.4.

1. Irregularity of nen-singular characteristic elements. Le{

{1.1) Plx, 0= Y aq.(x)o”

lal<m
be a linear partial differential operator of order m with coefficients a.(x) real
analytic on an open set 2 in R". The a.(®) may be complex valued. We employ
the notation
1.2) 9%=071- - - 9= (0/0xy) %1+ - - (8]02,) "
to avoid confusion with Hérmander’s
D¥=(—10/0x,)%t- « - (—10/02,)"".

Since the coefficients a.(x) are continued analytically to a complex neighbor-
hood V of 2 in C» P(z,3) is also considered to be a linear partial differential
operator with holomorphie coefficients in V.

The principal part of Plx,d) is denoted by piz, d):

{1.3) plz, 8) = S aalz)on.

al=m
We always assume that P(x,d) is non-degenerate or that pix, £)%0 for any fixed
zeV.
A point {xy, &o0) in S*Q=(T*Q\2)/R; or in P*V=(T*V\ V)/C* is said to be
a characteristic element of Pz, 9) if

D(%g, &) =0.

{gpo denotes the class of &.) It is said to be mon-singular if it is on the non-
singular part of the characteristic variety.

Nip)={(z, &) € P*V; plz,£)=0}.

Then the multiplicity d is defined as usual; under a suitable coordinate system
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there are holomorphic functions p{x, &) and 2(z,&’) on a neighborhood of (&) so
that plz, &) is decomposed as

(1.4) pla, §)=p(, &) —2(z, &)

with o(xs, &)#0 and &~ (@, £)=0. Here &’ denotes (&, ---,&,). Since plx, &) is
homogeneous in &, so are the factors p and & —2{z, &').

In order to show that decomposition (1.4) is realized by polynomials in &, we
make a few preparations.

We denote by (9 the ring of germs of holomorphic functions on a neighbor-
hood of x, and by (J[£] the ring of polynomials in &=(¢, ---,&,) with coefficients
in (9. Since (9 is a unique factorization domain, so is (J[£].

Let K{z,£&) be an irreducible polynomial in (J[€] which is non-degenerate in
the sense that the principal part k(x, &) does not vanish at z,. We may assume,
then, without loss of generality that the coefficient of & with the highest degree
is one. If (x,, &, is a non-singular zero of Kiz,£&), such that grad: K(x,, &) is not
proportional to (1,0, ---, 0), then K(z, &) is decomposed as
(1.5) Kz, &) =px, &) (& — A(x, &)
with holomorphic functions # and 1 defined on a neighborhood of (z, &) such that
2%, £0) %0 and &,,—2{x, £)=0. In this ecase the multiplicity is always one. For,
otherwise, the diseriminant of K with respect to & would be identically zero so
that K(x, & would be divided by a polynomial of lower order.

LEMMA 1.1. Let K{z, & be a non-degenerate irreducible polynomial in (I}
with decomposition (1.5). If a polynomial Az, &) in (€] is divisible by & —2(z, &)
as a holomorphic function on a meighborhood of (%o, &), then it is divisible by
K, &) in Ol

PrOOF. Clearly the function

Flz,8)=A(w,§)/K(z,§)
is defined and holomorphic outside the variety N(K)={(z, &) ¢ C*; Kz, & =0}. By
the assumption, Fiz, &) is holomorphic on a neighborhood of (x,, &) which lies on
the non-singular part of N(K). The analytic continuations of the numerator and
the denominator prove that Flzx, &) is holomorphic on the connected component of
(2o, &) in the non-singular part.

On the other hand, since K(x, &) is irreducible, it follows that the non-singular
part of N(K) is connected when z is restricted to a suitable neighborhood V of 2,
{cf. Hervé [9]). Hence Fliz,¢) is holomorphic on VX C" outside an exceptional set
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of ecodimension 2 and hence on VX C™ by Hartogs’ continuation theorem. Then it
is easy to see that Flz, &) € (€]

PROPOSITION 1.2. If (2o, &00) is a mom-singular characteristic element of
multiplicity d of Plx,9), then there are a homogeneous polynomial Q(x,§) and an
irreducible homogeneous polynomial Kz, &) in QL] such that

(1.6) p(z,8)=Qlx, & K(x, &)
with Q{xy, &y)#0.

PrOOF. Let

r_—h

ple, &)= I p;lx, §)*

i 1

be the irreducible decomposition in ([£]. Since p(x, &) is non-degenerate and homo-
geneous, so are the irreducible factors p;(z,&). The factor &—2{z, &) in (1.4)
divides the right hand side and hence a factor Kix,&)=p,{x,§) as a holomorphic
function in a neighborhood of (xo, &). Applying Lemma 1.1, we find that Kz, &)
divides p(x, &) in Of€]. Let Q(x, &) be the guotient.

We call Kz, £) the irreducible factor associated with the characteristic element
(o, Ego0)

REMARK. Our method applies also to the proof of equivalence of two defini-
tions of hyperholic operators of constant mulfiplicity, which was originally proved
by S. Matsuura [21] by making full use of the hyperbolicity.

THEOREM 1.3 (Cf. De Paris [3] [4]). Let (2, &) be a non-singular character-
istic element of multiplicity d of Pz, d) and let K{z,&) be the associated factor of
plx,&). Then there are non-negative integers or +o do, dy, + -+, dp=d and Linear
homogeneous differential operators @Qi(x,0) with holomorphic coefficients on «
neighborhood Vo of x, such that

m

a.m P, 0)= 2 Qilx, 9)K(w, 0)%
and that
Qilx,0)=0 if di=+co,
and
ord (Q:(x, 9)K(x, 8)%) =

and
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Qilw, §) %0
on & neighborhood of (z,, &) in the zeros N(K) of K{x,&) if d;<oo.
Proor. Using @(z,£) in (1.6), we define Q,.(z, 8)=Q(z,5). Then
R(z, 8)=P(z, 0)—Q,(z, 0)K{z, 8)¢

is an operator of order <m—1. If the homogeneous part R™(z, ) of order m—1
is zero, we define d,,—;=co and Q,—,(x,3)=0. Otherwise, let d.-, be the largest
integer such that (&—i(x, &)™ divides R™'(x, &) as a holomorphie function on a
neighborhood of (x,,&;). Then it follows from Lemma 1.1 that there is a homo-
geneous polynomial Q,,,(z, &) € (J[&] such that

Er e, &) =@u-1(w, ) Kz, §)%m-1.

If Qn-1(x, &) vanishes on a neighborhood of (z,,&,) in the zeros of K(x,£), we can
rajse the exponent d,—; by 1 contrarily to the definition of d,_,. Hence it does
not vanish identically. We can repeat the same procedure m times to obtain d;
and @Q;(z, 9).

DEFINITION 1.4. We define the irregularity o of the characteristic element
{Zo, £9o0) (or the associated factor K(x,2)) of Pz, d) by

1.8) o=max {1, d—d;)/{m—1i); 0<i<m}

that is, the maximal slope of the Newton polygon associated with the graph
{G, d;); ©=0,1,+--,m} (cf. the definition of the irregularity of singular points of
an ordinary differential operator in [15]).

d; and Q;(z,8) in the decomposition (1.7) depend on the coordinate system but
it is easy to see that the irregularity ¢ does not.

When o=1, we say that the characteristic element (x,, &0) (or the associated
factor K(x,&)) is regular or that P(v,0) satisfies Levi’s condition at (xy, &0). (Cf.
E. E. Levi [19], A. Lax [17], S. Mizohata-Y. Ohya [23], J. Vaillant [26], J. -C. De
Paris [3], [4] and J. Chazarain [1].)

When ¢>1, we say that (z,, &o0) (or K(x, &) is {rregular.

We consider only non-singular real analytic characteristic surfaces S in 0.
Namely S is defined by ¢(x)=0 with a real valued real analytic function ¢(x) de-
fined on a neighborhood of S such that grad ¢(x)#0 on S, and (z, grad o{x)co),
x €S, are non-singular characteristic elements of P(x,8). It is easy to see that
the multiplicity d and the irregularity ¢ of (v, grad ¢(x)oo) are constant on each
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connected component of S. We call them the multiplicity and the irregularity of
the component. When the multiplicity (resp. the irregularity) is one, S is called
simple (resp. regular).

The surface S={xe 2; p{x)=0} is characteristic if
1.9) »(z, grad ¢(x)) =0 whenever o(x)=0.

If we can choose more strongly a real valued real analytic function ¢ with S=
{¢(x)=0} such that

(1.10) plo, grad o)) =0,

then we say that S is a totally real characteristic surface. This means that S is
imbedded in the one-parameter family S,={z; ¢(x)=1} of characteristic surfaces.

A function ¢ satisfying (1.10), complex valued in general, will be called a.
characteristic function of P(x,3). A characteristic function ¢ is said to be non-
singular (resp. simple or regular) at x if grad ¢(x)#0 and the element (x,
grad ¢(x)co) is non-singular (resp. simple or regular).

We admit that the coefficients a.(x) are complex valued. Therefore, a real
characteristic surface S is not necessarily totally real. We have, however, the:
following.

PROPOSITION 1.5. For each mnon-singular point x, in a real characteristic
surface S we can find o holomorphic characteristic function ¢ defined on a com-
plex neighborhood Vo of x, such that S is the zeros of ¢ in V, and that grad ¢
never vanishes on S. Moreover, for each 0>0 we can find V, and ¢ such that
either larg o(x)| <0 or larg ¢(x)—x|<8 whenever x is in the real meighborhood
Vo8 of .

