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§1. Introduction and statement of the main results

In this paper we shall prove the regularity, existence and uniqueness theorems
for some non-coercive boundary value problems with a complex parameter, general-
izing slightly such theorems obtained in the previous paper [17]. The background
is some work of Vainberg and GruSin [18] and Fujiwara and Uchiyama [5], which
we shall describe briefly. Some of our results were announced in [16] in a less
precise form.

Let 2 be a bounded domain in R® with boundary I" of class C°. 2=0U[ is
a C*-manifold with boundary. Let a, b and ¢ be real valued C=-functions on I,
let n be the unit exterior normal to I and let « and g be real C=-vector fields
on I'. We shall consider the following boundary value problem: For given funec-
tions f and ¢ defined in £ and on I” respectively, find a function % in 2 such that

(A+Hu=f in 2,
(%) U . .
@uza5+(a+z‘8)u+(b+w)u! =¢ on I.
Here 2=Re'? with R=0 and 0<0<2r and A=0%/8x}-6%/0x3-+ - - - --6%[0x2.

If alx)>|g(x)] on I where |g(z)] is the length of the tangent vector 8(x), then
the problem (x) is coercive and the following results are valid for any s=2 (ef. [12]
Chap. 2, Théoréme 5.1 and Théoréme 5.3; [2], Theorem 4.1 and Theorem 5.1);

i) For any solution we HY(Q) of (») with fe H*2(Q) and é<c H*%2%(]") where
1<s, we have u € H*(2) and the a priori estimate

lulzs o S Coalll FllGe-2is + 18122 + fulbt o)
holds for some constant C,;>0 depending only on 2, s and ¢.

i) If fe H=¥Q), ¢e H**") and (f, ) is orthogonal to some finite dimen-
sional subspace of C°°( OPC=(I"), then there exists a solution u € H*(Q) of (x).

iii) If arctan Vi k2<0<27r—arctan «/1_19 where k=max-—"- 1Bl (cf. §3,

ser  alx)
{8.11)), then for any integer s=2 there is a constant R,(0)>0 depending only on
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6 and s such that if [2|=R=R,(f) then for any fe H*%(Q) and any ¢¢c H*3/2(]")
there exists a unique solution we€ H*(Q) of (=) and that the a priori estimate

lulze o +121ultece) < CoalO) (1 F o200, + 1212 F 200y + (Bl ho-3720m + 21732 9 32 )

holds for some constant Cy;(¢)>>0 depending only on ¢ and s. Here H*(2) (resp.
H:(I")) stands for the Sobolev space on £ (resp. I') of order s and || |z° (resp.
| lgsm) is its norm.

If alx)=|Bx)] on I" and alz)=|g(x}l holds at some points of I, then the prob-
lem (+) is in general” mnon-coercive. The problem () in the case that A(x)=0 on
I, i.e., the oblique derivative problem in the case that a(z)>0 on I’ was investi-
gated by many authors, e.g., Egorov and Kondrat’ev [8], Kaji [10], Kato [11] and
Taira [17]. But the problem (+) in the case that g(z)=0 on I" was treated by a
few authors, e.g., Vainberg and Grusin [18] and Fujiwara and Uchiyama [5].

Vainberg and GruSin [18] treated the problem (x) in the case that n=2, a(z)=
1, alz)=0 and [8(x)|=1 on I" (see [18] Part II, §6). Under the assumption that
blx) +ic(x)#0 on I', they proved the regularity and existence results which involve
a loss of 1 derivative compared with the results i) and ii) (see [18], Theorem 19).

Fujiwara and Uchiyama [5] treated the problem () in the case that = is
arbitrary and a{z)=1 on I'. They characterized the couples (2, §) for which there
are constants C;s>0 and Cf such that the estimate

1.1 —Re (du, u} 1200 = Cislul b2, — Clsllullizo

holds for any u € C2(Q) satisfying PBu=0. (Here (, )2 is the inner product in
L*2).) In other words, they gave a necessary and sufficient condition for the
estimate (1.1) to hold (see [b], Theorem 1).

In this paper we shall study the problem {x) in the case that n is arbitrary
and a(z)=]g{x)] on I'. We shall obtain the regularity, existence and uniqueness
results which involve a loss of 1 derivative compared with the results i), ii) and
iii).

We now start to formulate our main results. Let x=(x:, s, - - -, Zo1) be local
coordinates in I” and let £=(§,&,, -+, &,_1) be the corresponding dual coordinates
in the cotangent space T*I'. Let [&| denote the length of & with respect to the

7' The problem {*) is coercive if and only if a{z)>0 on I and «(z) is not orthogonal to
Blx) at every point # € " where a{z)=|8(x)|>0. We shall treat the problem (*) under the
assumption that a(x)=0 at every point # € I" where a(z)=]8(z)|=0 and that «{z) is ortho-
gonal to Slx) at every point x € " where a{z)=|8(z){>0 (see the condition (B) in Theorem
1 or the condition (B)” in Theorem 2).
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Riemannian metric of I induced by the natural metric of R™ and let g(z, &) denote
the principal symbol of the vector field p{x)/i. Put

pile, &) =alx)|&]—pl, &).

Then it is easily seen that p:(z,&)=0 on the space of non-zero cotangent vectors
T*I™\0 if and only if a{x)=]8x) on I". Thus we assume that p;=0 on T*I™\0.
Let S={pe T*I'\0; p,(p)=0}. For every tangent vector u of T*I" at pc X, let v
be some vector field on T*I" equal to u at p and define a quadratiec form ao{u, u)
by the equation

ao{tt, w)={V"Dy)p-

Since p,=0 on T*I\Q, it follows that a,(u,u) is independent of the choice of v.
Let T,(T*I') be the complexification of the tangent space TL(T*I") of T*I at p¢€
2. We congider the symplectic form ¢=27"1dé; Adx; and the quadratic form a,
as bilinear forms on T (T*I")X To(T*I'). Since ¢ is non-degenerate, we can define
for every p€ X a linear map A,: T,(T*I") — T,{T*I") by the equation

aolu, Aw)=a,u,v), u,ve T,(T*I).

It is known (see [18], §2) that the spectrum of A, is situated on the imaginary
axis, symmetrically around the origin. For every p€ 2, we shall denote by
r/l"\r’le(p) the sum of the positive elements in 7-Spectrum (4,) where each eigen-
value is counted with its multiplicity.

We first formulate the regularity and existence theorems. Let w, denote the
second fundamental form at x of the hypersurface I"C R" and let M{x) denote the
mean curvature at x of I'. T,I" and TFI" will stand for the tangent space of I”
at 2 and the cotangent space of I' at x respectively.

