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Introduction. In the previous paper [3] we considered a relationship between
the hyperalgebra and the universal group covering of a connected affine algebraic
group scheme over a field.

Let & be a field of characteristic p>0 and ®=Spec (4) a connected affine
algebraic k-group scheme corresponding to the commutative k-Hopf algebra A.
Let A° be the dual Hopf algebra to 4 [3, p. 254] and hy(®) the hyperalgebra of
® [8, p. 259]. A canonical map of Hopf algebras: A—hy(®)° corresponds to the
inclusion: hy(®)—,A4°. Let

7:®*=Spec (hy(®)°) — G=Spec (4)

be the associated morphism of affine k-group schemes. Since ® is connected, 7 is
an epimorphism (or equivalently A—hy(®)° is injective) and each algebraic guotient
of ®* is connected by [8, 0.3.1 (g)]. Hence the affine k-group scheme &* is con-
nected [1, III, §8, n° 71.

In this paper we first show that (8% ) is a central extemsion of ®, i.e., the
kernel Rer (y) is contained in the center of &%,

An affine k-group scheme is proetale if each algebraic quotient is etale [1, ibid.].

When p>0, we prove that (&* y) is a proetale extension of &, (i.e., the kernel
Rexr () is proetale) if and only if the quotient group scheme /[, ®] is finite,
where [®, ®] denotes the derived group of & [3, p. 2571.

If this is the case, the pair (&% y) clearly satisfies the following universal
mapping property: Let 7:9-—>® be an epimorphism, where $ is a connected affine
k-group scheme and Rer () is proetale. There is a unique morphism of k-group
schemes 7*:®* — & such that pop*=7.

Hence, in this case, (8% 7) is a universal proetale extenston of &. In parti-
cular, if &* is algebraic (or equivalently, if the commutative Hopf algebra hy(®)°
is finitely generated), then (G*,7) is a universal group covering of & in the sense
of [3].

Therefore, combined with [3, Th. 1.9], we have the following:
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COROLLARY. Let k be perfect with p>0. For each connected affine algebraic
k-group scheme &, the following are equivalent:
1) ©® has a wniversal group covering.
i) (&% 1) 1s the universal group covering of ©.

)
i) (®&* y) is an etale group covering (3] of ©.
)

iv) ©/[®, ] is finite and hy(®)° is finitely generated.

For example, if & is a semisimple k-group scheme, then these equivalent con-
ditions are satisfied [3, Th. 3.1].

We fix a ground field k¥ of characteristic p>0. We shall freely use the nota-
tions and the terminology of [3].

We prove that (&*7) is a central extension of ® in two different ways.
One depends on the hyperalgebra theory for algebraic groups [4]. The other on
the Hopf algebra techniques [2].

1. The extension (&%, y) is central; Proof based upon the hyperalgebra theory

We summarized in [3, §0.3] the hyperalgebra theory for algebraic groups. We
must recall in addition the underlying coalgebra of a k-functor.

A covariant functor from M, the category of commutative k-algebras to E the
category of sets is called a E-functor [1].

Let W, and MY denote the categories of cocommutative k-coalgebras and finite
dimensional eommutative k-algebras respectively. If EREMi, then R*C W, [3, p.
254].

Let X be a k-functor. The underlying coalgebra T(X) [4, 2.1.1] is a uniquely
determined object of W, by the natural isomorphisms

X(R)=W,(B*, TX), YREML.

The coalgebra T(¥) exists if and only if the restricted functor X|af] preserves all
pullback diagrams and the final object [5, 5.1.2.8]. For example if X is a k-scheme,
T(X) exists [4, 2.1.6].

Let V be a k-vector space and V, the k-functor: R— RQV, REM, (1, II,
§1, 2.11. The coalgebra T(V,) exists and T(V,)=C,(V) [4, 3.2.7], where the co-
commutative coalgebra C,{V) satisfies the following universal mapping property:

wi(C, C,(V))=Hom, (C, V), YCE W,
Let z:C,{(V)— V be the k-linear map associated with the identity I:C,(V)— C,(V).
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Let W be another k-vector space and Mod(V, W) the k-functor:
B—Homz(RRQV, RQW), REM, [1, II, §1, 2.4]. We have

Tod(V, W)= C,(Homy(V, W)),

since Mod(V, W)(R) =Hom,(V, RQW)=RRHom,(V, W) for Re M.

