On coverings and hyperalgebras of affine algebraic groups, II

By Mitsuhiro TAKEUCHI

(Communicated by N. Iwahori)

Introduction. In the previous paper [3] we considered a relationship between the *hyperalgebra* and the *universal group covering* of a connected affine algebraic group scheme over a field.

Let k be a field of characteristic $p \ge 0$ and $\mathfrak{S} = \operatorname{Spec}(A)$ a connected affine algebraic k-group scheme corresponding to the commutative k-Hopf algebra A. Let A° be the *dual Hopf algebra* to A [3, p. 254] and hy(\mathfrak{S}) the hyperalgebra of \mathfrak{S} [3, p. 259]. A canonical map of Hopf algebras: $A \to \operatorname{hy}(\mathfrak{S})^{\circ}$ corresponds to the inclusion: $\operatorname{hy}(\mathfrak{S}) \subset A^{\circ}$. Let

$$\gamma: \mathfrak{G}^* = \operatorname{Spec} (\operatorname{hy}(\mathfrak{G})^\circ) \to \mathfrak{G} = \operatorname{Spec} (A)$$

be the associated morphism of affine k-group schemes. Since \mathfrak{G} is connected, γ is an epimorphism (or equivalently $A \rightarrow hy(\mathfrak{G})^{\circ}$ is injective) and each algebraic quotient of \mathfrak{G}^* is connected by [3, 0.3.1 (g)]. Hence the affine k-group scheme \mathfrak{G}^* is connected [1, III, §3, n° 7].

In this paper we first show that (\mathfrak{G}^*, γ) is a *central extension* of \mathfrak{G} , i.e., the kernel $\Re \operatorname{ex}(\gamma)$ is contained in the center of \mathfrak{G}^* .

An affine k-group scheme is proetale if each algebraic quotient is etale [1, ibid.]. When p>0, we prove that (\mathfrak{G}^*,γ) is a proetale extension of \mathfrak{G} , (i.e., the kernel $\mathfrak{R}\mathrm{er}(\gamma)$ is proetale) if and only if the quotient group scheme $\mathfrak{G}/[\mathfrak{G},\mathfrak{G}]$ is finite, where $[\mathfrak{G},\mathfrak{G}]$ denotes the derived group of \mathfrak{G} [3, p. 257].

If this is the case, the pair (\mathfrak{G}^*, γ) clearly satisfies the following universal mapping property: Let $\eta: \mathfrak{H} \to \mathfrak{G}$ be an epimorphism, where \mathfrak{H} is a connected affine k-group scheme and $\Re \operatorname{cr}(\eta)$ is proetale. There is a *unique* morphism of k-group schemes $\eta^*: \mathfrak{G}^* \to \mathfrak{H}$ such that $\eta \circ \eta^* = \gamma$.

Hence, in this case, (\mathfrak{G}^*, γ) is a universal proetale extension of \mathfrak{G} . In particular, if \mathfrak{G}^* is algebraic (or equivalently, if the commutative Hopf algebra $hy(\mathfrak{G})^\circ$ is finitely generated), then (G^*, γ) is a universal group covering of \mathfrak{G} in the sense of [3].

Therefore, combined with [3, Th. 1.9], we have the following:

COROLLARY. Let k be perfect with p>0. For each connected affine algebraic k-group scheme \mathfrak{G} , the following are equivalent:

- i) S has a universal group covering.
- ii) (\mathfrak{G}^*, γ) is the universal group covering of \mathfrak{G} .
- iii) (\mathfrak{G}^*, γ) is an etale group covering [3] of \mathfrak{G} .
- iv) S/[S, S] is finite and hy(S)° is finitely generated.

For example, if & is a semisimple k-group scheme, then these equivalent conditions are satisfied [3, Th. 3.1].

We fix a ground field k of characteristic $p \ge 0$. We shall freely use the notations and the terminology of [3].

We prove that (\mathfrak{G}^*, γ) is a central extension of \mathfrak{G} in two different ways. One depends on the hyperalgebra theory for algebraic groups [4]. The other on the Hopf algebra techniques [2].

1. The extension (\mathfrak{G}^*, γ) is central; Proof based upon the hyperalgebra theory

We summarized in [3, $\S 0.3$] the hyperalgebra theory for algebraic groups. We must recall in addition the underlying coalgebra of a k-functor.

A covariant functor from M_k the category of commutative k-algebras to E the category of sets is called a k-functor [1].

Let W_k and M_k^f denote the categories of cocommutative k-coalgebras and finite dimensional commutative k-algebras respectively. If $R \in M_k^f$, then $R^* \in W_k$ [3, p. 254].

Let \mathfrak{X} be a k-functor. The underlying coalgebra $T(\mathfrak{X})$ [4, 2.1.1] is a uniquely determined object of W_k by the natural isomorphisms

$$\mathfrak{X}(R) \simeq W_k(R^*, T(\mathfrak{X})), \forall R \in M_k^f$$

The coalgebra $T(\mathfrak{X})$ exists if and only if the restricted functor $\mathfrak{X}|M_k^f$ preserves all pullback diagrams and the final object [5, 5.1.2.3]. For example if \mathfrak{X} is a *k-scheme*, $T(\mathfrak{X})$ exists [4, 2.1.6].

Let V be a k-vector space and V_a the k-functor: $R \mapsto R \otimes V$, $R \in M_k$ [1, II, § 1, 2.1]. The coalgebra $T(V_a)$ exists and $T(V_a) = C_a(V)$ [4, 3.2.7], where the co-commutative coalgebra $C_a(V)$ satisfies the following universal mapping property:

$$W_k(C, C_a(V)) \simeq \operatorname{Hom}_k(C, V), \forall C \in W_k$$
.

Let $\pi: C_a(V) \to V$ be the k-linear map associated with the identity $I: C_a(V) \to C_a(V)$.

Let W be another k-vector space and $\mathfrak{Mob}(V, W)$ the k-functor: $R \mapsto \operatorname{Hom}_{\mathbb{R}}(R \otimes V, R \otimes W)$, $R \in M_k$ [1, II, § 1, 2.4]. We have

$$T(\mathfrak{Mob}(V, W)) \simeq C_a(\operatorname{Hom}_k(V, W)),$$

since $\mathfrak{Mob}(V, W)(R) \simeq \operatorname{Hom}_k(V, R \otimes W) \simeq R \otimes \operatorname{Hom}_k(V, W)$ for $R \in M_k^f$.