THEOREM 1. Let 1=Re* with R=0 and 0<6<2x. Assume that the following
conditions (A), (B), (C-1) and (C-2) hold:

(A) al@)=|p@)] on I

(B) There is o constant C,>0 such that the inequality
{1.2) la(@, &= Colalr) &l — Bz, &)
holds for all (x,&) ¢ T*I'™\0. Here a(z,£) is the principal symbol of the vector field
alz)fi.

(C-1) At every point x€ I’ where a(x)=|8(x)]| =0, the inequality

(1.3) blz)>0
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holds.
(C-2) At every point x€ ' where alx)={8(z)|>0, the inequality

(1.4 ﬁle(w,S)+Zb(x)~diva(x)+a(x)<wx<ig;, ﬁ(x)>—(n——1)M(x)>>O

holds for &€ T*I corresponding to %e T.I' by the isomorphism: T, — Tl

induced by the Riemanmnian metric of I'. Here pix, &) =al)|&]—B®, &) and dive
is the divergence of the vector field « with respect to the Riemannian metric of

r.

Then we have for any s=2:

)" for any solution we H*Q) of (x) with fe H=XQ) and ¢c H**I') where
t<s—1, we have u€ H*(2) and that the a priori estimate

{1.5) lulgs—1 SCralll f k-2 + 19532 + fuliEt )

holds for some constant Cy,>0 depending only on 2, s and ;
i) if fe Ho2(Q), ¢ H32(I") and (f,¢) is orthogonal to some finite dimen-
stonal subspace of C@YDC=(T), then there exists a solution uwe H*HQ) of (%).

REMARK 1.1. The example in Kato [11] shows that the condition (B) is neces-
sary for Theorem 1 to hold. Further the condition (B) can be weakened. See §5,

the condition (B)’.
REMARK 1.2. In the case =2 the inequality (1.4) is reduced to the following:

(1.4)/ Tt H,,(, &)+ 2b(x) —div alz) >0,

since

wx< Blz)  plx) >—(n—1)M(ac)=0.

We next formulate the wumique solvability theorems. If f and g are C*-
functions on T*I'\0, then their Poisson bracket {f, g} will be

_%(af 89 of 99
{fag}'—;::1<asj o, ox; 0§; >

THEOREM 2. Let 1=101%% with lc Z and 7/2<6<3x/2 and let s be any integer

e

>2. Assume that the following conditions (A), (B)”, (C-1), and (C-2), hold:
(4)  alx)z|p)] on I
B)”  alx,&=0 on T={x,& e T*I"\0; a)|&|—pl=, & =0}

A~

(C-1), At every point x€ ' where a{z)=|px)|=0, the inequality
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{1.6) 2b(z) —div alz)+(s—3/2){|£]2, alz, £)} >0

holds for all £€ T¥I" with 0|8 <1,
(C-2), At every point x&I” where alx)=|8(x)|>0, the tnequality

L Tr H,, (@, &) + 2b(e) —div alz) +a(x)<wx ( Bl Bla) >— (n—l)M(x))
+(5—3/2)/{[¢]%, alz, £} >0

holds for &€ T¥I corresponding to %xie T.I" by the isomorphism: T, — T*I’
alx
wnduced by the Riemannian metric of . Here pi(x, &)=alx)|&]|— bz, £).

Then we have:

iii)’ there is a constant RB,(6)>0 depending only on 6 and s such that if |2l=
P=R,(0) then for any fe H Q) and any ¢ € H3*I) there exists a unique solu-
tion u € H*Y(Q) of (%) and that the a priori estimate

1.8 Tullds—1o +12 ulliz@
SCsON f a2+ 122 f 3200 + 9532 -+ A3 21B132)

holds for some constant Ci5(0)>0 depending only on 6 and s.

REMARK 1.3. In the case that the condition (B) is satisfied, the inequalities
(1.6) and (1.7) are reduced to the inequalities (1.8) and (1.4) respectively (see §5),
i.e., the conditions ((/3\-.1/)3 and (C-2), are reduced to the conditions (C-1) and (C-2)
respectively.

In the case that a(x)>0 on ", using Green’s formula, we have a more precise

result. Without loss of generality, we may assume that a{x)=1 on 7.

THEOREM 3. Let i=Re' with R=0 and =/2<0<8z/2 and let s=2. Assume
that the following conditions (A)’, (B)”, (C-2), and (C-2)’ hold:

(A alz)=1 and @)L on T

B)”  alx,8)=0 on T={,§ e T*I"\0; [&|—pl, &=0}.

(C-2), At every point x€ I where [8{x)|=1, the inequality

(1.7) Tr H,, (z, &) +2b(z) —div a{z) + 0,{8(x), ) — (n—1) M(z)
+(s—3/2){|g]%, alz, £)}>0

holds for &€ T¥I corresponding to Blx)e T,I" by the isomorphism:. T.I — T*I
induced by the Riemannian metric of I'. Here piz, &) =|&]—B(x, ).
(C-2) At every potnt x e’ where |Bz){=1, the inequality

(1.9) Tt H,, (@, &) +2b(z) —div a(z) +0.(8(@), 8(@) — (n—1) M(z) >0
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holds for £€ T#I corresponding to Blz)€ T.I by the isomorphism: T, — Tl
induced by the Riemamnian metric of I'. Here pi(z, &) =|&]— Bz, &).

Then we have:

iii)” there is a constant Rs;=<0 independent of 1 and s such that if Re 2<R;
then for any fc H*%Q) and any ¢ H33TI") there exists ¢ unique solution u€
HsHQ) of (x).

REMARK 1.4. If the conditions (A)’ and (C-2)’ are satisfied, then we have the
estimate

1.10) —Re (du, u)r2o Z Bs|ulii2@

for all uwe H2(Q) satisfying duc L2(Q) and Pu=0" (see §8, Theorem 8.1, which
is a partial improvement of Theorem 1 of [5]).

In view of (1.10), we obtain from the proof of Theorem 12.8 of Agmon [1] and
Rellich’s theorem the following

COROLLARY 1. Assume that the conditions (A), (B)”, (C-2); and (C-2)' hold.
Let us introduce the linear unbounded operator U in the Hilbert space L*Q) as
Sollows:

a) The domain of U is P =fuec HYD); due L} Q) and dufon+ (a+if)u-+
(b+ic)u|,=0}.

b) For uec D), u=—Ju.

Then the operator U is closed and has the following properties:

1) The spectrum of % is discrete and the eigenvalues of U have finite multi-
plicities.