PrOOF. For the sake of simplicity we assume that z,=0. Suppose that S is
defined by ¢(x)=0 with a real valued real analytic function ¢ on a neighborhood.
of S such that grad ¢(z)0 on S.

Since (0, grad ¢{0)c0) is a non-singular characteristic element of Pz, ?d), we
have decomposition (1.4) of plz, &) such that (x, grad ¢(z)) are zeros of the factor
& —2x,&). Clearly a solution ¢(x) of the first order non-linear differential equation

1.1y (@) _ X<x, do() >= 0

0%y ox’

is a characteristic function. We solve this under the initial condition

(1.12) ¢0,2")=¢(0,2).
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As is well known the solution is obtained by integrating Hamilton’s canonical

equations
da, dzx; ailxz,p) .
:1} = ':2,'.';“;
dt dt 0g; J
dp;  92{z, p’) .
1.13 2 A E) D i=1,2, -,
de _
F7 2z, p')

under the initial conditions

%:{0)=0; x;(0)=y;, 7=2,8,---,n
p:(0)=200,9"; p'(0));

1.14
e PO="220,y), j=2,3,-,n
x]

p0)=¢(0,y")

- Z DiT—
ayj 6%

Jj=2,---,7n, are constant on each trajectory of (1.13). Since the initial values are

and then eliminating ¢ and y’. It is known that p,—2i(z,»") and

chosen so that they vanish on the initial surface ¢=0, it follows that p;=d¢/dx;
and that ¢ is a solution of (1.11) and (1.12). Then ¢(x) is constant along each
trajectory. Hence the zeros of ¢(x) are exactly the union of all trajectories of
{(1.13) passing through elements (0,y’; grad ¢(0,y’)) with ¢(0, y’)=0.

Since grad ¢(0)#0 and

200, 20 )

69&‘1 o’

holds, we may assume without loss of generality that 8¢{0)/8x,#0. Then the
equation ¢(x)=0 of S can be solved with respect to x, so that we have z,=
2A(@s, ), where x”=(%s, -+, Tooq). It is easy to see that y satisfies the equation

ox
1.15 — Az, 2",y =2, —11=0.
( ) oz, < 1 x5 6 ” >

Since the “momenta” ¢; associated with this equation may be written —p;/p.,
it is easily shown that every trajectory of (1.13) passing through an element on S
satisfies the canonical equations of (1.15):



Irregularity of characteristic elements 305

dey _y de; 92w, a” 35 g”, —1)

=1, = s --_—2’3, "',n_l;
a dt o¢; J

; N owe ot oy
%= 042y, éi’ q’, —=1) +g; 02y, @ %i, q”, 1)’ §=1,2,---,n~1;

’ n
(116) ﬂzq -—-”z_:lq. al(m,, m//’x; q,,, _1)

dr R 0&;

=g~ 2o, 2, 150", 1) - 22@L 20 0% 1)

S o,

Since S is covered by those trajectories, we find that both of the holomorphic
functions ¢ and ¢ have S as simple zeros. Hence p{x)=¢(x)/¢(x) is a holomorphic
function on a neighborhood of S. By (1.12) we have z(0,x')=1. Consequently, for
each 6>0 we can find a complex neighborhood V, of 0 on which ¢ is defined and
such that

larg +o(@)|=arg p#(x)| <0
on Vo no.

REMARK. If 2{z,7’) is a real valued function, the characteristic function ¢
constructed above is also real valued. Hence it follows that S is a totally real
characteristic surface.

A solution (z{t), p{t)) of the first two sets of equations in (1.13) such that p,—
Az, p')=0 is said to be a bicharacteristic strip of the operator P(z,d) (or of the
factor &,—2(z, €')), and its projection (z(f)) a bicharacteristic curve.

2. Construction of formal solutions. Let A(x,8) be a linear partial differential
operator of order m and let ¢ be a smooth funection of n variables. Then, we
can find by Leibniz’ formula linear partial differential operators Aji(z,s), j=0,
1,---,m, of order <74 such that for any smooth funetions % and @ of » variables
and one variable, respectively, we have

m

2.1 Alz,0)(u(@)Dlp(@) = X Al d)u(z) 0™ (o).

i=0
A simple caleulation shows that

(2.2) Az, 8)=alx, grad ¢(z));
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1 — - R A AN
3 ™

i o%alx, grady) 0% ]’

1
m—1 d _—
+[A (@, grad ¢)+ 2 15 98,08, 92,07,

where a(z,8) is the principal part and A™%(z,d) is the homogeneous part of order
m—1 of Az, ).

PROPOSITION 2.1 (De Paris [3]). Let B, d) and Clx,d) be linear partial dif-
Fferential operators of orders m and n respectively. Then for the product

Az, 3)=B(x, 9)Clx, 9)
we have
2.4) Ajx, d) =k§=jB’<5(x, 2)Ch(x,d).
Proor. We have
Bz, 2)Cl, 9)(u®(¢)) =Bz, 6)(2%(% 0)u- 0" {g))
= 3 (Bi(,2) T, Cila, )u @™+ g).
THEOREM 2.2. If ¢ is @ regular characteristic function of multiplicity & of
a linear partial differential operator Pz, d), then we have
2.5) Pi(x,9)=Pj(x,0)=---=P¢x,3)=0

and Pi(z,d) is an ordinary differential operator of order d along the bicharacter-
istic curves on the characteristic surfaces ¢(x)=const.

ProoF. Let K(x, &) be the irreducible factor of p(x,&) associated with (x,,
grad o(z,)oo). It is decomposed as (1.5). Hence we have by (2.2) and (2.3)

(2.6) Kz, 8)=0;
@1 Ko, 0)=b)(5— %, o2, grad ole)) - ol

where b(x) and c(x) are holomorphic functions and b(x) never vanishes on a neigh-
borhood of z,. In view of (1.13) we find that the differential operator in the
parentheses is exactly differentiation d/d¢ with respect to the parameter ¢ along
the bicharacteristic curves.

Let (1.7) be a decomposition of P(x,8). We have by Proposition 2.1
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k j

(2.8) P%(x, a) = __f_ (Qk(x, 6)K($, a)dk)g;!-k—m

= 3 > Qholz,0)Kii(x,0) - - - Kpar(x,d).

A TP e
Since dy=d—m+E by the regularity of ¢ and Kz, 8)=0, we have (2.5) and

Pilw,o)= ¥ Qs grad o) Ks(w, 0)%.
= —m

By (2.7) this is an ordinary differential operator along the bicharacteristic curves.
Since @, (zy, grad ¢(x,)) =0, the order is exactly equal to d.

REMARK. Suppose that the irregularity ¢ of the irreducible factor Kz, ¢&) is
greater than 1. If we choose the least k with (d—d)/(m—k)=¢ and let e=m—
k+dy, then we have ¢<d and

Pglx, 0)=Q,(z, grad o(x)) Ki(z, 8)% +lower order term.

Here @z, £)£0 in the zeros of K(x, £). Hence if we choose a suitable characteristic

function ¢ we obtain a converse of Theorem 2.2. We note, however, that for a

fixed ¢ (2.5) does not imply the regularity. For example, ((0,0,0); (0,1,1)c0) is an

irregular characteristic element of multiplicity 2 of (63+43—a%)2+4 but we have
o= Pi=0 for ¢(x)=x,~+x,.

Now let @;(y),7¢ Z, be a sequence of (generalized) functions of one variable
satisfying

2.9) de"y(yl=@j—1(y)-
We want to find a solution Ulz) of

(2.10) Plx,d)U(z)=0

of the form

2.11) Ule)= 5 w@2ilela).

First we consider the case where ¢ is a regular characteristic function of
multiplicity d. In this case P. D. Lax [18], D. Ludwig [20], S. Mizohata [22] and
J.-C. De Paris [3], [4] constructed a formal solution (2.11) in the following way.
Applying (2.1) formally, we have by Theorem 2.2

Pz, 0) 2 u;(2)@;(p(x)) = P§(w, 0) o (%) P 14 ((2))

J
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+ [Pz, 0)u, (%) + PF(x, 0)o () 1P 1-m+a @)
+ PP
+[Piz, 8)u; (@) + P&z, )u;— () + -+ + PR, 0)UjmntalPi—mralo(®)) + - -

Hence Ulx) is a formal solution of (2.1) if u;(x) satisfy the following equations:

2.12) Pz, 0)us (@)= — P& (x, 0)uolx),

------

Pé(x,0)u;(x)=—P¢ (@, 0)u;— (@) — - -+ — PF®, 0)%;j—m+al®)-

Since Pi(x,8) is an ordinary differential operator of order d with non-degenerate
principal part, these equations have certainly holomorphic solutions u;(z) in a neigh-
borhood V, of z, independent of . We may also impose d initial conditions. We
adopt the following initial conditions:

(0, %) =
213) 8o (0, cc) 0, I=1,---,d-1,
otu;(0,2)=0, j=1,2,---, 1=0,1,---,d-1.

We have therefore the following theorem.

THEOREM 2.3. If ¢ is a regular characteristic function of Plx,8) on a neigh-
borhood of x,, then there is a formal solution
(21.4) Ul)= X u;(2)0;(p)
of (2.10) with holomorphic coeffictents u;(x) on a neighborhood V, of x, which are
independent of the sequence of functions @;{s) satisfying (2.9).