Let f:X—9 be a morphism of k-functors, where the coalgebras T(X) and T(9)
both exist. There is a unique Wy-map T():T(X) — T1) [4, 2.1.1] which makes
commute the diagrams

2B —" L om)
] U YRe M.
Wi (B*, T(X)) W W, (E*, T(),

A morphism of k-functors
WwEXV, > W,
is called linear if for each xCX%(R) with R M, the induced map u{x, 2):RQV —
EQW is R-linear. Such linear morphisms correspond bijectively with morphisms:

X—>Mod (V, W). Suppose the k-functor ¥ has the coalgebra T(X). We define the
k-linear map

TRV W
as follows: For each v€ V, the linear map n(?@w): T(X) - W is the composite

) LB V) T(W,)=C(W) s W

where 7 denotes the canonical projection. Since »—F(?®0) is k-linear, the linear
map # is well-defined and called associated with 1u.

If we identify the linear morphism u with a morphism §:%— 9ob (V, W), then
the associated map i is identified with the composite

£ T0) 0 Temed (v, W) = CL(Hom,(V, W) ——> Hom,(V, W).

Let W’ be a subspace of W and
¥'=Zrandp, (V,, Wi) 11, 1, §2, 7.4],

e., ¥'(B)={z€X(R)|ulz, RQV)CRRXW’}, REM,. It is easy to see that ¥’ is a
closed subfunctor of ¥ (¢f. [1, I, §2, 7.5]).
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1.1 LeMMA. Let u:XxXV,—W, be a linear morphism of k-functors, where T(X)
exists and V and W are k-vector spaces. Let T:TE)QV — W be the associated
k-linear map. Let W’ be a subspace of W and X'=%Tvandp, (V,, Wi). Then TX)
exists and equals the largest subcoalgebra of T(X) contained in lac TX) | wa®V)C
w.

ProoF. Let x€X(R) with REM,. We view z as a coalgebra map Z:R*—
T(X). The k-linear map u{z, ?}: V— RQW is identified with the composite
TRI . il
R*QV——>TEIQV —> W.
Hence € ¥(R) if and only if T@R*QVICW'. Q.E.D.
Let ¥ be a locally algebraic k-scheme and X’ a subscheme of X. Then X=%"
if and only if T(¥*)=T(X") [4, 2.8.3]. Therefore:

1.2 COROLLARY. With the same notations as (1.1), let X be a locally algebraic
k-scheme. Then X¥=%' if and only if n(TEQV)CW'.

A covariant functor from M, to Gr the category of groups is called a k-group
Fumnctor [1].

Let & be a k-group functor. Suppose the coalgebra T(®) exists. The product
p:®X & —®, the unit u:Spec (k) > ® and the inverse i:@ —© induce the coalgebra
maps respectively

Tip): TO)QT(®)=TOX ) — T(®)
T(w) :k=T(Spee (k)) — T(®)
TH:T(@) - T(@).
The triple (T(®), T(n), T(w)) is a cocommutative k-Hopf algebra with antipode S=

T 4, 3.1.1].
Let V be a k-vector space. A linear morphism

1:GxV,—»V,

is a linear action if for each REM,, the group ®(R) operates on the left on R
V, R-linearly via u(R). This is equivalent to saying that u determines a morphism
of k-group functors p:®— ®L(V), where GX(V)(R)=GL:(RQV), REM, 1, II, §2.
111

Suppose the Hopf algebra T(®) exists. If u:@XV,— V, is a linear action, the
associated linear map
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TRV ->V

clearly makes V into a left T(®)-module (cf. [4, 3.2.5)).
Let H be a cocommutative Hopf algebra with antipode S. We put

ad(x)(y) :(Zx) TwYSE )
[, ?/]:m%) rto¥oSEe)SYe), »yEcH

where the ‘sigma’ notation [2] is used. A sub-Hopf algebra KcH is normal if
ad{H)(K)CK or equivalently if [H,KJjcK. K is central if [H,K]ck. The irre-
ducible component [3, p. 2541 H* of H containing 1 is a normal sub-Hopf algebra
{5, 5.5.1.2].