2)  The resolvent set of % comprises the half plane {1; Re A<R;} and the re-
solvent (AI—%)~! is a linear bounded operator with the estimate

eT IR E——
R;—Re 2

REMARK 1.5. According to the Hille-Yosida theorem, the operator —¥ gener-
ates a semi-group of class (C,). Hence, by using Theorem 5.6 of Mizohata [23], we
can apply Corollary 1 to a mixed problem for the heat equation and obtain the
existence and uniqueness theorem.

Further, arguing as in the proof of Theorem 7.3 of [17], we obtain

COROLLARY 2. In addition to the conditions (A), (B)”, (C-2); and (C-2), as-

b For the definition of Bu for such u, see Grubb [6] Chap. I, Theorem 3.2.



Non-coercive boundary value problems 349

sume that the following condition (C-2)F holds:
(C-2)F At every point x €I’ where |8(x)|=1, the imequality

Tt Hyy(w, £)+2b(r) — div a(a) +0,(8(a), A@) — (n—1) M(z) —%{1512, a(z, §)}>0

holds for ¢ TFI" corresponding to Blx)e T, by the isomorphism: T, — T*I
induced by the Riemannian wmetric of I.

Then the adjoint operator U* of U in the Hilbert space L*(Q) is given by the
Jollowing:

c) The domain of U* is DU ={vec HUD); dve LHRQ) and 3v/on+ (—a+if)v+
(b—div a—ic--1 div 8)v|,=0}.

d) For ve QU¥), Wro=—tv.
In particular, if alz)=0" and c(x)z%div Blxy on I', then U is a self-adjoint
operator bounded below.

REMARK 1.6. By the last statement, we can define the half power (U+k)1/2
of the positive self-adjoint operator (U-+k) for some constant k. Further the
operator ¢(U+k)1/2 generates a group of unitary operators of class (C;). Hence, by
the well-known procedure (cf. [20], §2; [21] Chap. 3, §1), we can apply Corollary
2 to a mixed problem for the wave equation and obtain the existence and unique-
ness theorem and the energy inequality. In the case that |8(x){<1 on I, this
problem was studied by Agemi [19] and Miyatake [22].

The plan of the paper is the following: In Section 2 we reduce the problem
(x) to the study of a first order pseudodifferential operator on the boundary by
means of the Dirichlet problems. In Sections 3-5 we make this study. In doing
50, we use Theorem 3.1 of Melin [13] and a method of Agmon and Nirenberg [1]
in Section 8 as in [17]. This is the main part of the paper. In Sections 6-8 we
combine the results of Sections 2-5 to prove Theorem 1, Theorem 2 and Theorem
3 respectively.

Finally I would like to thank Professor Daisuke Fujiwara, who has suggested the
subject of this paper and given me much help and advice during the work. I
would also like to thank Mr. Sunao Ouchi and Mr. Kazuo Masuda for helpful
conversations.

D In this case, the econdition (B)” is automatically satisfied and the conditions (C-2),,
(C-2)’ and (C-2)§ are the same,
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§2. Reduction to the boundary

First we consider the Dirichlet problem: For given ¢¢e H* 32(]") with s€ R,
find w in 2 such that

@ {(2+A)w=0 in 0,

wlr=¢ on I

From Proposition 1.1 in Chap. III of Grubb [6] and the proof of Theorem 4.1
of Agranovié and Visik [2], we obtain

THEOREM 2.1 (Poisson operators). Let 2=Re* with R=0 and 0<60<2zx. Then
we have:

i) for any s€ R, there is a linear map P(A): H3¥I)— HYRQ) such that
Sor any o€ H32(I"), w=P (e is a unique solution of (I) and that the estimate

2.1) o a3z Slwl ze-10 £Cailolrs-s2p)
holds for some constant Cy >0 depending only on 2 and s;

ii) for any integer s=2, there is a constant Ry (6)>0 depending only on 6 and
s such that if |A|=R=R,(6) then the a priori estimate

{2.2) lwlEs—10) + 12 wliie o) < Coal0) (@l 5o—5/2ry + 121 @lT2 ()
holds for some constant Cy(8)>0 depending only on 6 and s.

Further it follows from Theorem 1.1 in Chap. III of {6] that for any s€ R the
mapping T(2)=PHP(2):

2.3) w@,@um:af;@um Flatilot brice

is eontinuous from H<12(I") into H*32(I"). More precisely, T(2) is a first order
pseudodifferential operator on I" (ef. [8], Theorem 2.1.4; [18], Theorem 14).

Next we consider the homogeneous Dirichlet problem: For given fe H*%(Q)
with s=2, find v in 2 such that

(A+v=f in Q,
v|p=0 on I'.

() {

From Theorem 3.3 (i) in Chap. I of [6] and Theorem 4.1 of [2], we obtain

THEOREM 2.2 (Green operators). Let 2=Re'? with R=0 and 0<0<2z. Then
we have:
i) for any s=2, there is a linear map G2): H**Q)— H*(Q) such that for
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any fe H2R), v=G(A)f is o unigue solution of (II) and that the estimate
2.4) Calflia—20=vla w0 2Coull flla—20

holds for some constant Cy>0 depending only on i and s;

i)y v=GA)f can be expressed as follows:

(2.5) Gf=CAESfla—PACAESr),

where C(2): H*R"— H*(R") is the fundamental solution of (A+4) and E,:
H2(0Q) — H*%(R") is a well-known extension map defined for any positive integer
k=s—2 (cf. [12] Chap. 1, Théoréme 8.1; [15], p. 340);

ii) for any integer s=2, there is a constant Ry(0)>0 depending only on 0 and.
s such that if |2|=R=Rs(6) then the a priori estimate

(2.6) lolEs @+ 1 2Pvl32 ) L Cos @) (1 f 12000 + 122 f 1200
holds for some constant Cou(6)>0 depending only on 6 and s.
Combining Theorem 2.1 i} and Theorem 2.2 i), we can easily obtain

PROPOSITION 2.8. Let i=Re'® with R=0 and 0<0<2z. For given fc H*2(2)
with s=2 and given ¢€ H*32(I") there exists a solution uc HYD) of the problem
A+Du=f in 2,
(%)

Bu= a~ (a+iflu+b+icu| =6 on I,
r

Sfor some t=<s if and only if there exists a solulion ¢ H*2(I") of the equation

(Vp=9¢—-Pv  on I,

where v=CG(A)f¢c H*(Q)
Furthermore, the following relations hold:

2.7 u—v=PAe  in Q.
2.8) p={u—v}lr on I

§3. Estimates for T(i)

The principal symbol of the pseudodifferential operator T(1)= RBP(2) defined
by (2.3) is

(3.1) alx) gl —ple, §) +ialz, &)

(ef. [8], p. 202). Here z=(xy, %5 +--,%,—1) are local coordinates in I’ and &=
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(81, &5, -+, E4_y) are the corresponding dual coordinates in the cotangent space
T*I', and }¢| is the length of & with respect to the Riemannian metric of I
induced by the natural metric of R" and «flx, &) and B(x, &) are the principal sym-
bols of the vector fields a(x)/7 and glz)/1 respectively.