Let $\mathfrak{f}:\mathfrak{X}\to\mathfrak{Y}$ be a morphism of k-functors, where the coalgebras $T(\mathfrak{X})$ and $T(\mathfrak{Y})$ both exist. There is a unique W_k -map $T(\mathfrak{f}):T(\mathfrak{X})\to T(\mathfrak{Y})$ [4, 2.1.1] which makes commute the diagrams

$$\begin{array}{ccc} \mathfrak{X}(R) & \xrightarrow{\mathfrak{f}(R)} \mathfrak{Y}(R) \\ & & & & & & \\ \vdots & & & & & \\ W_k(R^*, \ T(\mathfrak{X})) & \xrightarrow{T(\mathfrak{f})} W_k(R^*, \ T(\mathfrak{Y})), \end{array} \qquad \forall R \in \boldsymbol{M}_k^f \ .$$

A morphism of k-functors

$$\mathfrak{u}: \mathfrak{X} \times V_{\mathfrak{a}} \to W_{\mathfrak{a}}$$

is called *linear* if for each $x \in \mathfrak{X}(R)$ with $R \in M_k$, the induced map $\mathfrak{u}(x,?): R \otimes V \to R \otimes W$ is R-linear. Such linear morphisms correspond bijectively with morphisms: $\mathfrak{X} \to \mathfrak{Moh}(V,W)$. Suppose the k-functor \mathfrak{X} has the coalgebra $T(\mathfrak{X})$. We define the k-linear map

$$\bar{\mathfrak{u}}: T(\mathfrak{X}) \otimes V \to W$$

as follows: For each $v \in V$, the linear map $\bar{\mathfrak{u}}(? \otimes v): T(\mathfrak{X}) \to W$ is the composite

where π denotes the canonical projection. Since $v \mapsto \bar{\mathfrak{u}}(? \otimes v)$ is k-linear, the linear map $\bar{\mathfrak{u}}$ is well-defined and called associated with \mathfrak{u} .

If we identify the linear morphism $\mathfrak u$ with a morphism $\mathfrak f\colon \mathfrak X \to \mathfrak M \text{ob}\,(V,W)$, then the associated map $\overline{\mathfrak u}$ is identified with the composite

$$\bar{\mathfrak{f}}\colon T(\mathfrak{X}) \xrightarrow{T(\mathfrak{f})} T(\mathfrak{Mod}(V,\,W)) = C_{\mathfrak{a}}(\mathrm{Hom}_{k}(V,\,W)) \xrightarrow{\pi} \mathrm{Hom}_{k}(V,\,W).$$

Let W' be a subspace of W and

$$\mathfrak{X}'=\mathfrak{T}$$
rans $\mathfrak{p}_{\mathfrak{u}}\left(V_{a},W_{a}'\right)$ [1, I, § 2, 7.4],

i.e., $\mathfrak{X}'(R) = \{x \in \mathfrak{X}(R) \mid \mathfrak{u}(x, R \otimes V) \subset R \otimes W'\}$, $R \in M_k$. It is easy to see that \mathfrak{X}' is a closed subfunctor of \mathfrak{X} (cf. [1, I, § 2, 7.5]).

1.1 Lemma. Let $u: \mathfrak{X} \times V_a \to W_a$ be a linear morphism of k-functors, where $T(\mathfrak{X})$ exists and V and W are k-vector spaces. Let $\overline{u}: T(\mathfrak{X}) \otimes V \to W$ be the associated k-linear map. Let W' be a subspace of W and $\mathfrak{X}' = \mathfrak{TranSp}_u(V_a, W'_a)$. Then $T(\mathfrak{X}')$ exists and equals the largest subcoalgebra of $T(\mathfrak{X})$ contained in $\{a \in T(\mathfrak{X}) \mid \overline{u}(a \otimes V) \subset W'\}$.

PROOF. Let $x \in \mathfrak{X}(R)$ with $R \in M_k^f$. We view x as a coalgebra map $\overline{x}: R^* \to T(\mathfrak{X})$. The k-linear map $u(x,?): V \to R \otimes W$ is identified with the composite

$$R^* \otimes V \xrightarrow{\overline{x} \otimes I} T(\mathfrak{X}) \otimes V \xrightarrow{\overline{\mathfrak{u}}} W.$$

Hence $x \in \mathfrak{X}'(R)$ if and only if $\overline{\mathfrak{u}}(\overline{x}(R^*) \otimes V) \subset W'$.

Q.E.D.

Let \mathfrak{X} be a *locally algebraic k-scheme* and \mathfrak{X}' a *subscheme* of \mathfrak{X} . Then $\mathfrak{X}=\mathfrak{X}'$ if and only if $T(\mathfrak{X})=T(\mathfrak{X}')$ [4, 2.3.3]. Therefore:

1.2 COROLLARY. With the same notations as (1.1), let $\mathfrak X$ be a locally algebraic k-scheme. Then $\mathfrak X=\mathfrak X'$ if and only if $\bar{\mathfrak u}(T(\mathfrak X)\otimes V)\subset W'$.

A covariant functor from M_k to Gr the category of groups is called a k-group functor [1].

Let \mathfrak{G} be a k-group functor. Suppose the coalgebra $T(\mathfrak{G})$ exists. The product $\mathfrak{p}: \mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}$, the unit $\mathfrak{u}: \operatorname{Spec}(k) \to \mathfrak{G}$ and the inverse $\mathfrak{i}: \mathfrak{G} \to \mathfrak{G}$ induce the coalgebra maps respectively

$$T(\mathfrak{G}): T(\mathfrak{G}) \otimes T(\mathfrak{G}) \simeq T(\mathfrak{G} \times \mathfrak{G}) \to T(\mathfrak{G})$$

$$T(\mathfrak{u}): k \simeq T(\operatorname{Spec}(k)) \to T(\mathfrak{G})$$

$$T(\mathfrak{i}):T(\mathfrak{G})\to T(\mathfrak{G})$$
.

The triple $(T(\mathfrak{G}), T(\mathfrak{p}), T(\mathfrak{u}))$ is a cocommutative k-Hopf algebra with antipode $S = T(\mathfrak{i})$ [4, 3.1.1].

Let V be a k-vector space. A linear morphism

$$u: \mathfrak{G} \times V_{\mathfrak{a}} \to V_{\mathfrak{a}}$$

is a *linear action* if for each $R \in M_k$, the group $\mathfrak{G}(R)$ operates on the left on $R \otimes V$, R-linearly via $\mathfrak{u}(R)$. This is equivalent to saying that \mathfrak{u} determines a morphism of k-group functors $\rho: \mathfrak{G} \to \mathfrak{GL}(V)$, where $\mathfrak{GL}(V)(R) = GL_R(R \otimes V)$, $R \in M_k$ [1, II, § 2. 1.1].