Let ® be a locally algebraic k-group scheme. The hyperalgebra hy(®) is the
irreducible component of T(®) containing 1 {4, 8.1.4]. The adjoint representation
{3, p. 260]

UD: G X hy(®), - hy(®),
is a umique linear action with which is associated the adjoint action
db=ad: T(®)Rhy(®) — hy(®).

The uniqueness follows from (1.2).

Based upon the above preliminaries we give a first proof for (®*7) being a
central extension of .

Let ®=8pec(A) be a connected affine algebraic k-group scheme, where A=
(©(®) is the corresponding finitely generated commutative k-Hopf algebra. Since the
hyperalgebra hy(®) is the irreducible component of A° containing 1 [4, 3.2.2], a
canonical injective homomorphism of commutative Hopf algebras 4 —hy(®)° is asso-
ciated with the inclusion hy (®)C_>A°. The injectivity follows from [3, 0.3.1(g)].

We view A as a sub-Hopf algebra of hy(®)°. Let B be a finitely generated
sub-Hopf algebra of hy(®)° containing A and &’ =Spec(B) the corresponding affine
algebraic k-group scheme. The inclusion AT »B determines an epimorphism of k-
group schemes {:& —©.

Let j:hy(®)— B° be the Hopf algebra map corresponding to the ineclusion
B 5hy(®)°. Clearly Im{j)Chy(®’) and the composite

hy (© — hy ) —2 1y )

where hy () denotes the induced map of hyperalgebras [3, p. 259], is the identity
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by definition. This means in particular that &’ is connected by [3, 0.3.1(g)]. Let
®*=Spechy(®)°) and 7:0*—® be the epimorphism of affine k-group schemes
determined by the inclusion AC >hy(®)°. Since ©* is the projective limit of &,
where B runs through all the finitely generated sub-Hopf algebras of hy(®)°
containing A, the affine k-group scheme ®* is connected [1, III, §3, n°7].

In order to prove that (®* 7) is a central extension, we have only to show
that so is (@, f) for each B.

A sub-hyperalgebra Jchy(®’) is dense if hy(@)=A({J) the algebraic hull of
J [3, p. 2611 or equivalently if the corresponding Hopf algebra map B—J° is
injective.

Since BC hy(®)°, Im(4) is a dense sub-hyperalgebra of hy(®’) and hy (f) is
bijective on Im(y).

Therefore the extension [:& — & satisfies the hypothesis of the following:

1.3 PROPOSITION. Let [:® — & be a morphism of connected algebraic k-group
schemes and hy(f):hy(®’) —hy(®) the induced map of hyperalgebras. If there is
a dense sub-hyperalgebra JChy(®') on which hy() is ingective, then the kernel
Sex(f) is contained in the center of &'.

ProoF. Let %b:®' Xhy(®'),— hy(®'), denote the adjoint representation for
®’. The normalizer Ng/(J) in & of J, with respect to Udb is a closed subgroup
scheme of &’ {1, II, §2, 1.4]. By (1.1), TRe(J)) is the largest sub-Hopf algebra
of T(®’) which normalizes J. In particular JChyRy(J)). Since A{J)=hy(®"),
hyRe(J)) =hy(®’). Since &’ is connected, &' =Ry (J) [3, 0.3.1 (f)]. Therefore
T(®&) =T (J)) or equivalently J is a normal sub-Hopf algebra of T(®').

The Hopf algebra T(Rec(f)) is the Hopf kermel 3, p. 255] of T(f): T(®') —
T(®) [4, 3.1.5] and a normal sub-Hopf algebra of T(®’). Since T(Rer(f))NJ=k by
hypothesis, we have

IJ, T(®er (NI N T(Ker ) Ck.