The second symbol of T(2) is

3.2) b(x)%a(x)(ia-zwxé, &) — (n—1) M(z)) + ic(z)

+a pure imaginary term of order 0 independent of 2

{cf. [5], 83). Here M(z) is the mean curvature at x of the hypersurface 'CR"
and w, is the second fundamental form at % of I, and & is the tangent vector of
I’ at x corresponding to &€ T*I" by the isomorphism: T*I"— T,I" induced by the
Riemannian metric of I" where T,I" and T*I" denote the tangent space of I” at
and the cotangent space of I’ at x respectively.

Let T()* denote the formal adjoint of T(i). Using (3.1) and (3.2), we can
write down the symbol of T(3)*. Its principal symbol is

{8.3) az) &) —plx, & —ialx, §).

The second symbol is

(3.4) blx) +%a(x) (161w, E, &) — (n—1) M(x)) — div a(z) —ic(a)

+a pure imaginary term of order 0 independent of i.

Here div « is the divergence of the vector field « with respect to the Riemannian
metrie of 7.

Let A=(@1—4")1% where 4’ is the Laplace-Beltrami operator corresponding to
the Riemannian metric of I'. The following lemma is essentially due to Melin [13].

LEMMA 3.1. Let 2=Re*® with R=0 and 0<0<2r and let s€ R and t<s—1.
Assume that the following condition (B)” holds:

(B)” alz,&=0 on Z={g§ecT*I'"\0; alx)|s|-Ll, & =0}

Then there are constants Cy>0 and Ci depending only on 2, s and t such
that the estimate

{3.5) Re (422 T2, ¢) 2 Z Carlplis-3/2(n — Calolat-ve

holds for any @< C=(") if and only if the following conditions (A), (C-1); and
{C-2), hold:



Nomn-coercive boundary value problems 353
(A)  ae@=18) on T.
(C-1), At every point x€I” where alx)=|8(x)|=0, the inequality
{3.6) 2b(x) —div afx) + (s—3/2){|&]2, alz, &)} >0

holds for all &€ TEI" with |&|=1. Here {|£]%, alx, &)} is the Poisson bracket of |&|?
and alx, &).
(C-2), At every point x€I" where alx)=|8(x)|>0, the inequality

A7 TrHylw, &) +2bl) —div ) +a(x)<w, (ﬁ Al) ) — 1) M) >
+ (s—38/2){|¢[%, alz, £)} >0

holds for g€ T*I" corresponding to % €T I by the isomorphism: 7. — T*r
induced by the Riemennian metric of I'. Here pi(z, &) =alx)|&]—

Proor. The proof is similar to that of Lemma 4.1 of Taira [17]. First note
that by the same argument as in the proof of Theorem 7 of Fujiwara [4] we can
localize the estimate (3.5). Now we find from (3.1) and (3.3) that the principal
symbol gy—s(x, &) of Re (4%3T(2)) is

3.7 Qs (2, §) = (a(@) |£] - B(w, &) (€1 =1 (w, £} €[>,

Hence ¢;..=0 on the space of non-zero cotangent vectors T*/"™\0 if and only if
alr)=|p@)| on I, i.e., the condition (A} holds. Thus we assume that the condition
{A) holds. Let ¥={(x,&) € T*I'"\0; Gne—z(, &)=0}. Then it follows from (8.7) that
I={, & € T*I'\0; pilx,& =0} and further from the condition (A) that S=3,U 3,
where 3;={(z,§) € T*I'\0; a(z)=|8)|=0} and 3,={(, &) € T*I"\0; a(x)=]8()|>0

and &€ T¥I" corresponding to %6 T.I'}. Besides we obtain from (3.1), (8.2),
a
(3.3), (3.4) and the condition (B)” that the real part of the second symbol of

Re (42737(3) on 3 is

A

3.8) (b(ﬂc)—-—;—div al(@))lg]®=® + —z*a( @) (1620, (E, &) — (n—1) M(x)
X[g[Ft+— {IEIZS‘ afx, &)}

Hence, applying Theorem 8.1 of [13] to Re (A*~3T(2)), we find that the estimate
{3.5) holds for any @€ C=(I") if and only if the conditions (A), (C-1), and (C-2),
hold. 1In fact, it is sufficient to note that Tr H,, ,=0on 3 (since, by the condi-

tion (A), a(z) and 8(z) vanish at least to the second order) and that Tr H,

‘122
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"finl on X,. The proof is complete.
Arguing as in the proof of Proposition 4.2 of [17], we can obtain from Lemma
3.1

PROPOSITION 8.2. Let i=Re'® with BR=0 and 0<0<2x and let s€ R, t<s—1
and t*< —s+1. Assume that the conditions (A), (B)”, (C-1), and {C-2), hold. Then:
i) for all ¢ € H*32(I") such that T(A)p € H***I') we have the estimate

8.9) (pl%s-a/2py < Cop (| T @lho-2/2 ¢y +l@lht-1201))

for some constant Cs>0 depending only on 2, s and t;
it) for all ¢ € H~31%(I") such that T(A)*¢ € H~*12(I") we have the estimate

8.9)* (@15 era/ep SCHEN TR *Py—s+s/2py + | 1R+12(p)
for some constant CE>0 depending only on 2, s and t*.

To study the estimates (3.9) and (8.9)* for {i] sufficiently large, we use a
methtd of Agmon and Nirenberg, that is, we introduce an auwiliary variable (cf.
[13, 141, [12]).

Let S be the unit circle S=R/2zZ. We consider the Dirichlet problem: For
given $¢ He32(I'x S) with s€ R, find @ in £x S such that

2
(4o )w:o in 25,

W] rxs=¢ on I'xS.

{1

Here 0<6< 2z and y is the variable in S. Note that for 0<6<2z the operator
A—e%9%[oy? is elliptic on 2XS.

From Proposition 1.1 in Chap. I of Grubb [6], we obtain

LEMMA 3.3. Let 0<0<2z. For any se€ R, there is a lLinear map g’(ﬁ):
H*32('x S) — HHQXS) such that for amy §cH3*I'XS), ﬁ):@(ﬁ)@ s a
unique solution of (III) and that the estimate
{3.10) Cus ()M o372 pxsy DN go-10x s £ Cos(0) 18 m2-3/2rxs)
holds for some constant Cs3(6)>0 depending only on 0 and s.