We note that the same method applies to the equation
(2.15) Pz, 0)Uz)=V(z),

where V{z) has the formal expansion

o

(2.16) Vig)= % 0;{@)@;(e).

j=—-mid

In the case where ¢ is an irregular characteristic function we employ Hamada’s
method in [8]. Namely we write

{2.17) Pz, 8)=plx,0)—R{z, 0).
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Since ¢ is a regular characteristic function of p(x,9), there is a formal solution
U(x) of

{2.18) plz, ) U x)=0
of the form
219) Uola) = 3, ulla)0;lpla).

Let c=max {k—d,—m--d}. Then we can solve the equations
(2.20) oz, U x) =Rz, 9)U*(x)

recursively in the form

@.21) Ure)= % uk(@)d;lp()).

j=—ck

We will impose the following initial conditions on w%(x):

u4(0, 3") =1,
2.22) o0, 2 =0, I1=1,2 ---,d—1,
a{u’;(oy xl):(), (k,j);&(o’ 0)’ lIO,l, "'9d_1'

As we will prove in the next section, the coefficients of the formal sum
U= %, Utla)

converge and this gives a formal solution of (2.10). We remark again that the
coefficients u%(x) do not depend on the sequence of functions @;{y).

3. Estimates of the coefficients of formal solutions. To estimate the coefficients
u;(x) in (2.14) and w¥x) in (2.21), we employ the majorants of C. Wagschal [27]
and Y. Hamada [8]. Our estimates are no more than a slight improvement of
Hamada’s. However, since the details of [8] have not been published yet, we
give all the proofs for the sake of the reader’s convenience.

We always assume that 0<r<R'<R. When a(z) and b{z) are formal power
series, a(x)<b{zx) means that each Taylor coefficient of b{z) bounds the absolute
value of the corresponding coefficient of a(z).

ProposiTION 3.1 (Wagschal, Hamada [8]). Let O(t) be a formal power series
in one variable t such that Ot)>0 and

$3.1) (R'—1)0(t)>0.
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Then for the derivatives 89 (t)=(d/dt)’0(t), j=0,1,2, -+, we have
(3.2) 69 () K RO (1),

1 . 1 .
3.3 (210 O ().
85) A A

ProOF. Differentiating (3.1), we have
0O K (R -1 () K RO (t).
This shows that (3.2) holds for =0 and that ©’(t) satisfies the same assumptions
as O(). Hence we have (3.2) for any 7. (8.8) for =0 follows from

1 o1 o (R=1)6()
Y g T R kg

From now on we put

>0.

(3.4) t=px;+ T+ -+ +a,

with a constant p=1 to be determined later and assume that ©(¢) satisfies condi-
tions of Proposition 3.1.

PROPOSITION 3.2 (Wagschal [27]). Let
[3.5) Bz, 0)= Y balx)o*

algm
la]=m

be a linear partial differential operator with coefficients b.(x) holomorphic on a
neighborhood of the polydisk {xe C*; |z <R}. Then there is a constant B inde-
pendent of B(t) and p=1 such that if

(3.6) u(x) KO9 (t),
then
3.7) Bix, 3)u(z) € Be™@ @+ (¢).

PrROOF. Let a=(ay, a/) with a;<m,; and |a]<m. We have by (8.4) and (3.2
8 () 990 W) () = p™1Q G Had () & o™ RY)mlal@ ¥ (),
Since there is a constant M such that b.(x) K M(R—¢)!, we obtain by (3.3)
be()o%u {w) € o™ R M{R— R) QU™ (¢).
Thus it is sufficient to take

3.8) B= ZS (BR)ym1e{R—R')"*M.
a;<m
la|<m
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PropOSITION 3.3 (De Paris [4]). Let

(3.9) Clw,0)= T calw)o”
!a}gl

be a linear partial differential operator with coefficients ca(x) holomorphic on a
neighborhood of the polydisk {xe C*; |z;]<R). Then there are constants o=1 and
B; independent of Ot) such that if

{3.10) () KO (L),
then the solution wuix) of the initial value problem

(8.12) { 5§%(x)=0(x, 8)u () +olz),
olu(0,2)=0, 1=0,1,---,d—1,
satisfies

8.12) w(@) < BOY (t).

PROOF. We choose a constant M so that c.(x) < M(R—t)~'. Then it suffices to
find constants p and B, such that
(3.13) {(BOD N >MER—-1)"1 ¥ *(BOY (1)) +05+ (¢).

a;<d
lai=d

For, we can then prove that

a{u(o, x’) <<3161@ 2 (t) lx]_:(), l:()y 15 2, MR
inductively by the initial conditions and the equations obtained from (3.11) by
differentiation.

It follows from Propositions 3.1 and 8.2 that there is a constant M, =1 such
that the right hand side of (3.13) is majorized by (M;B,p?-'+1)0%+® (). Hence if
we choose p and B; so that o>M; and B,=p %1 (o— M), we obtain (8.13), com-
pleting the proof.

The following power series were introduced by C. Wagschal [27] for k=0 and
by Y. Hamada [8] for k<0:

k! o (R 4 ,
{3.14) 6®(F) = o g 7 porrvry k=0;
(3.15) o0 )= k 5 5 ~k-190) (5)ds

- fZ Rl _¥ k<.

A JI pitkt1?
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The notation is compatible with the fact that

(3.16) T%;—H W (f) =g ®+D ().

If k=0, 6(t) satisfies the conditions of Proposition 3.1 and therefore may be
used as @(f) in Propositions 8.2 and 38.3. Actually Wagschal and De Paris proved
the propositions in that form. In the case where k<0 we have the following
important inequality.

ProPOSITION 3.4 (Hamada [8]). If k<0, then we have

R
RB—t

(3.17) 8% (1) <<E§T>_k+lﬁ ).

PrOOF. To make the computation easy we write —% instead of k. Then

B . & & (k! i
7 01 ()= ?:‘0 frd ;k 41 ikt

_3 (l—k (—i—k)! r\ @
<

& (—q)! Ry

Writing I=Ek+h, we have for 07

(l(ﬁ;)?! (l_l!k)! :<1+%><1+h—fl> <1+W—I;T>
§<1+%><1+Z_f1_> <1 Lk >
:(Z“;kj:(ul;k)‘

R 2 [itk L>”°° (i-r! &
R—tﬁ (t)<<i§o<k><R zgk AN ik

:( RI_%_ . >k+le<—k> ().

Since 6% (t) itself does not fulfill the conditions of Proposition 3.1, we employ
R/
T R—t

Hence

8% (¢)

(3.18) O:lt)

instead according to Hamada.
We note the following facts:

ProrosITION 3.5. (a) If k<I,
(8.19) O (£) KOF T+ (8);
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(b) If k=0,
(8.20) 69+0 (1) KO (B) € R'Ii,- " 60 (1) ;
() If k<0,
) . R —b+l
(321) §UTE (t)(@éﬂ(t)«( —r > gtk (t).

Now let Pz, 8)=p(x, 8)—R(x, d), p(x) and &;(s) be as in §2. We choose R>0
so small that the coefficients of Pz, 8) and pi(x, 3) and the inverse of the coefficient
of 8¢ in pi(x, 8) are holomorphic on a neighborhood of the polydisk {xe C*; jz;|=E}.
Except for the first stage the coefficients of the formal solution of (2.10) are obtained
by solving the equation

(3.22) pl5,0) T w@dilpa)= %  v,@)0;lpw)

J=c Je=d—mc

under the initial conditions
(8.23) olu;(0,2)=0,  0=l<d.
PROPOSITION 3.6. There are positive constants p=1, C, and C, independent
of ©(t) such that if
(3.24) v;{z) g Ci-ttm—c@Uin—o () j=d—m-tc,
with o constant C=C,, then the solutions u;(x) of (8.22) and (3.23) satisfy
{3.25) u;(2) K CLCI—@=a{t),  j=e.
Proor. Without loss of generality we may assume that ¢=0. As we have
seen in §2, u;(x) are solutions of the equations

P&, 8)Uo (%) = Vg ()
P, 8)uy (8) = — Pt (2, 0)Uo () + Vim0

D, 8)u; (@)= —p§ @, 0) U (@) — -+ — PE®, 0)Ugmss (@) +Vamms ()
under initial conditions (3.23).
It follows from Proposition 8.8 that there are constants p=1 and B, indepen-
dent of O(t) such that

Uy (X) K BO O (t).
Hence (3.25) holds for 7=0 if C,=B,.
Suppose that (3.25) holds for w,(x), - - -, #;-1(x). Then we have by Proposition 3.2

— &z, 8)u;1 () — - -+ — DB, 0)Ugmmts () T Vg mss{T)
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<de+1010j“1@ (§+d (t) + ... +B,o'"CICd-m+f@ (§+d) (t) + Cipu+d (t) .
Consequently we have
u,;(6) K By(Bo™C,CT 11— C- )14 CHO Y (¢).

Let C,=2B; and C,=max {2Bo™C,,2}. Then (3.25) holds for w;(xz). This com-
pletes the proof.
We write the decomposition (1.7) of P{z,d) as

{3.26) P(z,d8)=p{z,0)—R"z,0)— --- —R"z,9),
where
(8.27) Ri(z,9)=—Q;(x, 0)K(x, 0)%

is either of order ¢ or identically zero. To make the computation easy, we multi-
ply Q;(x, 8) by K(x,8)% ¢ if necessary and assume that d,<d for all 1.