Hence the sub-Hopf algebras J and T(Rex(f)) centralize each other. Therefore
Rex(f) operates trivially on J, via ¥d by (1.2).

Let §=Cy(Rex(f)) be the centralizer in @’ of Rex(f), which is a closed subgroup
scheme {1, II, §1, 3.7]. The hyperalgebra hy(€) is the largest subcoalgebra D of
hy(®’) on which Rer(f) operates trivially via %bd [3, 0.3.3(a)]. Hence JChy(@).
Since J is dense in hy(®’), it follows similarly that &’=8. This means that Rer(f)
is contained in the center of ®’'. Q.E.D.
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2. The extension (&% 7) is central; Proof based upon the Hopf algebra theory

Here we give a second proof for (&%, 7) being a central extension of & based
on the Hopf algebra techniques [2].

Let C be a k-coalgebra and V a right C-comodule [2, § 2.0] with structure map
22 V—->VRC. Vis a left C*module via X-v=IRX)i), XcC¥* veV [2, §2.1].
Hence the dual space V* is a right C*-module by transpose.

Let W be a left C-comodule with structure p: W—CRW. Similarly W is a
right C*-module.

A subalgebra BCC* is dense if the corresponding linear map C— B* is injec-
tive.

2.1 LEMMA. Suppose there are a dense subalgebra BCC*, an injective right
Blinear map ¢: W V* and a subcoalgebra D C such that 2(V)CVRD. Then
oWYCDRQW.

ProOF. We view W as a right B-submodule of V* via ¢. For each b€ B, the
transpose of the composite

A IRb
14 »y VRO ® 14
induces the composite
bRI
WL cow—2L W,

ie., (@, bR pw)>={IRb)iv},w>, YveV, we W, be B. Since B is dense in C*
(hence C=_B*), it follows that

IQv, plw)>=LQW), wRI>eC, YveV, we W.
If A{V)CV®D for some subcoalgebra DCC, we have
ARV, plw)>CD.

Since DRW=(CRW)nHom,{(V, D) in Hom,(V, C), where we view CRQWCCRV *C
Hom,(V, C), it follows that p(W)CDQW. Q.E.D.

Let A be a commutative k-Hopf algebra and ®=Spec (4) the corresponding
affine k-group scheme. The algebra map

p: A—ARQA, P(a):% ;SR
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where S denotes the antipode of A, represents the inner action
XG>, (g,h) —ghg™

and hence makes A a lgft A-comodule.
If A is finitely generated, the adjoint representation

Ad: B xhy(®), > hy(®),
corresponds to a right A-comodule structure map
2: hy(®) - hy(@RA.

This is described as follows: Let M={a¢€ Ale(a)=0} where ¢ is the unit of G().
M is an ideal of A and [A/M"™:k]<oo for all n>0, since A is finitely generated.
Since p(M)CARM, p(M"CARM". Hence A/M™ are finite dimensional left A-
comodules. In general if V is a finite dimensional left C-comodule, V* has a
natural right C-comodule structure [2, 5.1.4] such that the corresponding left C*-
module V* is the transpose of the right C*-module V. Hence (4/M™* form an
inductive system of right A-comodules. Since

hy(@)zl_ig (A/M™* 14, 2.1.11],

the space hy(®) has a right A-comodule structure. Let this be 2.

Since A is finitely generated, A° is dense in A* [2, §6.1]1. hy(®) is a left
A°-module by 2 and A a right A°-module by p. Hence A* is a left A°-module
by transpose. The inclusion hy(®)C>A* is left A°-linear by definition. This
means that the adjoint action

ad: A°®@hy(®) —hy(®), 2Qy — (Z) %@ YSE.2)
corresponds to A. Hence i represents the adjoint representation b.
Suppose further & is connected algebraic, or equivalently hy(®) is dense in

A°. Let J be a dense subhyperalgebra of hy(®) and ¢: A ,J° the Hopf algebra
injection associated with the inclusion J—>A°. Let

o't JT=>J°RQJ°, P,(x):g; ® 0 S(% ) D% 2
be the algebra map representing the inner action of Spec{J°). Then

plot=(Q¢)op

clearly. Let
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2 IR
2 hy(®) —> hy(@)QA — hy(@)QJ°

be the eomposite.