Recall that for any s¢ R the mapping T(f)= _@g?(e):
o 5o 0 55~ R .
90—>.%)£P(0)so=a§(@(0)so) +(a+i8)3+ b+10)8

I'xs

is continuous from H=2(I"xS) into H=**I'xS) and further that T(f) is a first
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order pseudodifferential operator on I'X S (cf. §2).
For the relation between T(6)=RP) and T(2)=PBP(X), we have

LEMMA 3.4 ([17], Lemma 4.4). Let 0<0<2zx and 1€ Z. For any ¢c C2(I)
we have

T(0) Qe = T(2) e,
where 2=I[%°,

The principal symbol of the pseudodifferential operator T(6) is

r(@(l&(”ff)”z—ﬂ(x, §)+talz, 8 it 6=n;
(3.11)

a(x)[ <(|512~w72)2+v224)”2+ (|Elz_/“72) ]1/2_5(9(;, S) +ia(90, {:)

((&F— ") 2+ v 12— (|£]°— ) ]”2
2

—ia{x) sgnu[ if 0z,

Here 7 is the covariable corresponding to y€ S in the cotangent space T*S and
e=p+1y (0<6<2z). The second symbol of T(6) is
blo)+ S alo) 181+ 770, €, ) — (0—1) M(o)) +ic)
+a pure imaginary term of order 0 if 0=r=;
BI b+ Lat) (g0, 8~ (0~ M) +ale) san »
Xa real term of order 0 vanishing at »=0+41c(z)

+a pure imaginary term of order 0 if 6+£x.

Let A=(1—4'—08%oy®2. Just like Lemma 3.1, we can obtain from (3.11) and
{8.12)

LEMMA 3.5. Let n/2<60<37/2 and let sc R and t<s—1. Assume that the
Jollowing condition (B)" holds:

B)” al,§=0 on I={& e T*I'\0; alx)lg]—plx, &=0}.

Then there are constants Cy(6)>0 and CL(6) depending only on 6, s and t
such that the estimate

{8.13) Re (A2~ T(0)3, &) 12crxs) = Cas(6) [@lhs—s/2rxm — Cal@)1Blht-1/2 (rxs

holds for any @€ C>(I'XS) if and only if the following conditions (A), (6-\153 and
(C-2), hold:



356 Kazuaki TAIRA

(é)v al@)=|ple)l  on I

(C-1), At every point € where alz)=|8&)|=0, the inequality
(1.6) 2b{x) —div a(x) + (s—3/2){|&]%, alz, £)} >0

holds for all & T*I" with 0Z[8]<L1.
(C-2), At every point x€ " where alzx)=|[8)|>0, the inequality

@ T H )+ %) —div (@) +a(x)<wz (‘;% %>~ (n—l)M(:c)>

+(s—3/2){l¢], alw, E)}>0

holds for &£c T*I" corresponding to —i—%—e T.I by the isomorphism: T, — Tl
induced by the Riemannian metric of I'.

PRrOOF. First note that just like (8.5) we can localize the estimate (3.13). Let
Bi(x, &, 7) denote the real part of the principal symbol of T(f) (see (3.11)). Then
the principal symbol g,_.(®, &,7) of Re (A=~2T(6)) is

(814 Qama(, &, 1) = a0, &, 1) (124 77) 2.

Since #/2<6<3=z/2, it is easily seen from (8.14) and (3.11) that §,-.=0 on the
space of non-zero cotangent vectors (T*I'X T*S)\0 if and only if a{®)=|8)] on
I, i.e., the condition (A) holds. Thus we assume that the condition (A) holds.
Let S={(z,&,v,7) € (T*['X T*S)\O0; @2-2(v,&,7)=0}. Then it follows from (3.14)
that S={(x, & vy,7) € (T*I'X T*S)\0; 5.(x,& 7)=0} and further from (3.11) and the
condition (A) that $=3,UJ%, where 3,={(x,&,9,7) € (T*['X T*S)\0; a(z)=|8(z)|=0}
and 3,={(z, &, 9,0) € (T*I'x T*S)\0; a(®)=|8()|>0 and &¢ T*I" corresponding to
5%6 T.I't. Therefore, as in the proof of Lemma 3.1, we obtain from (3.11),
(8.12) and the condition (B)” that the real part of the second symbol of Re (42-37T(6))
on =% uZ, is

(b(x)—% diy a(x>> (IEF+712)‘*’3’2+—;—{(lél“rvz)“’“z, «lz,8)}  on Sy

bla) —— div a(x)+—;—a(x)<wz (ﬁ(—”) M)- (n—l)M(x))

2 alz)’ alz)

+%{l§i2*‘3, a(z, 8} on 5,

{cf. (3.8)). Further we obtain from (3.14), (8.11) and the condition (A) that
TrH, =0 on 3, and that TrH

d23—2 T2s—2

=Tr H,, on 5,. Hence, applying Theorem
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3.1 of [13] to Re(A*~2T(6)), we find that the estimate (3.13) holds for any &€ C=(I"X S)
if and only if the conditions (A), (/C\-'l/)s and (C-2), hold. The proof is complete.

Arguing as in the proof of Proposition 4.6 of [17], we can obtain from Lemma
3.4 and Lemma 3.5 the following

PROPOSITION 3.6, Let 1=[%% with l€¢ Z and z/2L0<3z/2 and let s=3/2.
Assume that the conditions (A), (B}”, (/(ii)s and (C-2), hold. Then there is a con-
stant Bs(0)>0 depending only on 0 and s such that if |Al=12=R4(0) then:

i) for all oe H**2(I") such that T()¢c H=%*I") we have the estimate

(B.15)  oplhs-si2y +127 %2 o ke < Cos(0) (| T(R)pl%s-8/2(1y + | 21312 T (A 0321y

Jor some constant Cy(0) >0 depending only on 6 and s;
ii) for all ¢ ¢ H=12(I") such that T(X)*¢ € H+*2(") we have the estimate

(3.15)* [ l5srerey SCE|T()*P|G—243r2 )

Jor some constant CE>0 depending only on 2 and s.