Suppose the Hopf algebra $T(\mathfrak{G})$ exists. If $\mathfrak{u}: \mathfrak{G} \times V_a \to V_a$ is a linear action, the associated linear map

$$\bar{\mathfrak{u}}: T(\mathfrak{G}) \otimes V \to V$$

clearly makes V into a left $T(\mathfrak{G})$ -module (cf. [4, 3.2.5]).

Let H be a cocommutative Hopf algebra with antipode S. We put

$$\begin{aligned} &\operatorname{ad}\langle x\rangle\langle y\rangle = \sum_{(x)} x_{(1)} y S(x_{(2)}) \\ &[x,y] = \sum_{(x,y)} x_{(1)} y_{(1)} S(x_{(2)}) S(y_{(2)}), \quad x,y \in H \end{aligned}$$

where the 'sigma' notation [2] is used. A sub-Hopf algebra $K \subset H$ is normal if $ad(H)(K) \subset K$ or equivalently if $[H, K] \subset K$. K is central if $[H, K] \subset k$. The irreducible component [3, p. 254] H^1 of H containing 1 is a normal sub-Hopf algebra [5, 5.5.1.2].

Let \mathfrak{G} be a locally algebraic k-group scheme. The hyperalgebra hy(\mathfrak{G}) is the irreducible component of $T(\mathfrak{G})$ containing 1 [4, 3.1.4]. The adjoint representation [3, p. 260]

$$\mathfrak{Ab}: \mathfrak{S} \times \text{hy}(\mathfrak{S})_a \to \text{hy}(\mathfrak{S})_a$$

is a unique linear action with which is associated the adjoint action

$$\overline{\mathfrak{Ab}} = \operatorname{ad}: T(\mathfrak{G}) \otimes \operatorname{hy}(\mathfrak{G}) \to \operatorname{hy}(\mathfrak{G}).$$

The uniqueness follows from (1.2).

Based upon the above preliminaries we give a first proof for (\mathfrak{G}^*, γ) being a central extension of \mathfrak{G} .

Let $\mathfrak{G}=\operatorname{Spec}(A)$ be a connected affine algebraic k-group scheme, where $A=\mathcal{O}(\mathfrak{G})$ is the corresponding finitely generated commutative k-Hopf algebra. Since the hyperalgebra $\operatorname{hy}(\mathfrak{G})$ is the irreducible component of A° containing 1 [4, 3.2.2], a canonical injective homomorphism of commutative Hopf algebras $A \to \operatorname{hy}(\mathfrak{G})^{\circ}$ is associated with the inclusion $\operatorname{hy}(\mathfrak{G}) \subset A^{\circ}$. The injectivity follows from [3, 0.3.1(g)].

We view A as a sub-Hopf algebra of $hy(\mathfrak{G})^{\circ}$. Let B be a finitely generated sub-Hopf algebra of $hy(\mathfrak{G})^{\circ}$ containing A and $\mathfrak{G}'=\operatorname{Spec}(B)$ the corresponding affine algebraic k-group scheme. The inclusion $A \longrightarrow B$ determines an epimorphism of k-group schemes $\mathfrak{f}:\mathfrak{G}' \to \mathfrak{G}$.

Let $j:hy(\mathfrak{G}) \to B^{\circ}$ be the Hopf algebra map corresponding to the inclusion $B \subset hy(\mathfrak{G})^{\circ}$. Clearly $Im(j) \subset hy(\mathfrak{G}')$ and the composite

$$\text{hy } (\mathfrak{G}) \xrightarrow{j} \text{hy } (\mathfrak{G}') \xrightarrow{\text{hy } (\mathfrak{f})} \text{hy } (\mathfrak{G})$$

where hy (f) denotes the induced map of hyperalgebras [3, p. 259], is the identity

by definition. This means in particular that \mathfrak{G}' is connected by [3, 0.3.1(g)]. Let $\mathfrak{G}^*=\operatorname{Spec}(\operatorname{hy}(\mathfrak{G})^\circ)$ and $\gamma:\mathfrak{G}^*\to\mathfrak{G}$ be the epimorphism of affine k-group schemes determined by the inclusion $A \longrightarrow \operatorname{hy}(\mathfrak{G})^\circ$. Since \mathfrak{G}^* is the projective limit of \mathfrak{G}' , where B runs through all the finitely generated sub-Hopf algebras of $\operatorname{hy}(\mathfrak{G})^\circ$ containing A, the affine k-group scheme \mathfrak{G}^* is connected $[1, III, \S 3, n^\circ 7]$.

In order to prove that (\mathfrak{G}^*, γ) is a central extension, we have only to show that so is $(\mathfrak{G}', \mathfrak{f})$ for each B.

A sub-hyperalgebra $J\subset \text{hy}(\mathfrak{G}')$ is dense if $\text{hy}(\mathfrak{G}')=A(J)$ the algebraic hull of J [3, p. 261] or equivalently if the corresponding Hopf algebra map $B\to J^\circ$ is injective.

Since $B \longrightarrow \text{hy}(\mathfrak{G})^{\circ}$, Im(j) is a dense sub-hyperalgebra of $\text{hy}(\mathfrak{G}')$ and $\text{hy}(\mathfrak{f})$ is bijective on Im(j).

Therefore the extension $f: \mathfrak{G}' \to \mathfrak{G}$ satisfies the hypothesis of the following:

1.3 PROPOSITION. Let $f: \mathfrak{S}' \to \mathfrak{S}$ be a morphism of connected algebraic k-group schemes and $hy(\mathfrak{f}): hy(\mathfrak{S}') \to hy(\mathfrak{S})$ the induced map of hyperalgebras. If there is a dense sub-hyperalgebra $J \subset hy(\mathfrak{S}')$ on which $hy(\mathfrak{f})$ is injective, then the kernel $\mathfrak{Rer}(\mathfrak{f})$ is contained in the center of \mathfrak{S}' .

PROOF. Let $\mathfrak{AS}: \mathfrak{S}' \times \mathrm{hy}(\mathfrak{S}')_a \to \mathrm{hy}(\mathfrak{S}')_a$ denote the adjoint representation for \mathfrak{S}' . The normalizer $\mathfrak{R}_{\mathfrak{S}'}(J)$ in \mathfrak{S}' of J_a with respect to \mathfrak{AS} is a closed subgroup scheme of \mathfrak{S}' [1, II, § 2, 1.4]. By (1.1), $T(\mathfrak{N}_{\mathfrak{S}'}(J))$ is the largest sub-Hopf algebra of $T(\mathfrak{S}')$ which normalizes J. In particular $J \subset \mathrm{hy}(\mathfrak{N}_{\mathfrak{S}'}(J))$. Since $A(J) = \mathrm{hy}(\mathfrak{S}')$, $\mathrm{hy}(\mathfrak{R}_{\mathfrak{S}'}(J)) = \mathrm{hy}(\mathfrak{S}')$. Since \mathfrak{S}' is connected, $\mathfrak{S}' = \mathfrak{R}_{\mathfrak{S}'}(J)$ [3, 0.3.1 (f)]. Therefore $T(\mathfrak{S}') = T(\mathfrak{R}_{\mathfrak{S}'}(J))$ or equivalently J is a normal sub-Hopf algebra of $T(\mathfrak{S}')$.