The associated left J-module structure on hy(®) is obtained by restricting the
adjoint action ad: hy(®)® hy(®) —hy(®) to JQhy(®). Hence J is left J-stable,
or equivalently we have

Ty IRJIC.
Since ¢ is injective, it follows that A(J)CJRA.
Consider the following data:

o't J° > J°RJ° (left J°-comodule structure)
e J—> JRJ° (right J°-comodule structure)
J{J)* {a dense subalgebra)

H{AycJ? (a subcoalgebra).

Hence J° is a right J-module by g/, J a left J-module by 2’ and J* a right J-
module by transpose.

2.2 LEMMA. The inclusion J°C >J* is right J-linear.
ProorF. Let xcJ° and acJ. We want to show
UQa, o' @)y =<1 a), 2RI c J°.
But for beJ

b, IQa, o' (x))) =<bRa, p’(@))
:(%: <b, 1y Sl ) ><a, $(2>>:% b 2, 2@ )<Sbe), Tw)
= % b aSbhe), 2y =<IRb, 2’ (a)), >
=<b, L), xRI). Q.E.D.

Since 1'(J)CJRe(4), it follows from (2.1) that
P AR .

This implies that the inner action Spec(J°)xSpec(J°)— Spec(J°) induces a left
action ®&xSpee(J°) —Spec(J°) through the projection Spec(c):Spee(J°)—®. This
proves that the kernel of Spec (¢} is contained in the center of Spec (J°). Hence

2.3 THEOREM. Let 8=Spec (4) be a connected affine algebraic k-group scheme
corresponding to the commutative Hopf algebra A. Let J be a dense subhyper-
algebra of hy (8) and ¢: AT J° the Hopf algebra injection corresponding to the
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inclusion J=>A°. Then (Spec (J°), Spec () is a central extension of ©.

3. (PE) affine algebraic group schemes

3.1 PROPOSITION. A conmnected affine algebraic k-group scheme & is {PE) if
equivalently:

(i} (% 7) is a proctale extension,

(ii) Let & be an affine algebraic k-group scheme and [: & — & a morphism
of k-group schemes. If there is & map of hyperalgebras s: hy(®)—hy(®') such
that hy(fes=1I then Im{s) is a closed [3, p. 261] subhyperalgebra of hy(®’).

Proor. (i)= (ii). Let ®” be the connected closed subgroup scheme of &’ such
that hy(®")=A{Im{s)) the algebraic hull of Im(s) [3, p. 261]. Let ®”=Spec(B)
and v: B—hy(®°) correspond to the Hopf algebra map s: hy(®)— B°. The Hopf
algebra map v is injective, since Im(s) is dense in hy(®”). Hence &” is an alge-
braic quotient of &*=Spec (hy(®)°) via Spec(v). Since the composite

Spec (v) i
E3 )

® &"— 6

equals 7 by definition, it follows that f: &” — & is an etale morphism. Hence
hy (f): hy (") —hy (®) is bijective by [3, 1.1]. This implies Im (s)=hy (&").

(ii)= (). Let &=Spec(4). View A as a sub-Hopf algebra of hy(®)°. Let B
be a finitely generated sub-Hopf algebra of hy(®)° containing 4. Let &’=Spec(B)
and §: & — @ correspond to the inclusion AC»B. A hyperalgebra map s: hy(®) —
B° corresponds to the inelusion B—hy(®)°. Since Im(s)chy(®’) and hy(fles=I
by definition, it follows that Im(s) is a closed sub-hyperalgebra of hy(®’). But since
Im(s) is dense in hy(®’), we have Im(s)=hy(®’). Hence {: &’ — & is an etale covering
by 3, 1.1]. Since ®* is the projective limit of @', (% 7) is a proetale extension.

Q.E.D.