First we consider the solution U(x)= ;Z;) ul (@) P;{p(x)) of (2.18). It follows from
the Cauchy-Kowalevsky theorem that if 7 is sufficiently small, there is a holomor-
phic solution ud{x) satisfying

u§(x) CABP ().

Then we can prove in the same way as above that for a constant C=C,
(3.28) w(x) K ACIOP (t).

Next we consider the solution U'(z) of
(3.29) plx, 0)Ux)=R(z, 8)U° ).

The right hand side may be written

3
—

R, 0)U’(x)= X R'(z,0)U"x)

o,
=

1 o

2 i@ 0(elx),

0 j=—i+d;

I
Ik

-,
Il

where
Vi, =R§i (@, 0)udx)+ - - - + Ry (x, 0)udy; g, (x)-
We have by Proposition 3.2
o}, ;{2) K BACQ{H) () + + - - + BAC+-4:@{+9 (1)
<<B,ch+i_di@(§i+j) (t) s .’iZ '—7:+ di:
with a constant B’. Hence it follows from Proposition 3.6 that the solutions u} ()
of
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oo

pz,0) > u@eiel)= 3 oL,@)0:e)
j=—i+d; j=—itd,
+m—d

under the initial conditions

alul ;(0,2') =0 for all 7 and 0<I<d
are estimated as
{3.30) i, (@) L ACCiHi—dimmrdg Hidimmtd gy

with C,=B'C,. Here we employed Proposition 3.5 (a).
For a sequence I=(t, - -+, %) with 0<¢,<m—1 we define u} ;(x) as the coef-
ficients of the solution of

P, 0) E uf,;(1)0,(p() = R%(w, 8) T w7 (@) ®;(p)

with the zero initial conditions, where I'=(i, ---,%—). Then we can prove by
induction that

k ki1 —1dfl—k{m—d ST —idyl—k(m—d
uh,ilw) K ACE O i lar—km=d g TS idri=kim=d)

where [I|=i;+ --- +1, and [d;|=d,+ --- +d;,. Thus it follows from Proposition
3.5 (c) that
(3.31) w5 (@) K ACECHTI-id1i=ktn—d g i+Ti—tm (1)
for a constant C;.

THEOREM 3.7. Let ¢(x) be a non-singular characteristic function of a linear
partial differential operator Plz,3) and let d and o be the multiplicity and the

drregularity of ¢(x). For each xz, we can find a sequence of holomorphic functions
u;(x) defined on a common neighborhood V, of x, such that

(3:32) jule) | SCHG1 for 20,
| (o [ECF s =m0, g1,
359 st {2 2V o g<o

on V, with a constant C>0 and that

(3.34) U= % u;x)0;(0)

J=—co

is a formal solution of Plx,0)U(x)=0 for any sequence of functions @,(y) satisfy-
ing (2.9). Under a suitable coordinate system u;(x) are so chosen that they satisfy
the initial conditions:
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{8.35) {uo(xo,b 2’)=1,

all.uj(xo,l’ x,)::o, (l’j);&(oy 0), 0§l<d;
as fumctions of 2.
PrOOF. We have to prove that
(3.36) u;{z)= X uk,;(®)

converge and satisfy (3.32) or (3.33). Here the summation ranges over all sequences
I={(%y, +++,7) of 04, <m~1.

We consider all terms with a fixed [I]—km=—p. From the proof of (3.31) it
follows that u%,;(x) vanishes unless J+|I]—|d;|—k(m~—d)=0. Since

(8.37) d—d;Zo(m—1), 1=0,1,---,m—1,
the terms with a fixed p contribute to the sum (3.36) only if

k
Jj=zp+ldi]—kd=p+ ;:1 diy—d)
k
Zp+o gl(iz—m)=(1—a)p.

In particular, we have u;(x)=0 for j<0 if ¢=1. Since j is an integer, we have

actually the inequality
jz—lle—1)pl,

where we use the notation [a] to denote the greatest integer less than or equal
to @, and for such a term u% ;(z) we have the majorant

u¥, 5(x) CACKCiHLo-D21g 6P (1),

If we consider all sequences I={3, -+-, %) of —co<i;<m—1, then

km—1l=p k=1

Consequently we obtain

oo

(3.38) u;{x) K4 E( ; (Cy+1)PCitTe-D 219 G-2) (3),
=20
where
. 0 if =0 or o¢=1,
p(])“—‘{ . T
—[3le—1)] if j<O0 and o¢>1.

If 0<t<r/2, we have the inequalities

(3.39) g (t)g(% e k20,
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201tk
k'’

(3.40) -0t < k>0.
Let V, be a neighborhood of z,=0 on which |t|=plx]|+|2s]+ - - + @] <r/2.
If =0, then we have for x¢ V,

w40 £, (2] g-pit £ oo =

A CL(7+1) 1 e,
Since j+1=27, (3.32) holds on V, for C sufficiently large.
If ¢>1 and j<0, then we have for z¢ V,
[u;(x) | < A0 Z) Csltl*~/(p—3)!

p=p(j

SA,CICEP % t]2 03] (p(5) —j)!

where p(f)=-—[j/lc—1)]. Hence we obtain by Stirling’s formula (3.33) for C
sufficiently large.

4. Ultradifferentiable functions and ultradistributions. Let M,, »p=0,1,2, ---, be
a sequence of positive numbers and let 2 be an open set in R* An infinitely dif-
ferentiable function f(z) on Q is said to be an wltradifferentiable function of class
{M,} (resp. of class (M,)) if for each compact set K in Q there are positive con-
stants C and h (resp. if for each compact set K in 2 and k>0 there is a constant
C) such that

(4.1) sup [0°f () | S Ch1* M, la]=0,1,2,---.
z€
E¥P Q) (resp. £¥P () denotes the space of all ultradifferentiable functions of
class {M,} (resp. class (M,)) on Q.
We assume that the sequence M, satisfies the following conditions:

(M.0) My=1;
(M.1) (logarithmic convexity)

M}%éMp—IMP+I, pzl, 29 ter
(M.2)" (stability under differentiation) There are constants A and H such that
(4.2) MP+1§AHPMP, p:(), 1, 2) ters

(M.3)" (non-quasi-analyticity)
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4.3) ,;21_‘“

We write m,=M,/M,_,. By (M.1l) and (M.3)" m, is an increasing sequence of
positive numbers satisfying

4.4)

51 o

=1 Myp
We consider also the following stronger conditions:

(M.2) There are constants A and H such that
{4.5) M,<AH?® min M,M,_,, »=0,1,2, ---.

0=¢=<p
(M.3) There is a constant A such that

M, M,

4.6 3 <A , =1,2,--.
“o D T T
If s>1, the Gevrey sequence
M,=p!)

satisfies conditions (M.0), (M.1), M.2) and (M.3). In this case, we will write {s} and
{s) for {M,} and (M,) respectively.

LEMMA 4.1 (cf. Lemma 11.4 of [14]). We set for Re2<0

@ W(z):iir 1+g- }1<l+q§ >—Ie‘¥dc.

0 P
Then T (z) s a holomorphic function which can be continued analytically to the
Riemann domain {z; —rn/2<arg z2<5n/2}.

On the domain {z; 0=Zarg 2<2x} we have the uniform estimates:

dar

4.8 P

T s M p=0,12 .

In particular, the boundary value
{4.9) & (x) =T (x+10) — ¥ {x—10)

1s an ultradifferentiable function of class {M,} vanishing on the megative real
axis.
We have, further,

(4.10) H2)=0 and rgb(x)dx:L
0
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When M, satisfies (M.2) and (M.3), ¢(z) is not an ultradifferentiable function.
of class (M,) on any neighborhood of the origin.

PROOF. Because of (4.4) TI(1+{/m,} converges absolutely and represents an
entire function in ¢. As we have shown in [14], we can find for each ¢>0 and
0<0<x a constant C such that

L4072 11 A+¢/m,) < Cesttl, larg {]<0.

Hence integral (4.7) converges absolutely for Re z<0. Rotating the path of inte-
gration into the ray from 0 to ocogs for —r<<a<w, we obtain an analytic continu-
ation to the Riemann domain {2; —=/2<arg 2<5z/2}.

If Im2>0, we can choose the positive imaginary axis as the path of integra-
tion. Since the integral may be differentiated under the integral sign, we have

dr 1 ~2
e j I1 (L+infm,) |1+ ig|=*dy
Sy My r 1+n%dy
271' 0
My
o

The proof is similar in the case where Im 2<0. Since d*¥'(z)/dz? is continuous,
we obtain (4.8) for the closed Riemann domain {z; 0<arg z<2z}.
By the continuity we have also

Sb(x) = SO_O (1+i77)_2 H (1+7:77/mp)—leix7]d7/.

Since each factor

% b .
1+ :mps e "PTe ey
My 0

is a positive definite function, the product (1-+45)~2 I (1-+4p/m,)~t is also a positive:
definite function in 5. Hence its Fourier transform ¢(x) is non-negative and the
integral Sgb(x)dx coincides with the value 1 of (144521 (1+4p/m,)~* at »=0.