The Hopf algebra $T(\Re \operatorname{er}(f))$ is the Hopf kernel [3, p. 255] of $T(\mathfrak{H}): T(\mathfrak{H}) \to T(\mathfrak{H})$ [4, 3.1.5] and a normal sub-Hopf algebra of $T(\mathfrak{H})$. Since $T(\Re \operatorname{er}(\mathfrak{h})) \cap J = k$ by hypothesis, we have

$$[J, T(\Re er(f))] \subset J \cap T(\Re er(f)) \subset k.$$

Hence the sub-Hopf algebras J and $T(\Re er(\mathfrak{f}))$ centralize each other. Therefore $\Re er(\mathfrak{f})$ operates trivially on J_a via \mathfrak{Ab} by (1.2).

Let $\mathfrak{C}=\mathfrak{C}_{\mathfrak{G}'}(\mathfrak{Rer}(\mathfrak{f}))$ be the centralizer in \mathfrak{G}' of $\mathfrak{Rer}(\mathfrak{f})$, which is a closed subgroup scheme [1, II, § 1, 3.7]. The hyperalgebra $hy(\mathfrak{C})$ is the largest subcoalgebra D of $hy(\mathfrak{G}')$ on which $\mathfrak{Rer}(\mathfrak{f})$ operates trivially via \mathfrak{Ab} [3, 0.3.3 (a)]. Hence $J\subset hy(\mathfrak{C})$. Since J is dense in $hy(\mathfrak{G}')$, it follows similarly that $\mathfrak{G}'=\mathfrak{C}$. This means that $\mathfrak{Rer}(\mathfrak{f})$ is contained in the center of \mathfrak{G}' . Q.E.D.

2. The extension (\mathfrak{G}^*, γ) is central; Proof based upon the Hopf algebra theory

Here we give a second proof for (\mathfrak{G}^*, γ) being a central extension of \mathfrak{G} based on the Hopf algebra techniques [2].

Let C be a k-coalgebra and V a right C-comodule [2, § 2.0] with structure map λ : $V \to V \otimes C$. V is a left C^* -module via $X \cdot v = (I \otimes X) \lambda(v)$, $X \in C^*$, $v \in V$ [2, § 2.1]. Hence the dual space V^* is a right C^* -module by transpose.

Let W be a left C-comodule with structure $\rho: W \to C \otimes W$. Similarly W is a right C*-module.

A subalgebra $B \subset C^*$ is *dense* if the corresponding linear map $C \to B^*$ is injective.

2.1 Lemma. Suppose there are a dense subalgebra $B \subset C^*$, an injective right B-linear map $\iota \colon W \subset \to V^*$ and a subcoalgebra $D \subset C$ such that $\lambda(V) \subset V \otimes D$. Then $\rho(W) \subset D \otimes W$.

PROOF. We view W as a right B-submodule of V^* via ι . For each $b \in B$, the transpose of the composite

$$V \xrightarrow{\lambda} V \otimes C \xrightarrow{I \otimes b} V$$

induces the composite

$$W \xrightarrow{\rho} C \otimes W \xrightarrow{b \otimes I} W,$$

i.e., $\langle v, (b \otimes I) \rho(w) \rangle = \langle (I \otimes b) \lambda(v), w \rangle$, $\forall v \in V$, $w \in W$, $b \in B$. Since B is dense in C^* (hence $C \subset B^*$), it follows that

$$\langle I \otimes v, \rho(w) \rangle = \langle \lambda(v), w \otimes I \rangle \in C, \forall v \in V, w \in W.$$

If $\lambda(V) \subset V \otimes D$ for some subcoalgebra $D \subset C$, we have

$$\langle I \otimes V, \rho(w) \rangle \subset D.$$

Since $D \otimes W = (C \otimes W) \cap \operatorname{Hom}_k(V, D)$ in $\operatorname{Hom}_k(V, C)$, where we view $C \otimes W \subset C \otimes V^* \subset \operatorname{Hom}_k(V, C)$, it follows that $\rho(W) \subset D \otimes W$. Q.E.D.

Let A be a commutative k-Hopf algebra and $\mathfrak{G}=\operatorname{Spec}(A)$ the corresponding affine k-group scheme. The algebra map

$$\rho: A \to A \otimes A, \quad \rho(a) = \sum_{(a)} a_{(1)} S(a_{(3)}) \otimes a_{(2)}$$

where S denotes the antipode of A, represents the inner action

$$\mathfrak{G} \times \mathfrak{G} \to \mathfrak{G}, (g,h) \mapsto ghg^{-1}$$

and hence makes A a left A-comodule.

If A is finitely generated, the adjoint representation

$$\mathfrak{Ab}: \mathfrak{G} \times hy(\mathfrak{G})_a \to hy(\mathfrak{G})_a$$

corresponds to a right A-comodule structure map

$$\lambda: \ \text{hy}(\mathfrak{G}) \to \text{hy}(\mathfrak{G}) \otimes A.$$

hy(
$$\mathfrak{G}$$
) = $\lim_{n \to \infty} (A/M^n)^*$ [4, 2.1.11],

the space hy(6) has a right A-comodule structure. Let this be λ .

Since A is finitely generated, A° is dense in A^{*} [2, § 6.1]. hy(\mathfrak{G}) is a left A° -module by λ and A a right A° -module by ρ . Hence A^{*} is a left A° -module by transpose. The inclusion hy(\mathfrak{G}) $\longrightarrow A^{*}$ is left A° -linear by definition. This means that the adjoint action

ad:
$$A^{\circ} \otimes \text{hy}(\mathfrak{G}) \to \text{hy}(\mathfrak{G})$$
, $x \otimes y \mapsto \sum_{(x)} x_{(1)} y S(x_{(2)})$

corresponds to λ . Hence λ represents the adjoint representation \mathfrak{Ab} .