If & is (PE), (&% 1) is a universal proetale extension of & (cf. [1, V, §8, 4.1])

in the sense:

3.2 PROPOSITION. Let ® be a connected (PE) affine algebraic k-group scheme.
Let y: $—© be an epimorphism, where § is a connected affine k-group scheme
and et {y) is proetale. There is a unique morphism of k-group schemes p*: @* —
9 such that pop*=y.

PrOOF. Let H$— 9’ be an algebraic quotient of $ through which » factors.
$ is the projective limit of such quotients $’. Let z': $'—©& be the induced
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epimorphism. Then $’ is connected affine algebraic and Rer(y’) is etale, since it
is an algebraic quotient of Rer(y). Hence hy(y’): hy(9’) —hy(®) is bijective [3, 1.1].
The Hopf algebra map ()($’) — hy ($)° corresponding to hy (&) > hy (H) " O(H)°
determines a unique morphism 7'*: ®* — §’ such that 7/op’*=y. They determine
a unique morphism p*: @* — & with pop*=y going to lim. Q.E.D.

The purpose of the rest of this paper is to show that when p>0 the connected
affine algebraic k-group scheme ® is (PE) if and only if the quotient group scheme
B[, ®] is finite.

3.3 PROPOSITION. Let & be a connected affine algebraic k-group scheme. If
B/, ©] is finite, then © is (PE).

Proor. Let $’ be a locally algebraic k-group scheme and f: & - @& a mor-
phism of k-group schemes. Suppese s: hy (&) —hy (&) is a hyperalgebra map such
that hy (f)es=I. Let J=Im/{(s). Then [J,J] is a closed subhyperalgebra of hy (®’)
by 3, 0.3.4{f)]. Since J//[J,J] is finite dimensional, J is a closed subhyperalgebra
of hy (®') by [3, 0.3.4 (b)]. Hence ® is (PE). Q.E.D.

3.4 PROPOSITION. FEach quotient of a connected (PE) affine algebraic k-group
scheme 1s (PE).

Proor. Let $ be a quotient group scheme of a connected (PE) affine algebraic
k-group scheme ®. Then $ is connected affine algebraic. Let g: $'— 9 be a
morphism of k-group schemes, where £’ is affine algebraic. Suppose there is a
hyperalgebra map #: hy () —hy () with hy{gjet=I Construct the pullback
diagram

f

@' ——®

p'l . jp
H'—9

where @’ is also an affine algebraic k-group scheme. The induced diagram

is a pullback diagram in the category W, by [4, 2.1.1]. Let s:hy (&) — T(®’) be a
unique coalgebra map such that T(p')es=tohy (p) and T(flos=I. From the unique-
ness follows that s is a Hopf algebra map. Hence Im (s)Chy (®/). Since ® is (PE),
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Im{s) is a closed subhyperalgebra of hy(®’). Hence by I3, 0.3.2 (b)], Im ()=
hy (p)(Im (s)) is a closed subhyperalgebra of hy($’). Therefore § is (PE). Q.E.D.

3.5 PROPOSITION. Let Uk be a finite field extension. A connected affine alge-
braic k-group scheme & is (PE) if and only if so is the l-group scheme GQI.

ProOOF. The l-group scheme G®! is connected affine algebraic and hy(BRl)=
hy(®)QI (8, 0.3.1 (b)]. Since I/k is finite, the dual I-Hopf algebra hy,(G®I)° equals
hy(®)°®1 3, p. 269]. Hence the l-group scheme S®I is (PE) if and only if the
extension y®I: &*Ql— BRI is proetale. Since an affine k-group scheme ig
proetale if and only if so is the l-group scheme H®! [1, III, §3, 7.7], rQI is
proetale if and only if ® is (PE). Q.E.D.

Let p>0. We show that ®, and &, are not (PE) in the next section.

3.6 THEOREM. Let & be a comnected affine algebraic k-group scheme, where
p>0. © is (PE) if and only if the quotient group scheme &/[®, ] is finite.