When M, satisfies (M.2) and (M.3)

P ) (i) B )

is an ultradifferential operator of class (M,) (see Proposition 4.6 of [14]). On the
other hand, we have clearly
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d ——11
P( dz )Qf(z) T %8 2

and hence

P(—(%)gb(x):é(x).

Thus ¢(z) ean not be an ultradifferentiable function of class (3,).

LEMMA 4.2. Let s>1 and set for z with 0<argz<2z

(4.11) T(z) :;17 jw-l_d exp (—a~V &-D),
271 Yo 2—2

Then (z) is a holomorphic function which can be continued analytically to the
Riemann domain {2#0; —co<arg 2<oo}. If 0<0<(s—1)x/2, we can find constants
B and h such that

4.12)

' - ¢<z) ] éBhp(p!)S, pZO, 1, 2: Tty
dz?

on the Riemann domain {z; —0Zarg 2<2zx-+0}.
The boundary value ¢ @) defined by (4.9) is an ultradifferentiable function of
class {s} but not of class {s) and satisfies (4.10).

ProoF. First we consider the function
F(z)=exp (—z71/ 6D)
on the domain {z€ C; larg z[<(s—1)z/2} and prove that on each subdomain {z€ C;
larg 2| <8} with 0<6<{s—1)z/2 there are constants B and k such that
o
(4.13) ]—F(z) * <Bh#(p!).
dz?

Choose a sufficiently small positive number %k so that the disk with center at
2 in the subdomain and of radius k2] is included in the sector {z; |argz|<(s—1)d.}
for a 0,<x/2. Then we have by Cauchy’s integral formula

I

L FE | <ol k) sup | IFw)
z

jw—zl=kiz]

<plklz)~? exp (— ((1-+k) =)~/ cos 6y).

Hence estimate (4.13) follows from the inequality
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§—1\EDr
sup t?exp (—LtY <H>)=< pl-Dr

O<t<oo Le
— (s—1)p
g( 3L1> (1)L,
We have further
S:’t—p exp (— Lt “‘”)dt:—L(i—)—(lp_DF((s—l) (p—1)).

Consequently the funetion

_ (dF(x)/dz, x>0,
‘M)*{o, <0,
satisfies
|M <Chply, p=0,1,2,-
da? |2
for some constants C and k.
If y+#0, we have
a7 . —1 {~ 2x—t—iy d°¢(d)
—— t
g T =55 L, oty dee ©

and therefore we obtain

(| wowripras) "zoeey, =012,

—co

Now (4.12) for 0<arg 2< 2z follows from Sobolev’s inequality and (M.2).

The integrand of (4.11) is a holomorphic function on the Riemann domain
{#; —co<Cargz<oo}. Hence we can continue & to the Riemann domain by deform-
ing the path of integration. Let ¥+(2) (resp. ¥~ (2)) be the branch on the domain
{#; —n/2< arg 2<2zx} (resp. {#; 0< arg2<<5z/2}). Then we have for —z/2< argz<

/2
(4.14) THz) — T () =— = 1
273 lw—z]=¢ &—W

=F{z).

F (w)dw

In view of (4.13) we have therefore the estimates (4.12) on the domain
fz; —0< argz<L2z+6} for every 0<0<(s—1)x/2.

Since exp (—x~1/¢V) increases from 0 to 1 as z varies from 0 to <o, it is
clear that ¥(z+i0)—¥(x—10)=¢(x) satisfies (4.10).



322 Hikosaburo KoMATSU

Lastly to prove that ¢(x) is not in £®(—¢,s), we assume to the contrary that
for each h>0 there is a constant C such that

@@ (@) |<Chepl®, z€{—s,¢) .
Since
Flz)= exp (—a~16-D)
=r—@_—y)p¢@>(y)dy, >0,
o P!

we have
1 xP‘H- b4 3
| Flz) [=Cinf <mh (»!) >

= int ([@h) eI AL, 0<w<e.
P

Let p+1=[{zh)~1/«]. Then we have
| Flo) S-S (2) =D 2[gh) ™ 2162 2 exp (— (s= Dl (o)1)
for sufficiently small z>0. This is impossible, however, if h<(s—1)*.

The vector space Q)M#(Q) (resp. G (2)) of all ultradifferentiable functions
of class {M,} (resp. of class (M,)) and with compact supports has a natural locally
convex topology. The elements in the dual space G)¥#/(Q) (resp. JJ¥#»/(Q)) are
called ultradistributions of class {M,} (resp. of class (M;)). (For the theory of
ultradistributions see Roumieu [24], Bjorek [0] and Komatsu [14].) The space
S Q) (resp. £¥P () has also a natural locally convex topology and the dual
EWa D) (resp. &MP/(Q) is identified with the space of all ultradistributions of
class {M,} (rvesp. of class (M,)) and with compact supports in 2.

LEMMA 4.3. Suppose that M, satisfies (M.0), M. 1), (M.2) and (M.3). Then

(4.15) Ti)=—% 11 <1+ 1 i)l
2r1 p=1 m, 02 /)2
is a holomorphic function on the punctured plane {z€ C; z#0} and the boundary
value
(4.16) &) =V {x+10) —F (x—10)

in the sense of hyperfunction is an ultradisribution of class (M,) which is not of
class {M,}.

Proor. By Proposition 4.6 of [14]
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oo

Q)= 11 (1+ LI

My 02

p=1

is an ultradifferential operator of class (M,). Hence it follows from Lemma 11.3
of [14] that ¥(z) is holomorphic on {z¢€ C; 20}.

Since
¢<x>=@<a>('1 S 1%.0)

2ri x+i0 270 m—
=Q)5(),
it is clearly an ultradistribution of class (M,) with the support at the origin.
If it were an ultradistribution of class {M,}, the convolution of ¢(x) and the
ultradifferentiable funetion ¢(x) constructed in Lemma 4.1 would be an ultradif-
ferentiable function of class {M,} by Theorem 6.10 of [14]. However,

P()xp(@) =Q(0)d(x)*$ (x)
=0(x)*Q(0)$(x)

_ 1 Soo eixr/ d
9% Jw (Ltigt 7

is not differentiable at the origin.

5. Construction of null-soluticns. We are now able to prove our main theorems.
We assume that the linear partial differential operator Pz, ), the characteristic
surface S and the sequence M, of positive numbers satisfy the assumptions in the
preceding sections.

A solution u(x) of

(6.1) Pz, d)u(w) =0
is said to be a null-solution on a neighborhood of z, in S if it is defined on a

neighborhood of x,, vanishes on one side of S and never vanishes on every neighbor-

hood of x,.

THEOREM 5.1. Suppose that the characteristic surface S is regular and totally
real. Then for each sequence M, and point x, in S we can construct an ultra-
differentiable null-solution u{x) of class {M,} on a meighborhood of z,. If M,
satisfies (M. 2) and (M. 8), then the null-solution wu(x) is not an wultradifferentiable

Sunction of class (M,) on any neighborhood of x,.

Proor. In this case we can choose the characteristic function ¢(z) as a local
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coordinate function. Sinee the classes {M,} and {M,) are invariant under real analy-
tic coordinate transformations by Théoréme 13 of Roumieu [24], we may assume
without loss of generality that ¢{x)=z, and that x,=0.

Employing ¢(z) of Lemma 4.1, we define

v (y—x)it .
So——#@ I gds, >0,

( j<0.

Clearly the sequence @,(y) satisfies (2.9). Moreover, we have the estimates

| pla) =i :
5.3) 164(0; (o(a)) 1<{(—1 FTI
Moy, lalj.

(6.2)

In fact, if a=/(ay,...,,) contains a non-zero component other than a,, the left hand
side vanishes. If it is of the form a=(0,...,0,,), then 8%(@;{o{®)))=0;-aile(x))
satisfies the estimates because of (4.8).

We write f;(x)=0;{p(x)). Then

5.4 ad 3 ; @ = - a B a—8 .
64 o (Euelan=£ 2 (5 pPuaio= 1o

Suppose that the polydisk of radius ¢ and with center at « is included in the
neighborhood V, of %, of Theorem 8.7. Then it follows from (3.32) and Cauchy’s
inequality that

(5.5) [0Pu, () | CFEIG71M gL .

If 6>0 is sufficiently small, those 2 form a neighborhood of z,. We also note that

o5 2T

In case 0<j<|a], we have by (6.3) and (5.5)

(2)6%(90) 9= fila) 1

Z ( e )Ck+1k¥ I (j—K) ] Miaj—;

(6.7

0=f=a
18l +k=7

, ; 1
=Cla|! 67 Ma-; E k!

s Tal—gFiT (O
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By (7.11) of {141 we can find for each H>0 a constant A such that
.9 SZAHM,.