Suppose further \mathfrak{G} is connected algebraic, or equivalently $\text{hy}(\mathfrak{G})$ is dense in A° . Let J be a dense subhyperalgebra of $\text{hy}(\mathfrak{G})$ and $\iota \colon A \longrightarrow J^{\circ}$ the Hopf algebra injection associated with the inclusion $J \longrightarrow A^{\circ}$. Let

$$ho'$$
: $J^{\circ} \rightarrow J^{\circ} \otimes J^{\circ}$, $ho'(x) = \sum_{(x)} x_{(1)} S(x_{(3)}) \otimes x_{(2)}$

be the algebra map representing the inner action of $\operatorname{Spec}(J^{\circ})$. Then

$$\rho' \circ \iota = (\iota \otimes \iota) \circ \rho$$

clearly. Let

$$\lambda'\colon \operatorname{hy}(\mathfrak{G}) \xrightarrow{\lambda} \operatorname{hy}(\mathfrak{G}) \otimes A \xrightarrow{I \otimes \iota} \operatorname{hy}(\mathfrak{G}) \otimes J^{\circ}$$

be the composite.

The associated left *J*-module structure on hy(\mathfrak{G}) is obtained by restricting the adjoint action ad: hy(\mathfrak{G}) \otimes hy(\mathfrak{G}) \rightarrow hy(\mathfrak{G}) to $J\otimes$ hy(\mathfrak{G}). Hence *J* is left *J*-stable, or equivalently we have

$$\lambda'(J) \subset J \otimes J^{\circ}$$
.

Since ι is injective, it follows that $\lambda(J) \subset J \otimes A$.

Consider the following data:

$$\begin{array}{ll} \rho'\colon J^\circ\to J^\circ\otimes J^\circ \ \ (\text{left } J^\circ\text{-comodule structure})\\ \lambda'\colon J\to J\otimes J^\circ \ \ (\text{right } J^\circ\text{-comodule structure})\\ J\subset (J^\circ)^* \qquad \qquad (\text{a dense subalgebra})\\ \iota(A)\subset J^\circ \qquad \qquad (\text{a subcoalgebra}). \end{array}$$

Hence J° is a right J-module by ρ' , J a left J-module by λ' and J^* a right J-module by transpose.

2.2 Lemma. The inclusion $J^{\circ} \longrightarrow J^*$ is right J-linear.

PROOF. Let $x \in J^{\circ}$ and $a \in J$. We want to show

$$\langle I \otimes a, \rho'(x) \rangle = \langle \lambda'(a), x \otimes I \rangle \in J^{\circ}.$$

But for $b \in J$

$$\begin{split} &\langle b, \langle I \otimes a, \rho'(x) \rangle \rangle = \langle b \otimes a, \rho'(x) \rangle \\ &= \sum_{(x)} \langle b, x_{(1)} S(x_{(3)}) \rangle \langle a, x_{(2)} \rangle = \sum_{(x)} \langle b_{(1)}, x_{(1)} \rangle \langle a, x_{(2)} \rangle \langle S(b_{(2)}), x_{(3)} \rangle \\ &= \sum_{(b)} \langle b_{(1)} a S(b_{(2)}), x \rangle = \langle \langle I \otimes b, \lambda'(a) \rangle, x \rangle \\ &= \langle b, \langle \lambda'(a), x \otimes I \rangle \rangle. \end{split}$$
 Q.E.D.

Since $\lambda'(J) \subset J \otimes \iota(A)$, it follows from (2.1) that

$$\rho'(J^{\circ})\subset\iota(A)\otimes J^{\circ}$$
.

This implies that the inner action $\operatorname{Spec}(J^{\circ}) \times \operatorname{Spec}(J^{\circ}) \to \operatorname{Spec}(J^{\circ})$ induces a left action $\mathfrak{G} \times \operatorname{Spec}(J^{\circ}) \to \operatorname{Spec}(J^{\circ})$ through the projection $\operatorname{Spec}(\iota) : \operatorname{Spec}(J^{\circ}) \to \mathfrak{G}$. This proves that the kernel of $\operatorname{Spec}(\iota)$ is contained in the center of $\operatorname{Spec}(J^{\circ})$. Hence

2.3 THEOREM. Let $\mathfrak{G}=\operatorname{Spec}(A)$ be a connected affine algebraic k-group scheme corresponding to the commutative Hopf algebra A. Let J be a dense subhyperalgebra of hy (\mathfrak{G}) and ι : $A \longrightarrow J^{\circ}$ the Hopf algebra injection corresponding to the

inclusion $J \subset A^{\circ}$. Then (Spec (J°) , Spec (ι)) is a central extension of \mathfrak{G} .

3. (PE) affine algebraic group schemes

- 3.1 Proposition. A connected affine algebraic k-group scheme @ is (PE) if equivalently:
 - (i) (\mathfrak{G}^*, γ) is a proetale extension,
- (ii) Let \mathfrak{G}' be an affine algebraic k-group scheme and $\mathfrak{f}: \mathfrak{G}' \to \mathfrak{G}$ a morphism of k-group schemes. If there is a map of hyperalgebras $\mathfrak{s}: hy(\mathfrak{G}) \to hy(\mathfrak{G}')$ such that $hy(\mathfrak{f}) \circ \mathfrak{s} = I$ then $Im(\mathfrak{s})$ is a closed [3, p. 261] subhyperalgebra of $hy(\mathfrak{G}')$.

PROOF. (i) \Rightarrow (ii). Let \mathfrak{G}'' be the connected closed subgroup scheme of \mathfrak{G}' such that $\text{hy}(\mathfrak{G}'') = A(\text{Im}(s))$ the algebraic hull of Im(s) [3, p. 261]. Let $\mathfrak{G}'' = \text{Spec}(B)$ and $\nu \colon B \to \text{hy}(\mathfrak{G}^\circ)$ correspond to the Hopf algebra map $s \colon \text{hy}(\mathfrak{G}) \to B^\circ$. The Hopf algebra map ν is injective, since Im(s) is dense in $\text{hy}(\mathfrak{G}'')$. Hence \mathfrak{G}'' is an algebraic quotient of $\mathfrak{G}^* = \text{Spec}(\text{hy}(\mathfrak{G})^\circ)$ via $\text{Spec}(\nu)$. Since the composite

$$\mathfrak{S}^* \xrightarrow{\operatorname{Spec}(\nu)} \mathfrak{S}'' \xrightarrow{\mathfrak{f}} \mathfrak{S}$$

equals γ by definition, it follows that $f: \mathfrak{G}'' \to \mathfrak{G}$ is an etale morphism. Hence hy (f): hy (\mathfrak{G}'') \to hy (\mathfrak{G}) is bijective by [3, 1.1]. This implies Im (s) = hy (\mathfrak{G}'').