§4. Solvability of T(2)

For any s€ R we introduce the linear unbounded operator (2): H* %2} —
H=3/2(I") defined as follows: »

a) The domain of G'(2) is DT () ={pc H%2(I"); TN H=I)}.

b) For o€ DI (), T We=TA)e.
Since DT (2))2C=(I), it follows that QT (2) is dense in H*%2() and hence
that there exists the adjoint operator '(A* of (2) with respect to the pairing
of H*=3/2([") and H—*/2(I"),

Similarly, for any s€ R we introduce the linear unbounded operator I(2)*
H—+32(I"y — H~s+3/2(["} defined as follows:

¢) The domain of I(A* is DT (A*)={p e H+12(T); T(A)*¢ e H-+32(I).
Here T{A)* is the formal adjoint of T(1).

d) For ¢e DAY, T1(A*¢=T(2)*¢.

For the relation between ' (A* and 1{A)*, we have
LEMMA 4.1. G A*cT,()

In view of Lemma 4.1, by the well-known procedure, we ean obtain from
Proposition 3.2

PRrOPOSITION 4.2. Let 1=Re* with R=0 and 0<6<2z and let sc R. Assume



358 Kazuaki TAIRA

that the conditions (A), (B)”, (C-1), and (C-2), hold. Then the operator <[ (i):
H=32(y — H-*2(I") 18 closed and has the following properties:

i) The null space JUT () of (1) and the null space JU(A*) of its adjoint
operator L {(A* are finite dimensional.

i) The range RET Q) of A tn H3I) 4s closed and has finite co-
dimension. More precisely, R(T () is the orthogonal complement of R (A%,
thus, eodim R (G (1) =dim U (2)*).

Similarly we can obtain from Proposition 3.6

PROPOSITION 4.8. Let i=1%* with 1€ Z and z/2<6<37/2 and let s=3/2.

Assume that the conditions (A), B)”, (C-1), and (C-2), hold. Then there is a con-
stant Rg(0)>0 depending only on 0 and s such that if [A[=12=R0) then the
operator <[ (A): H=32([")— H*%2(") is one to one and onto.

Further, using (3.1) and (3.2), we can prove

COROLLARY 4.4. Let 2=Re* with R=0 and 0<0<2r and let s=3/2. Assume
that the conditions (A), (B)”, (6.1/)3 and (C-2), hold. Then the index of < {A):
He312([) — H*-312(") is equal to 0, 1.e., dim ST (1)) =codim R (T (1)).

Proor. We find from (3.1) and (3.2) that for any A’=R’¢'¥ with R'>0 and
0<60"<2x

T@O=T )+ K2,

where K (2,2 is a pseudodifferential operator of order —1. Since by Rellich’s
theorem the operator K (2,2'): H*=3%I")— H**2%(I") is compact, it then follows
that

(4.1) Index & (2) =Index G (2').

Now choose an integer ! such that 2= Rg(6") for some z/2<6'<3x/2, and put A’'=
1%, Then, from {4.1) and Proposition 4.3, we obtain Index ¢ (1)=0, which com-
pletes the proof.

§5. Hypoellipticity of T(2)
We obtain from (3.1) and (3.2) that the symbol of T{4} is

(a(z)le]— (=, &) +ialz, s))+(b<x>+é—a(x>(ls&-%x<§, 8 — (n—1)M(z))
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+ic(x)+a pure imaginary term of order 0 independent of 2>
+lower order terms.

We introduce the following condition (B):
(B) There is a constant C,>0 such that the inequality

1.2) lae(w, &) = Cola(x) €] — B, &)

holds for all (z, &) e T*I\0 (cf. [9], 5.1).
This implies that
(B}’ there is a constant C,;>0 such that the inequality

.1 lda(z, §) P < Cilalz)— Bz, 8)

holds for all (x, &) € T*I'™\0 with |&|=1 (cf. [9], 56.2); [16], the condition (C)). Here
da is the exterior derivative of «fz,&) and |da| is the length of the cotangent
vector da of T*I" with respect to the natural metric of T*I" induced by the
Riemannian metric of I' (ef. [14]).

We find from (5.1) that «(x, £) vanishes at least to the second order on Y=
{(x, &) € T*I'\0; alx)is]—p(x, &)=0}, which shows that the inequalities (3.6) and (1.6)
are reduced to the inequality (1.3) and that the inequality (1.7) is reduced to the
inequality (1.4). In other words, if the condition (B)’ holds, then the conditions
(C-1), and (67133 are reduced to the condition (C-1) and the condition (C-2), is re-
duced to the condition (C-2) respectively. Thus we have proved

REMARK b.1. Proposition 3.2 (resp. Proposition 38.6) remains valid with the
conditions (B)”, (C-1), (resp. (671/)3) and (C-2), replaced by the conditions (B)/, (C-1)
and (C-2).

In view of Remark 5.1, arguing as in the proof of Theorem 5.2 of Hérmander
{9], we cobtain

PROPOSITION 5.2. Assume that the conditions (A), (B), (C-1) and (C-2) hold.
Then we have for any s¢ R:

i}y of o QI and T(A)gc H32(I), then it follows that ¢ € H™%T);
il if g DU and TA)*¢ e H-314T"), then it follows that ¢ € H—=¥312([7),

§6. Proof of Theorem 1
We first prove a weaker result.

THEOREM 6.1. Let i=Re with R=0 and 0<0<2z and let s=2 and t<s—1.
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Assume that the conditions (A), (B)”, (C-1), and (C-2), hold. Then we have:
)7 for any solution uw€ H="Y Q) of (x} with fc H2(Q) and ¢€ H* %) the
a priori estimate

(1.5) Ml S Cralll Sl Ee-200 + [Blhe-3/2¢r, +Hlulft @)

holds for some comstant C.,>0 depending only on 2, s and t;

) of fe H2(), ¢c H*32(I") and (f,9) is orthogonal to some finite dimen-
stonal subspace of Hy***{QYDH—2([") where Hy**2(2) 1s the dual space of H*2(Q)
{ef. [T, p. B1), then there exists a solution wec H* Q) of (%).

Proor. The proof is similar to that of Theorem 1 i)’ and ii)’ in §6 of Taira
{171.

1)” Assume that % is a solution in H*3{£Q) of () with fe H*2(Q) and ¢
Hs32(I"y, Then, applying Proposition 2.3 with ¢t=s—1, it follows from (2.7) and
(2.8) that u can be decomposed as follows: w=v+P (e where v=G)fc H{Q)
and ¢o=m—2v)pc H32("). We shall denote by C a generic positive constant

depending only on 1, s and %.
First it follows from (2.4} that

(6.1) vl @ ZClfliE-20-
Next, since u—v=%P(e, using the estimate (2.1), we obtain
6.2) lu—vlks—10 ZClolhs-s/2.

Further, since T(No=¢— Pve H***I"), the estimate (6.2) combined with (3.9}

gives

(6.3) lu—vlbs—100 SCUTR) @lhs—2/2m + @l kt-1/2()
ZC(@15s-s/2my + | Polhe—sr2y + oIz ().