(M. 0) and (M.1) imply
MM~ ;S Mai -

Hence if §<C-, the right hand side of (5.7) is bounded by

a5 )5 M

la}

59 p2p> (;‘)aﬂuk<x> 34 )|
< AC

Consequently

e Mal

In case 7> |a|, we write i=j—]a] and I=k—i. Then we have

{6.10) >

(Z)aﬂuk(x) 258 £, (@) ]

< zi: i3 >Cz+l+l<?/+l>Y i+l g 1)1 L2 lel) [

la]—1 il
<CH(C )14 ([ 43)! —"ﬁi—”f‘—‘-

Hence if [¢(x) <7< (2C), we have

(5:11) 2 T |(§ Jpruanisia)

ZC(C+o)all T (Cryiger

< CR(C+ao)Niall )
- 1-2Cr,

Combined with (5.8) and (5.9), this proves that if 7, is sufficiently small, then
{5.4) is majorized on the domain Q,={x € 2; |z|<7} by a sequence whose sum does

not exceed Ci*'*! M, for a constant C,. Therefore
5.12) ulw)= 3 us@)0;lo()

converges in the topology of £ (2,) (see [14]). Then it is clear that u(z) is a
solution of (5.1) on 2, and that u{z) vanishes when ¢(z)<0.
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Taking into account the initial conditions (3.85) of u;{(x), we see that
u(0, 5"} =0olp(0, 7)) = ¢ (,) .

It follows from Lemma 4.1 that the right hand side does not vanish when olr)=
2,>>0. In particular, z,=0 belongs to the support of wu(x).

If M, satisfies (M. 2) and (M.3), ¢{z,) is not an ultradifferentiable function of
class (M,) on any neighborhood of 0. Hence u(x) is not either.

THEOREM 5.2. Suppose that S is a real amalytic characteristic surface of
wrregularity o. Then for each 1<s<oc/(c—1) and point x, in S we can construct
a null-solution u(x) on a neighborhood 2, of x, which is an ultradifferentiable
Junction of Gevrey class {s} on 2, but not of class (s) on any neighborhood of x,.

ProOF. Let ¢(x) be the holomorphic characteristic function constructed in
Proposition 1.5, where we choose a 6>0 smaller than (s—1)x/2.

Then we define the sequence @;(z) of holomorphic functions on the Riemann
domain Sy={2+#0; —f<argz<2r+0} by

* {z—w)i Tt 0
jo*—(j_l)! Twdo,  i>

(%)"'m , =0,

(5.13) B,(2)=

where ¥(z) is the function constructed in Lemma 4.2. We denote by @%(2) (resp.
07 () the branch of &@;(z) continued from the upper half plane (resp. from the
lower half plane).

If we choose a sufficiently small complex neighborhood V; of z,, the functions.

(5.14) Fi@)=0;{p(z)

are defined and holomorphic on (a covering space of) V,\S. To distinguish two.
branches of F;{z) we will also use the notations

(5.14)" Fia)=07(p(x)) .

Firstly we have to prove that the derivatives of F; are estimated as follows:
For each 7,>0 there are constants B and L depending on #, such that Lz, is
bounded as 7,—0 and that if z€ V,\S and |o(x)|<r, then

BLialy}
(5.15) [6eFs(z) < | (G—la? ’

BL*il(lal—j)1*,  |alZj .

lef<g,
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Since we have (4.12) on the Riemann domain 3,, (5.15) holds for |«|=0 when
L is greater than h.

To prove it for lo]>0, we follow Roumieu’s arguments in [24].

Let x and y be two points in V,. If V, is sufficiently small, we can find two
constants B and M independent of z and y in V, such that

Mt
R—-t°

ole)—oy <K

where
t:(xl'—yl)"l— cee (wn_yn) .
Similarly we have

0=, < o+ Do oy 1;7;’ Vit e
where
V=2—W

and

Bri|(j—g)! <37,
5.16) é{ ’

Bhesilg—g)ts,  qz=7.
Henece we have

B.17) O,lp@)— < Mt > -+ Z" Rﬂft ; >q+- :iKptf’/p'

where

& NM!(p—1)!p!
K,= ' ! .
=1 glR*(g—1)! (p—q)!

In case p=|a|>j=0, we have therefore

) LM p! (p=1)1 1 a1
“Fia)|< 3 o Pl Bri-t—
PSRBT = gt B g
2 e ___! (10_1)! 1 ha—i{y—nq)1s
+ =+ B* q! (g-1! (p—g)! Bila=a)

-l 1 & p! (p—1)! 1 M, (p—q)!
SB______ i [aciait v oM xFT
= {qzz:l gl (g—-1! (p—g)!2\ 7 ) ! (J—gHp—i)!
(p—=1)! 1 _;i lp—g)!*lg=3)!®

Mpyp-i A9 700
gl o1 gt MW Lo

< BQ’—R-”— 20(v/ K + 1)K

when
Kzmax {M|ry, 7o, Mh, b1} .

The proofs in the other cases where p=|a|<7 and j<0 are similar and easier.
Next we prove that
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5.18) ¥ (@) Fy(a)
and
5.19 3w Fy)

converge in &EHV\.S).

The proof of convergence of (5.18) is similar to that of (5.12). In (5.7) M _;
has to be replaced by BL#**tei~i{la|—j)!1°. Hence the right hand side of (5.9
becomes

BCL'¢!

1_Colt 1+ (Lo)=) 1! alte

if ¢ is sufficiently small.
lo(x}}i/i! in (5.10) has to be replaced by BL'rit¥/i!. Consequently if o)<
74<<2C)~, (5.11) holds with the right hand side replaced by

BC@2(CLry+ 671l |a|!
1—'207'0 '

‘We now turn to the proof of the convergence of (5.19). We have

T u @ )=% % <2‘ ) 3u_,(w)0s P (x) .

i=1 j=1 0fza
It follows from Theorem 8.7 and (5.15) that if [x|<<r—d, then

(5.20)

>
0<f<a

X Ny (p\ge—BE .
( ﬁ>a )0 )|
< g <“; ]>CJ'“T”'j!‘fa‘llIBL'“"”f(]a]—l+j) I

where t=¢/(¢—1). Since we have by the assumption s<t

(el =1+7) U <9 Uaitis
iVlel® - ’

the right hand side of (5.20) is bounded by
BC@2sCLr?)3 (256~ + L))l .
Consequently

2:BC2Lr7(2*(6~1+ L)) a]!®
1—-25CLr*

(5.21) 5 by

i=10 a

<2>f’ﬂu-j<x> ouPF ) =

converges if r is sufficiently small.
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Now we define u{x) on Qy={x€ R"; |x|<r—d} by

(5.22) alz)= > ;) (Fia)—F5@) .

j=—o0

As we have shown above this converges in & (£2,) and represents a solution of
(5.1). Since two branches F¥{z) coincide when Re ¢(x)<0, u(x) vanishes on one
side of S. On the other hand,

(5.23) u{0, @) =05 (e (0, ")) — &5 (9(0, ")
cannot vanish on any neighborhood of 2/=0. Therefore u(z) is an ultradifferenti-
able null-solution of class {s} on a neighborhood of x,=0.
By (4.14) {0, =) is equal to F’(p(0, z')) on the other side of S, where
Flz)=dexp (—z7H V) /dz .

Thus we can prove that #(0, 2) is not an ultradifferentiable function of class (s)
on any neighborhood of x, by the same estimate of (0, 2’) as in the proof of
Lemma 4.2.

REMARK. We had to shrink the domain to make (5.11) and (5.21) converge.
If we make use of
e'fS%MT(w)dw, i>0,

o (5—1!
(5.24) ®;(2)=

( d )"'af(szx =0,
dsz

instead of (5.13) for sufficiently small ¢>0, we have a wider domain of definition
of u{x).

THEOREM 5.3. If the characteristic surface S is regular, then for each se-
quence M, satisfying (M.0), (M.1), (M.2) and (M.3) and for each 2,€S we can
construct an wltradistribution null-solution u(x) of class (M;) om o mnetghborhood

of %,
ProorF. Let

(5.25) Q({%):pj’i <1— i d

mP dz

and define the sequence @;(z) of holomorphic functions on the Riemann domain
{z; —0< argz<2z+6} for a 6>0 by
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(5.26) Bole) = % Q (%)%

—1 d 291 21 1 1 .
5.27 (#)=—Q[— log 2— I+ =4 o e 0.
62 o= ()G g G g ) P
It is easy to see that the sequence @;(z) satisfies (2.9). We will prove that
(5.28) Uz)= X u,;(2)9,{p(x)
converges on (the covering space of) V,\S and that the boundary value

(5.29) wl)= 3, us(o) 0} (@) — 5 @)

3
is a desired null-solution.
Since Q{@) is an ultradifferential operator of class (M,), it follows from Lemma
11.3 of [14] that there are constants B’ and L’ such that

|Q0) Fiz)| <B' exp (M*(L'[t)) sup |F(w)|

{w—z|=t
for every holomorphic function F on a neighborhood of the disk |[w—z|<t, where

»p!
M*(0) = log LR
(o) sup log—=

4

In particular, we can find constants B and L such that
(5.30) |9;(z) | S B*2]7%(5—2) . |7t exp M*(L/|2])
for |z|<1. Consequently if |p{x)|<r,<{BC)~, we have

,i fus{2)0; (o) | = é Citijt Bivird=2(j—2) 1 exp M*(L/|p(2)])
=2B%C31— BCry) =S exp M*(L/|p(x)]) .

Making L a little larger, we can prove that
(5.31) j;) [u;(x)@;{p(@)| £ Cy exp M*(L/lo(@)])

for a constant C,. Hence by Theorem 11.5 of [14] boundary value (5.29) exists in
the topology of Q¥»'(Q), where Q,={xc 2; lx—x,l<r}.
Since

(5.32) U0, 2)=0,(e(0, 27)) ,

Ulx) is not holomorphic at x,. Therefore it follows from the edge of the wedge
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theorem that x, is in the support of u(z).