 $(ii) \Rightarrow (i)$. Let $\mathfrak{G}=\operatorname{Spec}(A)$. View A as a sub-Hopf algebra of $\operatorname{hy}(\mathfrak{G})^{\circ}$. Let B be a finitely generated sub-Hopf algebra of $\operatorname{hy}(\mathfrak{G})^{\circ}$ containing A. Let $\mathfrak{G}'=\operatorname{Spec}(B)$ and $\mathfrak{f}\colon \mathfrak{G}'\to \mathfrak{G}$ correspond to the inclusion $A \longrightarrow B$. A hyperalgebra map $s\colon \operatorname{hy}(\mathfrak{G})\to B^{\circ}$ corresponds to the inclusion $B \longrightarrow \operatorname{hy}(\mathfrak{G})^{\circ}$. Since $\operatorname{Im}(s) \subset \operatorname{hy}(\mathfrak{G}')$ and $\operatorname{hy}(\mathfrak{f}) \circ s = I$ by definition, it follows that $\operatorname{Im}(s)$ is a closed sub-hyperalgebra of $\operatorname{hy}(\mathfrak{G}')$. But since $\operatorname{Im}(s)$ is dense in $\operatorname{hy}(\mathfrak{G}')$, we have $\operatorname{Im}(s) = \operatorname{hy}(\mathfrak{G}')$. Hence $\mathfrak{f}\colon \mathfrak{G}'\to \mathfrak{G}$ is an etale covering by [3, 1.1]. Since \mathfrak{G}^* is the projective limit of \mathfrak{G}' , (\mathfrak{G}^*, γ) is a proetale extension.

If $\mathfrak G$ is (PE), $(\mathfrak G^*, \gamma)$ is a universal proetale extension of $\mathfrak G$ (cf. [1, V, § 3, 4.1]) in the sense:

3.2 PROPOSITION. Let \mathfrak{G} be a connected (PE) affine algebraic k-group scheme. Let $\eta\colon \mathfrak{H}\to \mathfrak{G}$ be an epimorphism, where \mathfrak{H} is a connected affine k-group scheme and $\Re \mathfrak{e}\mathfrak{r}(\eta)$ is proetale. There is a unique morphism of k-group schemes $\eta^*\colon \mathfrak{G}^*\to \mathfrak{H}$ such that $\eta\circ\eta^*=\tau$.

PROOF. Let $\mathfrak{H} \to \mathfrak{H}'$ be an algebraic quotient of \mathfrak{H} through which η factors. \mathfrak{H} is the projective limit of such quotients \mathfrak{H}' . Let $\eta' \colon \mathfrak{H}' \to \mathfrak{G}$ be the induced

epimorphism. Then \mathfrak{H}' is connected affine algebraic and $\Re \mathfrak{e}\mathfrak{r}(\eta')$ is etale, since it is an algebraic quotient of $\Re \mathfrak{e}\mathfrak{r}(\eta)$. Hence $\operatorname{hy}(\eta')\colon \operatorname{hy}(\mathfrak{H}')\to \operatorname{hy}(\mathfrak{G})$ is bijective [3, 1.1]. The Hopf algebra map $\mathcal{O}(\mathfrak{H}')\to \operatorname{hy}(\mathfrak{G})^\circ$ corresponding to $\operatorname{hy}(\mathfrak{G}) \xrightarrow{\sim} \operatorname{hy}(\mathfrak{H}') \subset \mathcal{O}(\mathfrak{H}')^\circ$ determines a unique morphism $\eta'^*\colon \mathfrak{G}^*\to \mathfrak{H}'$ such that $\eta'\circ\eta'^*=\tau$. They determine a unique morphism $\eta^*\colon \mathfrak{G}^*\to \mathfrak{H}$ with $\eta\circ\eta^*=\tau$ going to lim. Q.E.D.

The purpose of the rest of this paper is to show that when p>0 the connected affine algebraic k-group scheme \mathfrak{G} is (PE) if and only if the quotient group scheme $\mathfrak{G}/[\mathfrak{G},\mathfrak{G}]$ is finite.

3.3 Proposition. Let \mathfrak{G} be a connected affine algebraic k-group scheme. If $\mathfrak{G}/[\mathfrak{G},\mathfrak{G}]$ is finite, then \mathfrak{G} is (PE).

PROOF. Let \mathfrak{H}' be a locally algebraic k-group scheme and $\mathfrak{f} \colon \mathfrak{G}' \to \mathfrak{G}$ a morphism of k-group schemes. Suppose $s \colon \operatorname{hy}(\mathfrak{G}) \to \operatorname{hy}(\mathfrak{G}')$ is a hyperalgebra map such that $\operatorname{hy}(\mathfrak{f}) \circ s = I$. Let $J = \operatorname{Im}(s)$. Then [J, J] is a closed subhyperalgebra of $\operatorname{hy}(\mathfrak{G}')$ by $[3, 0.3.4 (\mathfrak{f})]$. Since J//[J, J] is finite dimensional, J is a closed subhyperalgebra of $\operatorname{hy}(\mathfrak{G}')$ by $[3, 0.3.4 (\mathfrak{f})]$. Hence \mathfrak{G} is (PE) . Q.E.D.

3.4 Proposition. Each quotient of a connected (PE) affine algebraic k-group scheme is (PE).

PROOF. Let $\mathfrak S$ be a quotient group scheme of a connected (PE) affine algebraic k-group scheme $\mathfrak S$. Then $\mathfrak S$ is connected affine algebraic. Let $\mathfrak g\colon \mathfrak S'\to \mathfrak S$ be a morphism of k-group schemes, where $\mathfrak S'$ is affine algebraic. Suppose there is a hyperalgebra map $t\colon \operatorname{hy}(\mathfrak S)\to\operatorname{hy}(\mathfrak S')$ with $\operatorname{hy}(\mathfrak g)\circ t=I$. Construct the pullback diagram

$$\begin{array}{ccc}
\mathbb{G}' & \xrightarrow{f} \mathbb{G} \\
\mathbb{p}' \downarrow & & \downarrow \mathbb{p} \\
\mathbb{p}' & \xrightarrow{g} \mathbb{p}
\end{array}$$

where \mathfrak{G}' is also an affine algebraic k-group scheme. The induced diagram

$$T(\mathfrak{G}') \xrightarrow{T(\mathfrak{f})} T(\mathfrak{G})$$

$$T(\mathfrak{p}') \downarrow \qquad \qquad \downarrow T(\mathfrak{p})$$

$$T(\mathfrak{F}') \xrightarrow{T(\mathfrak{g})} T(\mathfrak{F})$$

is a pullback diagram in the category W_k by [4, 2.1.1]. Let $s:hy(\mathfrak{G}) \to T(\mathfrak{G}')$ be a unique coalgebra map such that $T(\mathfrak{p}') \circ s = t \circ hy(\mathfrak{p})$ and $T(\mathfrak{f}) \circ s = I$. From the uniqueness follows that s is a Hopf algebra map. Hence Im $(s) \subset hy(\mathfrak{G}')$. Since \mathfrak{G} is (PE),

Im (s) is a closed subhyperalgebra of hy (\mathfrak{G}'). Hence by [3, 0.3.2 (b)], Im (t) = hy (\mathfrak{p}')(Im (s)) is a closed subhyperalgebra of hy (\mathfrak{F}'). Therefore \mathfrak{F} is (PE). Q.E.D.