Using again the estimate (2.1) with s=¢-+1 and (6.1), we obtain
(6.4) lolgt-v2m SClu—vlikt o SCllulllt o + | lE—2@),

since #<s—1. On the other hand, since for any s>8/2 the mapping B: v—

a,z—v+(a+i,8)v+(b+ic)v ] is continuous from H*(Q) into H***(I") (cf. {12] Chap. 1,
n r

Théoréme 9.4), we obtain from (6.1)

| Bolge-s/z g ZClole 0 SCI FlE-200) -

Hence, carrying this and (6.4) into (6.3}, it follows that
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lu—vlke-10) SCUHe—sr2n + T2 +ulBt 20),

which, together with (6.1), gives the estimate (1.5).

ii)” First we find from Proposition 2.3 with ¢=s—1 and Proposition 4.2 ii)
that for given fe H*2(Q) and given ¢ ¢ H*—3/2(I") there exists a solution u ¢ H*(Q2)
of (%) if and only if ¢— Gvec H*-3/2(I") is orthogonal to the null space JUT (A)*) of
(A*. On the other hand it follows from (2.5) that

(6.5) Bo=BCA)E,f—T(2) (C) Epflr).

Further it follows from Lemma 4.1 and Proposition 4.2 i) that dim J{ (%) <oo,
say, dim JUT (A*) =m.

Now denote by {¢;}eCH=2(I") a basis of JUT (2)*). We obtain from (6.5)
that ¢é— Gve H*%2() is orthogonal to JUCT (A*) if and only if for each ¢;€
H-=+312(T)

(6.6); w382y [P, Pilu—svsi2(ry — wo-s/2 [ BCAVEr f, §1g—s+3/2r)
F a3z [T CA EL S 1), §i1a~s+s/2my =0,

where ps-s/z2gm[ , 1p-s+e/2;m denotes the pairing of H*32(I") and H/3{).
Further, arguing as in the proof of Theorem 4.5 of Taira [15], we can esasily
prove that (6.6); holds if and only if

(6.7); w32 [, O lg—s+si2 iy + me-20) (£, 0,)) myo+22y =0,

where

1?5=Ef0<2)*<a¢j®g%>+ E¥C* (a—if)$;29)

+EfC(a)*(div a—1 div £)¢,Q0) — EFC()*((b—1ic) ;&)
+EFC)*(T(2)*¢;&9)

and gz ({ , )mst2 denotes the pairing of H*%(2) and Hy***(2). Here
E¥: H=%2(R") — Hys*%Q) is the adjoint of E, (ef. [15], p. 340), C{()*: H*(R") —
H—+2(R" is the formal adjoint of C(1), T(A)*: H 2"} — H=*/%([I") is the formal
adjoint of T(2), and ¢ is the surface measure on I” define dby 5(g)=S gdl’, g¢
C=(RY. g

Therefore we have proved that for given fe H*?(2) and given ¢¢ H**2()
there exists a solution we H*~YQ2) of (¥} if and only if for each j=1,2,:--.,m,
(6.7); holds, that is, (f,¢) is orthogonal to {(3;, ¢,)irC H* Q)P H=¥") (m=
dim JH (A)*). The proof is complete.
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PROOF OF THEOREM 1. In view of Theorem 6.1, Theorem 1 can be obtained
by using Proposition 2.3 and Proposition 5.2. See the proof of Theorem 1 i)’ and
i)’ in §6 of [17].

§7. Proof of Theorem 2

The proof is similar to that of Theorem 1 iii)/ in §6 of Taira [17].

From Proposition 2.3 with ¢=s—1 and Proposition 4.3, we obtain the unique
solvability for the problem (x) when i1=I%° with 1€ Z and [2[=12=R,0) (z/2LK0<Z
37/2).

We prove the a priori estimate (1.8). Assume that |A|=01>=max (R{6), Bs(0),
R:(0)) and that » is a solution in H*1(Q) of (x) with fe H*2(Q) and ¢ ¢ H*3/2(]").
Then, as shown in the proof of Theorem 1 1)”, u can be decomposed as follows:
u=v+P e where v=0(A)fc H*(Q) and p=(u—v)|,€ H*32(["). We shall denote
by C a generic positive constant depending only on 6 and s.

Since |2|=12=max (R,(0), B;(6)), it follows from (2.2) and (2.6) that

(7.1) lulife—1o+ 2 ulifzwo SC k-2 12172 flR2@
+lpihe-sre g+ 12522 0lk2 ).

Further, since T(Qo=¢— FPvec H*312(") and |2|=12=max (R,(6), Bs(0), Rs(6)), the

estimate (7.1) combined with (3.15) gives

(1.2) Ik +1alHullee SCU k-2 + 1B F 2w + 1 T(D ol k32
+12P2 R TNl SO G20 + 220 Fll520 + 11553721y
+122 22y + | Polhs-s/2m + 1215732 Polier).

On the other hand we obtain from Proposition 3.1 of Agranovi¢ and Vigik [2]
that

| Bols—sizy + 121732 Polkery SCUvlks @ + 12101320,
which combined with (2.6) gives
| Bolge—s/2qy+ 21732 Bole o SCULF 5200+ 121°72) f2200)).

Hence, carrying this into (7.2), we obtain the estimate (1.8) when 1=1[%% with
le Z and |2]|=1zmax (B,(6), R;(6), B;(0)) (x/2<6<3x/2). The proof iz complete.

§8. Proof of Theorem 3

We first improve the “if” part of Theorem 1 of Fujiwara and Uchiyama [5].
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THEOREM 8.1. Assume that the following conditions (A) and (C-2)' hold:
(AY ax)=1 and (B)}I1 on I'.
(C-2) At every point x€ " where |8(x)|=1, the inequality

{1.9) Tr Hy, (o, &) +2b(2) —div a(z) +0.(8(@), 8(#) — (n—1) M(z) >0

holds for &€ T*I corresponding to plx)e T.I by the isomorphism: T, — Tkl
induced by the Riemammnian metric of I'. Here p(x, &) =|&]—px, &).
Then there are constants Cg >0 and Cl such that the estimate

8.1 —Re (du, u) 120 Z Csillul k2 ) — Chilluliz o
holds for amy uc HYQ) satisfying Auc L2(2) and Bu=0.