REMARK. In view of (5.32) we can easily prove that there exists an L>0 such

that the estimate
sup [Ulz+iy)| <C exp M*L/|yl)

does not hold for any compact neighborhood K of z, in £ and constant C. If
Theorem 11.8 of [14] is true for the boundary values f{z) of single holomorphic
functions F(x) in the n-dimensional case (and if M,CM¥p!), this implies that the
nuli-solution u(x) is not an ultradistribution of class {M,} on any neighborhood of

20,2

THEOREM 5.4. If the characteristic surface S is of irregularity o, then for
each 1<s<o/(c—1) and point x,€ S there is an ultradistribution null-solution w(x)
of class (s) on a neighborhood of x,.

PrOOF. We employ the sequence @,(z) defined by (5.26), (5.27) and
d \™ .
(5.33) @j<z>=<~) oe),  §<0.
dz

Since M*(p) is equivalent to (s—1)p% ¢~ in this case, exp p¥® ¥ may be used in
place of exp M*(p).

In view of (5.830) and Cauchy’s inequality we can find constants B and L such
that

Bitteligi~texp (Lfjz} 0, =0,
(5.34 i@(z)tg{ e
Bz (—g)! exp (Ljlz) b,  j<O0,
for [z2]<1.
We consider the series
(5.35) V)= % u;@0ile() -

The sum over the non-negative j has already been estimated. To estimate the sum
over the negative j, we first note that for each ¢>0 and ¢>0 there is a constant
A such that

(5.36) T tiljleSAexp ((@+ottis),  0<t<oo
p2

Applying this to the case where a=(¢—1)"!, we have

2 See Remark C at the end of the paper.
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<o

s @)0_s (e < 3, O laliljl) = Blola) |-t exp (Lilo(w)} o~

ABC exp {((o—1)"1+2) (BC)" ]/ lp(a) "+ (L | () ) -1}
C" exp (L/]lp(@) )1/«

.,

A IA

for constants C’ and L’ when |z|<r.
The rest of the proof is the same as that of the previous theorem. We could
also use the sequence

exp (—iw)"He Vdw , >0,

jz (e—w)i~t

~0 (F—1)1
0;lz)=

<i>—j exp (—ig) e, §<0
dz ’ ="

REMARK. When S is irregular, we have a gap between the ultradifferentiable
null-solution of class {o/(c—1)} and the ultradistribution null-solution of class
(¢/(6—1)). We remark that this is unavoidable in general. For example, consider
the differential operator

PO)=08m 4 (—1)-m (084 - - +02)"

with [<m. The irregularity of the characteristic function ¢(x)=z, is m/im—I).
On the other hand, it is easily proved that there is a constant A>0 such that if
&+ipe R*+1iR" satisfies

Pli(g+in)=0,

then
nl=Alglt™ .

Hence it follows that every ultradistribution solution u(x) of class {¢/(¢—1}} of
P)u(z)=0

on an open set in R is an ultradifferentiable function of class {¢/(c—1)} (cf.
Bjbrek [0] and Chou {2]). Therefore there are actually no null-solutions with reg-
ularity or singularity in the gap.

6. Solutions with small singularity spectra. Null-solutions are solutions with
smallest possible supports. In this section we are concerned with solutions with small-
est singularity spectra or singular supports in the sense of Sato-Kawai-Kashiwara
[25], p. 234.

It is easy to see that the null-solutions u(x) constructed in §5 are real analytic
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outside the characteristic surface S. More precisely it is shown that the singularity
spectrum

(6.1) SSu{x) ={(x, £dpowo) € S¥Qy; ¢lx)=0},

which is a submanifold of S*Q, of dimension #—1. When a characteristic element
(5, &0} is simple and the principal part p{z,d) satisfies certain conditions, Zerner
[281, Hérmander [11], [12] and Kawai [13] have proved that there is a solution u(x)
whose singularity spectrum is a zero or one or two dimensional submanifold passing
through (xy, £500). We extend their results to the case where the multiplicity d is
greater than one.

A curve b:{z{t), &(t)oo) in S*Q is said to be a (veal) bicharacteristic sirip of
the operator P(z,d) if a representative (x(f), &) € T#R2 is a solution of Hamilton’s
canonical equations:

do, _ . _ dw, _ —d& _ . _ —d,
6.2 oK = 8K 2K oK
08, 3¢, 8%, %y,
and
(6.3) Kix(t),&(t)=0

of an irreducible factor Kz, &) of the principal symbol p(z, &).

We always assume that bicharacteristic strips b are non-singular i.e. that every
characteristic element (x(f), £(f)oo) on b is non-singular. Then, the representative
(z(f), £(t)) is also a solution of (6.2) with K(z,&) replaced by a factor & —2(x,&’) of
K(z,& under a suitable coordinate system. Hence it follows that the curve
@(), &(t)) in T*R is real analytic and that the multiplicity d and the irregularity
o of the characteristic elements (x(f),&(t)oo) are constant on the bicharacteristic

strip.

THEOREM 6.1. Let b be a non-singular real bicharacteristic strip of trregulari-
ty o and let 1<s<o/(o—1). Then for each (xo,&o) in b there is o solution u(2)
of (5.1) on a meighborhood of x, whose singularity spectrum tis included in b and
contains (Zo, £yo°) and which is ultradifferentiable of class {s} but not of class (s
(resp. an ultradistribution of class (s)).

Proor. We may assume without loss of generality that xz,=0 and that the
representative (x(t), £(f)) satisfies (6.2) and (6.3) with a simple holomorphic factor
Kz, &) =&,—2(x, &) of plx,£). Then we can choose z; for the parameter ¢. Since
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A(x, &'y is homogeneous in &, & cannot be zero.
We solve the first order equation

©6.4) do ) _2<x, 850(93)>:0

9%,

under the initial condition
(6.5 o0,0') =<', &) -+3 3, 2}

By the Cauchy-Kowalevsky theorem there is a unique holomorphic solution
() on a complex neighborhood V, of z,=0. The equation can also be solved by
integrating the bicharacteristic equation (6.2) under the initial conditions derived
from (6.5)

Since ¢(0)=0 and d¢fax’=¢&} at the origin, ¢(x) vanishes on the bicharacteristic
curve b : x(f) and grad ¢(z(t))=&({) is real on zb. By a simple caleulation we
have also on #b

6250 :&_ hid dxk dgk ki dxk dxl 62§D
axd dt  i=2 dt dt =2 dt  dt owow

{6.6)

2, . 7 a2

Do & s dn Do 93 in,

dx0x; dt k=2 di ox,0m,
and hence

2 ?Ime o 621m¢< dxy, >< dz, >

6.7 it = t— o) t— t1])-
6 1321 pxioxT; Ic,zz=z e A AN

Thus the Hessian of Im¢ has at least one zero eigenvalue at every point on the
bicharacteristic curve. On the other hand, since it has n—1 positive eigenvalues
at the origin because of (6.5) and (6.7), the same is true on a neighborhood of the
origin. Hence it follows that there is a real neighborhood 2, of z,=0 in V, such
that ¢(z) restricted to 2, vanishes only on zb and Im ¢(x)>0 on 2,\xb.

Next we construet a holomorphic solution

6.8) Ulg)= 2 u;{0)®;(p(x)

of (6.1) as in the proofs of Theorems 5.2 and 5.4. U(w) is defined on a covering
space of V,\\S, where S is the zeros of ¢{z). Then the boundary value

=)

6.9) w@= > u;{x)0,(px)+10)

j=—co
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of Ulx) on 2, gives a desired solution.

In fact, u{x) is clearly real analytic outside =b and at each point x(f) in =b it
is the boundary value of the holomorphic Ulz) defined at least on the domain
Im ¢(z)>0. Since grad ¢(x)=£(t), the domain contains every subsector of the half
space {Imz, £{t)>>0. Thus we have

SSux) < b.
On the other hand, since
{0, 2) =@y (¢ (0, x") +10)

is not real analytic at the origin, the singularity spectrum contains (z,, £,00).
The regularity or the singularity of w(x) are proved in the same way as Theo-
rems 5.2 and 5.4.

REMARKS. If the bicharacteristic strip b is regular or of irregularity 1, then
we have of course analogues of Theorems 5.1 and 5.3. If we start, in this case,
with

2k

10 (2= — __1__...____1 —k—1
6.10) (2) % )I<10gz 1 > or z ,

we obtain a proof of the existence of an exactly % times continuously differentia-
ble solution u(x) or a distribution solution u(x) exactly of order & whose singularity
spectrum coincides with 5. This fact has been proved by Hormander [12], [12'T
and Kawai [13] under the assumption that the principal part plx,d) has real co-
efficients.

If p(x,8) has real coefficients and if (x,, £,o0) is a real non-singular characteristic:
element, then we can find a real bicharacteristic strip b passing through (z,, £0).
By Theorem 6.1 there is therefore a solution u(x) of (5.1) whose singularity spectrum
contains (x,, £,00). This generalizes in a certain sense Theorem 4.1 of [16].

When p{z, 8) has complex coefficients, however, a real non-singular characteristic:
element (x,, £,00) is not necessarily contained in the singularity spectrum of a solu-
tion u(x) of (5.1) (see Mizohata [22] and Kawai [18’]). We will give here two
sufficient conditions in order that there exists such a solution.