3.5 Proposition. Let l/k be a finite field extension. A connected affine algebraic k-group scheme \mathfrak{G} is (PE) if and only if so is the l-group scheme $\mathfrak{G} \otimes l$.

PROOF. The l-group scheme $\mathfrak{G}\otimes l$ is connected affine algebraic and $\mathrm{hy}_l(\mathfrak{G}\otimes l)=\mathrm{hy}(\mathfrak{G})\otimes l$ [3, 0.3.1 (b)]. Since l/k is finite, the dual l-Hopf algebra $\mathrm{hy}_l(\mathfrak{G}\otimes l)^\circ$ equals $\mathrm{hy}(\mathfrak{G})^\circ\otimes l$ [3, p. 269]. Hence the l-group scheme $\mathfrak{G}\otimes l$ is (PE) if and only if the extension $\gamma\otimes l$: $\mathfrak{G}^*\otimes l\to \mathfrak{G}\otimes l$ is proetale. Since an affine k-group scheme \mathfrak{F} is proetale if and only if so is the l-group scheme $\mathfrak{F}\otimes l$ [1, III, § 3, 7.7], $\gamma\otimes l$ is proetale if and only if \mathfrak{G} is (PE). Q.E.D.

Let p>0. We show that \mathfrak{G}_a and \mathfrak{G}_m are not (PE) in the next section.

3.6 THEOREM. Let \mathfrak{G} be a connected affine algebraic k-group scheme, where p>0. \mathfrak{G} is (PE) if and only if the quotient group scheme $\mathfrak{G}/[\mathfrak{G},\mathfrak{G}]$ is finite.

PROOF. 'If' part follows from (3.3). Let \mathfrak{G} be (PE). Then so is $\mathfrak{G}/[\mathfrak{G},\mathfrak{G}]$ by (3.4). Suppose \mathfrak{G} is commutative (PE). There is a finite normal closed subgroup scheme $\mathfrak{R} \subset \mathfrak{G}$ such that $\mathfrak{G}/\mathfrak{R}$ is smooth [1, III, §3, 6.10]. Since $\mathfrak{G}/\mathfrak{R}$ is (PE) by (3.4), we have only to prove that a connected commutative smooth (PE) affine algebraic k-group scheme should be trivial. Let \mathfrak{G} be such a group scheme with the multiplicative part \mathfrak{G}^m [1, IV, §3, 1.1].

If $\mathfrak{G}/\mathfrak{G}^m \neq 0$, there is a nontrivial morphism of k-group schemes $\mathfrak{f} \colon \mathfrak{G}/\mathfrak{G}^m \to \mathfrak{G}_a$ by $[1, \text{ IV}, \S 2, 2.1]$. Since the image $\mathfrak{f}(\mathfrak{G}/\mathfrak{G}^m)$ is a smooth subgroup scheme of \mathfrak{G}_a , \mathfrak{f} is an epimorphism by $[1, \text{ IV}, \S 2, 1.1]$. This contradicts the fact for \mathfrak{G}_a being not (PE). Hence $\mathfrak{G}=\mathfrak{G}^m$. Since \mathfrak{G} is connected smooth, \mathfrak{G} is a k-torus $[1, \text{ IV}, \S 1, 3.9]$. Hence there are a finite extension of fields l/k and an integer $n \geq 0$ such that $\mathfrak{G}\otimes l \simeq (\mathfrak{G}_m)^n \otimes l$ as l-group schemes $[1, \text{ IV}, \S 1, 3.8]$. The l-group scheme $\mathfrak{G}\otimes l$ is (PE) by (3.5). Since \mathfrak{G}_m is not (PE), n must be 0. Hence \mathfrak{G} is trivial. Q.E.D.

- 3.7 COROLLARY. Let k be perfect with p>0. For each connected affine algebraic k-group scheme \mathfrak{G} , the following are equivalent:
 - i) S has a universal group covering,
 - ii) (\mathfrak{G}^*, γ) is the universal group covering of \mathfrak{G} ,
 - iii) (\S^*, γ) is an etale group covering of \S ,
 - iv) S/[S, S] is finite and hy(S)° is finitely generated.

PROOF. This follows immediately from [3, Th. 1.9] and (3.6).

4. \mathfrak{G}_a and \mathfrak{G}_m are not (PE)

Let $\mathfrak G$ be a locally algebraic k-group scheme and $\mathcal O_e$ its local ring at unit e with the maximal ideal m_e . Since $\text{hy}(\mathfrak G) = (\mathcal O_e)^\circ = \varprojlim_n (\mathcal O_e/m_n^e)^*$ [3, p. 259] [4, 2.1.11], we have

$$hy(\mathfrak{G})^* = \hat{\mathcal{O}}_e = the \ m_e$$
-adic completion of \mathcal{O}_e .

Let $\mathfrak{G}=\operatorname{Spec}(A)$ be an affine algebraic k-group scheme and $M=\operatorname{\Re er}(\varepsilon)$. Since $\mathcal{O}_{\varepsilon}=A_{M}=$ the M-adic localization of A, we have

$$hy(\mathfrak{G})^* = \hat{A} = the M$$
-adic completion of A .

Similarly we have

$$\begin{array}{l} (\text{hy}(\mathfrak{G}) \otimes \text{hy}(\mathfrak{G}))^* = \text{hy}(\mathfrak{G} \times \mathfrak{G})^* \\ = \widehat{A \otimes A} = \text{the } (A \otimes M + M \otimes A) \text{-adic completion of } A \otimes A. \end{array}$$

The coproduct $\Delta: A \to A \otimes A$ induces $\hat{\Delta}: \hat{A} \to \widehat{A \otimes A}$. This is the transpose of the product: $hy(\mathfrak{G}) \otimes hy(\mathfrak{G}) \to hy(\mathfrak{G})$.