PROOF. ‘I part follows from (3.3). Let ® be (PE). Then so is ®&/[®,®] by
(3.4). Suppose ® is commutative (PE). There is a finite normal closed subgroup
scheme N<]® such that ®/M is smooth [1, 11, §3, 6.10]. Since G/R is (PE) by
(8.4), we have only to prove that a connected commutative smooth (PE) affine
algebraic k-group scheme should be trivial. Let ® be such a group scheme with
the multiplicative part &= [1, IV, §3, 1.1].

If ®/&™=£0, there is a nontrivial morphism of k-group schemes f: &/G™—@,
by 1, IV, §2, 2.1]. Since the image {(®/&™) is a smooth subgroup scheme of @,
§ is an epimorphism by [1, IV, §2, 1.1]. This contradicts the fact for &, being
not (PE). Hence &=&". Since & is connected smooth, & is a k-torus {1, IV, §1,
3.9]. Hence there are a finite extension of fields l/k and an integer n>0 such
that BRI~ (®,)"R! as l-group schemes [1, IV, §1, 3.81. The l-group scheme B!
is (PE) by (3.5). Since ®,, is not (PE), n must be 0. Hence ® is trivial. Q.E.D.

3.7 COROLLARY. Let k be perfect with p>0. For each connected affine alge-
braic k-group scheme ©, the following are equivalent:
i) & has a wniversal group covering,
ii) (&% 7) is the universal group covering of ©,
i) (©% 1) is an etale group covering of ©,
)

iv) ®/[®,®] is finite and hy(®)° is finitely generated.

Proor. This follows immediately from [3, Th. 1.9] and (3.6).
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4. &, and ©®,, are not (PE)

Let ® be a locally algebraic k-group scheme and (9, its local ring at unit e
with the maximal ideal m,. Since hy(@):(@e)":gn_{ O,/me)* 18, p. 2591 [4, 2.1.11],

we have
hy(@ﬁ)*:@e:the m,-adic completion of (..

Let ®=Spec (4) be an affine algebraic k-group scheme and M=Rer{s). Since
O.=Ay=the M-adic localization of A, we have

hy(®)*=A=the M-adic completion of A.
Similarly we have

(hY(®L§hy(@)) *—hy(®x)*
=ARQA=the (AQM-+MRA)-adic eompletion of ARA.

The coproduct 4: A— ARA induces 4: fi—»@. Thig is the transpose of the
product: hy(®)® hy(®) —hy(®).
By [2, 6.0.3] we have

hy(®)° =4 (hy(®)*® hy(®)*).
The map A restricted to hy{®)° is the coproduct
4: hy(®)° - hy(®)°Q hy(®)°.

In particular if ze A satisfles 2(x):x®1+1®xe@, then z€hy(®)° and

- . o

Az =2R1+1Rx ¢ hy(®)°Q hy(®)°. Similarly if ye A satisfies 4ly)=yRQy < AQA,

then yehy(®)° and 4(y)=yQychy(®)°@hy(®)°, so y is invertible in A unless
y=0 [2, 9.2.5].

4.1 PROPOSITION. If p>>0, the additive group scheme ®, is not (PE).

ProOOF. Recall ®,=Spec (X[T] I8, p. 256] where A(T)=TR1+1RXT, &(T)=0
and S(T)=—T. Hence

hy(®,)*=k{[T1l=the (T)-adic completion of %[T]
and

(hy(®,)Q hy(@)*=Ek{[TQRL, 1QT]]
=the (T®1, 1QT)-adic completion of E[TIRK[T].

The diagonal map 4: K[T1]—k[7T®1, 1QT1] is determined by 4(T)=TR1+1RT.
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If fIT)=2T+2T?4+2,T%++ . +2,T%4+--- is a p-power power series with
A€k, then J(F(T)=F(T)Q1+1Rf(T). Hence f(T)ehy(®,)°. There is a p-power
power series f(T) such that T and f(T) are algebraically independent over % [6,
§5]. Hence there is an injective Hopf algebra map §: k[TIQk TI5hy (®,)° such
that S(TRN =T, pIRXT)=f(T), where the Hopf structure on k[TIRE[T] corre-
sponds to the direct product ®&,Xx &,=Spec E[TIRQK[T1). The composite

&2 =Spec by (69~ g o, P s,

where pr, denotes the projection onto the first term, equals y. Since pr, is not an
etale group covering, 7 is not proetale. Hence ®, is not (PE). Q.E.D.
4.2 PROPOSITION. If p>0, the multiplicative group scheme &, is not (PE).