PROOF. Assume that uwc H'/2(Q) satisfies duc L2(Q) and PBu=0. Then, apply-
ing Proposition 2.3 with s=2 and $=1/2, it follows from (2.7) and (2.8) that for
any A=Re* with B=0 and 0<8< 2z the function «# can be decomposed as foilows:

(8.2) u=v+P e,

where v=G ) (2-+Du) ¢ H2(Q) and ¢o=(u—2)|pc LAI"}). TFurther, since Fu=0 and
v|r=0, it follows that

T(z)¢:,@9(z>¢=—@v=—<—a@ +latifot bricw >:——a—7i c H'(T).
on I on r

Thus by Green’s formula (see [6] Chap. I, Corollary 3.3) we have

(8.3) = {((A+ D, w20y = — ((A+ Dw, v) 1200y — ([A+ D, PA)P) 120y

={lke +(=1=Dlvlkiew + (T2, 9) 121,
sinee v|y=0, —g—” =T(N¢ and PRelr=0.
nir
To estimate the term Re (T(X)¢, )2, we prove the following

LEMMA R.2. Assume that the conditions (A) and (C-2)' hold. Then there is
a constant ,=<—1 such that for all ¢ e L¥I") satisfying T{2)¢ € L*I") we have the
estimate

8.4) Re (T(20)¢, @) 22 = Coa (| P (A0 l5r1720) + [ 26| M2 P (20) 0 1320))
Jor some constant Cg>0.

PROOF. First we observe from the remark after Lemma 1.4.5 Hérmander [8]
that for any ¢ L¥(I") satisfying T(i)p € L") we can find ¢*c C={I") with 0<e<1
such that ¢*—¢ in L") and T{(i)¢°*— T(i)e in L*I") when ¢—0. Further we
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obtain from Theorem 2.1 i) with 2=2, and s=38/2 that the Poisson operator P(1,):
L) — HY2%(Q) is continuous. Hence it is sufficient to prove the estimate (8.4)
when g€ C=({").

Now we find from (3.11) and (3.12) that the symbol of T(x) is

(11247212 — B, &) +ialz, &) +(b P+ 706, — (-1 M)
+ic(x)+a pure imaginary term of order 0>+Iower order terms.
Therefore, applying Theorem 8.1 of Melin [13] to Re T(x) as in the proof of Lemma

3.5, it is easily seen that if the conditions (A)’ and (C-2)’ are satisfied then for all
€ Ce(I'xS) we have the estimate

Re (T(2)3, ) 12rxs) = Caal @13 2rws) — Chal Bla-1/2 )

for some constants Cyu>0 and Cf. Thus, applying this estimate to $=¢Qe!¥ with
1€ Z and using Lemma 3.4, we can find an integer [,>1 such that the estimate

T(85) = ' Re (T(—1§o, ©)r2im 2 Cadloli2im

“holds for some constant Cy, >0 (see the proof of Proposition 4.6 of [17]).
On the other hand, applying the estimate (8.10) with 6=z and $=38/2 to ¢=
oReto? and using Proposition 4 of Fujiwara [4], we have

(8.6) lolizm “”“l{l’@e’ W32 ry
> 2”01;3 1 P e i ox
27z033( ) <P (— Blo@e o[ 31/2gxs)
zzﬂ—&—)<lxo@<—lz>¢11z1/z(g)+long>(—za>soniz<g>)

for some constant Cg;>0. (The second equality follows from the fact that by de-
finition P(r) (pQes?) = P(— B o@eo".)

Hence, combining (8.6) with (8.5), we obtain the estimate (8.4) with A,=—01<
—1. This completes the proof of the lemma.

END oF PROOF OF THEOREM 8.1. Putting 1=2,, it follows from (8.3) and (8.4)
that



Non-coercive boundary value problems 365

8.7 —Re ((A+Du, w2 2 [vl%10 + (—1— 20 Jolld2
+Ca (P (a0l h1iz oy + 12 A P (Ao) el 2cy)s

which, by virtue of (8.2), gives the estimate (8.1) (since —1—1,=>0). The proof is
complete.

PrROOF OF THEOREM 3. Assume that Re A<R,=Cs;—C}. Then by the estimate
(8.1) we have the uniqueness for the problem (x). Further it is easily seen that
G): H-¥[—H**2I) is one to one. In fact, if ¢ H*32(I") and T (o=
T(2)9=0, then it follows that w=%P (e c H*1(Q) is a solution of () with f=0 and
¢=0, hence by the uniqueness (as shown above) we have w=0, which gives that
o=w{r=0. Therefore it follows from Corollary 4.4 that < (i) is onto, which, in
view of Proposition 2.3 with t=s—1, proves the surjectivity for the problem (%).
Thus we obtain the unique solvability for the problem (x) when Re 1< Ry=Cy—Cé.
Further we observe from the proof of Theorem 8.1 that R;<0 (c¢f. (8.7)). This
completes the proof.

ProOOF OF COROLLARY 2. First we need the following

LEMMA 8.3 (cf. [17], Lemma 7.1). Let 7 be a real C=-vector field on I'. For
all ¢, ¢ € HYAT), we have

(8.8 a2 lre, Plavzgy = — g2 mie, rPla-1vey — (o, divy- )2 .

The proof is omitted.

Let %’ be the linear unbounded operator in L2(2) defined as follows:

¢) The domain of ¥’ is @@z'):{ve HYQ); dveLQ) and z—:+(—a+i,8)v+
(b—div a—ic+i div ﬁ)v] =o}.

d) For ve ), 5("0=~Av.

Now we have to prove that %'=%*. First we prove that ' cU*. Let ve D).
Then it follows from Green’s formula (see [6] Chap. I, Corollary 3.3) that for all
% EDE)

(A, v) 220 — U, X'0) 120y = (— Ju, V) 20y — (U, — V) 2
ou

i ov
= wulr,— — —1 ,?r
Y2 on\rig—12qy gVl onir "Y2()

=gzl @—if) i) — b—diva—ic+idiv )virlzi/zg
+ g2 [la+18) (ulr) + b+i0)ulr, virlavzay.

Hence, by applying the formula 8.8) to y=« and y=p with ¢e=u|r and ¢=v|r,
we have
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@, v) 22 = (u, ') 20)

for all D). This implies that ve @A* and A*v=U'», which proves that
AN U=,

Next we prove that A’'=%*. We observe that if the conditions (A), (B)”, (C-2)§
and (C-2)’ are satisfied then Corollary 1 remains valid with % replaced by «'.
Hence, from this and Corollary 1, we can find 1<0 such that the mappings (2+%'):
DEAYV—L2D) and 2+¥): GH—L*L2) are one to one and onto. Thus, arguing as
in the proof of Theorem 7.3 of [17], it follows that A/=9*.

The last statement follows from the estimate (8.1) (ef. (1.10)). The proof is
complete.
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