When #{x, &) and vix, &) are funetions on T*Q homogeneous in &, we define
the Poisson bracket {¢,v} by

(6.11) = (a—”~——a—“ a—)
=1 OEJ‘ 6x; 0X; UEJ'

3

It
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When plz, &) is a complex valued function, we write
(6.12) Clz, &)=1{z, B} (=, §)

according to Hoérmander [11], [12], where z(x, &) is the complex conjugate of u(x, &).
The following theorem is due to Hérmander [12], [12’] when the characteristic
element is simple. '

THEOREM 6.2. Let (2, &) be a real mon-singular characteristic element of
P(z,d) and let p(, &) be either the irreductble facter K(x,£) of plz, &) in (1.6) or
the holomorphic factor &—Ailz, &) in (1.4). If

(6.13) Clao, &) <0

and o is the irregularity, then for each 1<s=Zo/(c—1) there is a solution u(x) of
(5.1) ¢n a meighborhocd of x, whese singularity spectrum coincides with the point
(o, £,00) and which is ultradifferentiable of class {s} but not of class (s) {(resp. an
wltradistribution of class (s)).

ProorF. By Lemma 6.1.3 of Hérmander [11] there is a holomorphic characteristic
funetion ¢{x) defined on a neighborhood of x,=0 such that

614 plo)=(o, e+ 5 @ +0(al), a0,

with a symmetric matrix «;; whose imaginary part is positive definite. Then the
rest of the proof is the same as for Theorem 6.1.

REMARK. The assumption (6.18) is used only to prove the existence of a holomor-
phic characteristic function ¢(x) on a neighborhood of z, such that grad ¢(z,)=&,
and Im ¢(x)>0 on a real neighborhood of %, except at xz, where ¢(x;)=0. Such a
characteristic function ¢(x) exists for the generalized Lewy-Mizohata equation

6.15) ( 0 _ jypn 0 )du(x)zo, k=0,1,2, ---,
0wy 0,

at {0, dx,0). However, (6.13) holds only when k=0. An invariant characterization
of such operators has heen investigated by L. Nirenberg and F. Treves but we will
not go into the details.

Lastly we generalize a result of Zerner [28] and Hoérmander [12], [12'] and
construct a solution with a two dimensional singularity spectrum.

Let (x,, &) be a real non-singular characteristic element and let u(z,£) be as
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in Theorem 6.2. We consider the case where the real and imaginary parts of
grad; p(z, &) are linearly independent and

{6.16) Clx, £§)=0.

We write the real and imaginary parts of g(z,&), m(x, &) and m(x,&. Then
(1.16) is equivalent to

(6.17) {11, 2} =0.
Let H,, k=1, 2, be the corresponding Hamilton fields defined by

618 Hefie, )=l fi= 3 (G0 2Ny

The vector fields H, are tangential to the manifold M defined by gz, &=0 in a
neighborhood of (x,,&,) and form an involutive system by the Jacobi identity.
Hence there is a unique two dimensional integral manifold (x(t,, &), &(t1, £.)) passing
through each point (z,&) in 7*M. The two dimensional submanifold (z(¢, %),
&(ts, t)oo) of S*Q is again called a bicharacteristic strip.

We choose a local coordinate system so that the linear submanifold {x,=x,=0}
is transversal to the projection zb of the bicharacteristic strip b passing through
(9, £60). Then we can integrate the equation

(6.19) #{z, grad o(x)) =0
with the initial condition

(6:20) 0(0,0,2") =", &>+ 3, o}

by the Hamilton-Jacobi method (see Hormander [12']). Here x"=(xs, - - -, x,).

It is proved in the same way as in the proof of Theorem 6.1 that the solution
o{x) is holomorphic on a complex neighborhood V, of x, vanishes only on zb in
VN R™ and has positive imaginary part on VN R*\zb and that grad ¢(x,)=&,. Hence
we obtain the following theorem.

THEOREM 6.3. Let (2o, &,00) be a real non-singular characteristic element of
irregularity ¢ which annihilates the simple factor plx, &) of plx,&). If the real
and imaginary parts of grade p(x, &) are linearly independent and if (6.16) holds®
on a wneighborhood of (%, &), then for each 1<s=o/(s—1) there is a solution wu(x)
of (6.1) on a meighborhood of x, whose singularity spectrum is included in the two

3 See the following Remark A.
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dimensional bicharacteristic strip b passing through (%, &0} and contains (T, §6°°)
and which is ultradifferentiable of class {s} but mot of class (s) (resp. an ultradistri-
bution of class (s)).

Remarks added on March 16, 1976.

A. The assumption of Theorem 6.3 is too strong as compared with that of
Theorem 6.1. Actually we have only to assume that b is a two dimensional real
submanifold of S*Q included in the characteristic variety N(p) such that the
Hamilton fields H; and H, are tangential to b and span the tangent space Tb on
b. To be precise, we have to replace the Poisson bracket {¢,v} by the Lagrange
bracket

=1/ op ( oy oy > < oy 6#) ov >
6.21 e, p)= 5 (2 (D, BN (22 TN
(6.21) Lz, (@, ) El op; \ 37; P; B 0T, TP ox, / 0D;

where we choose the local coordinate system (xy,..., %, D1+ -, Do) defined by

;i
6.22 =5

and hence the Hamilton fields H, by the vector fields L, defined by

6.23)  L.flz, p)=lml,p, —1), /1
"l (9 0 0 0 nl 0 0
(5 B (e ) v )

In fact, then the complexification of b is covered by the two families of integral
curves of L, and L; where L, and L; are defined by (6.23) with g, replaced by
¢ and E. These families are transversal to each other. As we remarked at the
last part of §1, there is a one-to-one correspondence between the integral curves
of L, on N{gz) and the residue classes modulo C* of the integral curves of the
Hamilton field H, on N{g¢), such that corresponding curves have the same projec-
tions on Q. With this in mind we integrate the equation (6.19) under the initial
condition (6.20) in the following way.

First we lift (6.20) to an (n—2)-dimensional integral manifold 3/ of the exterior
differential system

(6.24) do—¢&dx,— -+ —&,dz,=0,
(6.25) ¢z, §=0,
(6.26) A, 8)=0.
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If we choose ¥”"={s, Y., ..., Y. as a local coordinate system, M, is given by

0=0(0,0,9") ;

=x,=0; x;=vy;, 7=3,4,...,1n;
Y4
EJ:M, j=38,4,...,m;
0y;

and & and &, are determined by the equations (6.25) and (6.26). The last equations

are solvable in &, and &, because {x,=z,=0} is transversal to =b and the tangent
0 0 gpq w0E.O

an axj 881 696,-

Next we construct an (n—1)-dimensional integral manifold M, of (6.24) and

(6.26) including M,. It is obtained as the union of all integral curves of the
Hamilton field H; passing through the points on M.

Last we project M, to the (p,x)-plane, lift it as an integral manifold M,
of (6.24) and (6.25), and then construct an n-dimensional integral manifold M, of
(6.24) and (6.25) including M,. M, is composed of all integral curves of H, passing
through the points on M.

It follows from the transversality assumption that z is a local coordinate system
on M,. Then ¢ regarded as a function of x is clearly a solution of (6.19). Since M;
includes M,, the solution ¢ satisfies the initial condition (6.20).

The residue class modulo C* of the integral curve C; of H; passing through
the point (x,, &) corresponds to the integral curve C, of L; passing through the
element (x,, &o0). By the assumption C, is included in the complexification of the
bicharacteristic strip b. In particular, every point of C; satisfies (6.25). Hence C;
with ¢=0 is included in M.

Similarly every integral curve of H, passing through a point of C, corresponds
to an integral curve of L, included in b. Since b is covered by the integral curves
of L, passing through the elements of C,, it follows that the solution ¢(x) of (6.19)
constructed above takes on the value 0 on the projection =b.

Since zb is two dimensional, the Hessian of Im ¢ has at least two zero eigen-
values. The rest of the proof is the same as that of Theorem 6.1.

B. We have not shown that the solutions constructed in Theorems 6.1 and
6.3 have the minimal singularity spectra. T. Kawai [13’] proves that when p(zx, &)
is of simple characteristics and has real coefficients, all elements on a connected

space T(zb) is spanned by I

bicharacteristic strip b belong to the singularity spectrum of a solution wu(x) of
Plx, 3)ulx)=0 at the same time. M. Sato-T. Kawai- M. Kashiwara [25] proves the
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same fact when p(z, §&) is of constant multiplicity and either has real coefficients
or has complex coefficients and (6.16) is satisfied. Recently M. Kashiwara proved
it when b is a simple real bicharacteristic strip as in Theorem 6.1 or in Remark
A.

C. Recently K. Kataoka proved that the singularity spectrum of a distribu-
tion coincides with the analytic wave front set in the sense of Hérmander. His
method applies also to ultradistributions. Hence we can prove that the boundary
value flx)=F(x+17'0) of a holomorphic function defined on the convex cone domain
V N(R*+1¢I") is an ultradistribution of class {s) (resp. of class {s}) if and only if
for each compact set Kin VN R* and ray R=Ry, in the interior of I" there are
constants L and C (resp. for each L>0 there is a constant C) such that

sup |Flz-+iy) |<Cexp (Lly)Y ), yc R

In particular, the ultradistribution solutions constructed in Theorems 5.4, 6.1,
6.2 and 6.3 are of class (s) but not of class {s}.
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