PRCOOF. Recall that ®,=Spec (k[ X, X1) (3, p. 256] where 4(X)=XQRX, (X )=
1 and S(X)=X"t. Put T=X-1. Then k[X, X1 is the localization of k{T] with
respect to one element 1+ T. Hence the (T)-adic localizations of E[T] and k[ X, X1}
are the same. Similarly the (T®IL, 1QT)-adic localizations of E[TIRQKT] and
ELX, X IQK[X, X1 are the same. Therefore
hy(®,)*=k[T]] and
(hy(©,)Q@hy () *=kIT®1, IQ T
The diagonal map 4: EIT—EITR1, 1QTT] is determined by ZI(T):T®T+ TR
1+1®RT. The inclusion k[ X, X1 SE{T by X+ 1+T.

Let .
GEITI ={x ¢ KITN| 4(z) =2RQm, 0},

This is & subgroup of units Z[[T1]* and equal to
Ghy(®,) ) ={rchy(®,)° | 4(2) =@z, 2+0}.

Since 14T GKIITT), it follows that 1+ T*"=(1+T)" e GE[TI]) for all n>0.
For each family of integers a,>0, the infinite product

L, A+ T

is a well-defined element of GE[[TT]). _
Let Z o =lim Z/(p") be the (p)-adic completion of Z. Each element of Z

can be uniquely written as X a,p", where 0<a,<p. The map
1t Zon = GRITI), 2T ayp”) =1L, (1+T7)"

is well-defined. We claim that y is an injective group homomorphism.
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Indeed the multiplicative order of 1+ 7T in (([T1/T*")* is p". Hence there is
an injective group homomorphism
Z/(p" = &[TYT™)>, 1—>1+T.
Taking ll_rg we obtain an injective group homomorphism
Z o SSHITHY

which is y.
The quotient group Z,/Z contains at least one torsion-free element x mod Z
with € Z, by (4.3). Hence we have an injective group homomorphism

ar ZXZT 527, a(1,0)=1, «(0,1)=z.
This induces an injective Hopf algebra map
@: X, X QK X, X 1T »hy (,)°
where &(X®1)=X, al®X)=z(x). The composite

Sone o
B1=Spec (hy (6, 2D g w6, P,

where pr; denotes the projection onto the first term, is y. Since pr; is not etale,
®,, is not (PE). Q.E.D.
4.3 LEMMA. The group Z . |Z has a torsion-free element.

ProOF. This is perhaps a known fact. We give an elementary proof. Let
¢>1 be an integer and
e=p+p*+pPt +pt - € 2.

We claim that z mod Z is torsion-free in Z,,/Z.
Suppose there is an integer m>0 such that mxz € Z. Write m=ay+ap+---+

a,p” where 0<g;<<p. Take an integer N>1 so that e¥1—e¥—1n>1. Let

<Z ap I =by+byp+ - - - +byp¥

=N
where 0<b,<<p. Take an integer I>N so that n+e'>M. Thus by+bp-+---+
byp¥ <p™1. On the other hand

> aipi+ei<pn+el+1
Nyl

since 4, +e"'=i,+¢" with 1,,4,<n and 7, 5,>N implies 4,=¢, and j,=7,. Hence
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> aipi+ej<2p'n+el+1 < pn+el+z< pel+1'
i<n - -
i<t

Therefore

Z apt=cotopt - Fopt,
FE

where 0<ec,<p and L<é'*l. We have

me=co+e;p+---+ept+ X a:ptte.
ST
Here i,+61=1,+¢"? with 7, />0 implies 4,=4, and 51=7, and L<e*'<i+e? for all
7>1. Hence mx&Z a contradietion. Q.E.D.
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