By [2, 6.0.3] we have

$$hy(\mathfrak{G})^{\circ} = \hat{\mathcal{J}}^{-1}(hy(\mathfrak{G})^* \otimes hy(\mathfrak{G})^*).$$

The map $\hat{\Delta}$ restricted to hy(\mathfrak{G})° is the coproduct

$$\Delta: hy(\mathfrak{G})^{\circ} \to hy(\mathfrak{G})^{\circ} \otimes hy(\mathfrak{G})^{\circ}.$$

In particular if $x \in \hat{A}$ satisfies $\hat{\mathcal{A}}(x) = x \otimes 1 + 1 \otimes x \in \widehat{A \otimes A}$, then $x \in \text{hy}(\mathfrak{G})^{\circ}$ and $\mathcal{A}(x) = x \otimes 1 + 1 \otimes x \in \text{hy}(\mathfrak{G})^{\circ} \otimes \text{hy}(\mathfrak{G})^{\circ}$. Similarly if $y \in \hat{A}$ satisfies $\hat{\mathcal{A}}(y) = y \otimes y \in \widehat{A \otimes A}$, then $y \in \text{hy}(\mathfrak{G})^{\circ}$ and $\mathcal{A}(y) = y \otimes y \in \text{hy}(\mathfrak{G})^{\circ} \otimes \text{hy}(\mathfrak{G})^{\circ}$, so y is invertible in \hat{A} unless y = 0 [2, 9.2.5].

4.1 PROPOSITION. If p>0, the additive group scheme \mathfrak{G}_a is not (PE).

PROOF. Recall $\mathfrak{G}_a = \operatorname{Spec}(k[T])$ [3, p. 256] where $\Delta(T) = T \otimes 1 + 1 \otimes T$, $\varepsilon(T) = 0$ and S(T) = -T. Hence

$$hy(\mathfrak{G}_a)^* = k[[T]] = the (T)$$
-adic completion of $k[T]$

and

$$(\text{hy}(\mathfrak{G}_a) \otimes \text{hy}(\mathfrak{G}_a))^* = k[[T \otimes 1, 1 \otimes T]]$$

= the $(T \otimes 1, 1 \otimes T)$ -adic completion of $k[T] \otimes k[T]$.

The diagonal map $\hat{\mathcal{A}}$: $k[[T]] \to k[[T \otimes 1, 1 \otimes T]]$ is determined by $\hat{\mathcal{A}}(T) = T \otimes 1 + 1 \otimes T$.

If $f(T) = \lambda_0 T + \lambda_1 T^p + \lambda_2 T^{p^2} + \cdots + \lambda_n T^{p^n} + \cdots$ is a p-power power series with $\lambda_i \in k$, then $\hat{\mathcal{A}}(f(T)) = f(T) \otimes 1 + 1 \otimes f(T)$. Hence $f(T) \in \text{hy } (\mathfrak{G}_a)^\circ$. There is a p-power power series f(T) such that T and f(T) are algebraically independent over k [6, § 5]. Hence there is an injective Hopf algebra map $\beta \colon k[T] \otimes k[T] \longrightarrow \text{hy } (\mathfrak{G}_a)^\circ$ such that $\beta(T \otimes 1) = T$, $\beta(1 \otimes T) = f(T)$, where the Hopf structure on $k[T] \otimes k[T]$ corresponds to the direct product $\mathfrak{G}_a \times \mathfrak{G}_a = \operatorname{Spec}(k[T] \otimes k[T])$. The composite

$$\mathfrak{G}_a^* = \operatorname{Spec} \left(\operatorname{hy} \left(\mathfrak{G}_a \right)^{\circ} \right) \xrightarrow{\operatorname{spec} \left(\beta \right)} \mathfrak{G}_a \times \mathfrak{G}_a \xrightarrow{\operatorname{\mathfrak{pr}}_1} \mathfrak{G}_a$$

where \mathfrak{pr}_1 denotes the projection onto the first term, equals γ . Since \mathfrak{pr}_1 is not an etale group covering, γ is not proetale. Hence \mathfrak{G}_a is not (PE). Q.E.D.

4.2 PROPOSITION. If p>0, the multiplicative group scheme \mathfrak{G}_m is not (PE).

PROOF. Recall that $\mathfrak{G}_m = \operatorname{Spec}(k[X,X^{-1}])$ [3, p. 256] where $\Delta(X) = X \otimes X$, $\varepsilon(X) = 1$ and $S(X) = X^{-1}$. Put T = X - 1. Then $k[X,X^{-1}]$ is the localization of k[T] with respect to one element 1+T. Hence the (T)-adic localizations of k[T] and $k[X,X^{-1}]$ are the same. Similarly the $(T \otimes 1, 1 \otimes T)$ -adic localizations of $k[T] \otimes k[T]$ and $k[X,X^{-1}] \otimes k[X,X^{-1}]$ are the same. Therefore

$$\begin{aligned} & \text{hy}(\mathfrak{G}_m)^* = k[[T]] & \text{and} \\ & (\text{hy}(\mathfrak{G}_m) \otimes \text{hy}(\mathfrak{G}_m))^* = k[[T \otimes 1, 1 \otimes T]]. \end{aligned}$$

The diagonal map $\hat{\mathcal{A}}$: $k[[T]] \rightarrow k[[T \otimes 1, 1 \otimes T]]$ is determined by $\hat{\mathcal{A}}(T) = T \otimes T + T \otimes 1 + 1 \otimes T$. The inclusion $k[X, X^{-1}] \subset \rightarrow k[[T]]$ by $X \mapsto 1 + T$.

Let

$$G(k[[T]]) = \{x \in k[[T]] | \hat{\Delta}(x) = x \otimes x, x \neq 0\}.$$

This is a subgroup of units $k[[T]]^{\times}$ and equal to

$$G(hy(\mathfrak{G}_m)^{\circ}) = \{x \in hy(\mathfrak{G}_m)^{\circ} \mid \Delta(x) = x \otimes x, \quad x \neq 0\}.$$

Since $1+T \in G(k[[T]])$, it follows that $1+T^{p^n}=(1+T)^{p^n} \in G(k[[T]])$ for all $n \ge 0$.

For each family of integers $a_n \ge 0$, the infinite product

$$\prod_n (1+T^{p^n})^{a_n}$$

is a well-defined element of G(k[[T]]).

Let $\hat{Z}_{(p)} = \varprojlim_n Z/(p^n)$ be the (p)-adic completion of Z. Each element of $\hat{Z}_{(p)}$ can be uniquely written as $\sum a_n p^n$, where $0 \le a_n < p$. The map

$$\chi\colon \ \hat{Z}_{(p)} \to G(k[[T]]), \ \chi(\sum_n a_n p^n) = \prod_n (1 + T^{p^n})^{a_n}$$

is well-defined. We claim that χ is an injective group homomorphism.

Indeed the multiplicative order of 1+T in $(k[T]/T^{p^n})^{\times}$ is p^n . Hence there is an injective group homomorphism

$$Z/(p^n) \hookrightarrow (k[T]/T^{p^n})^{\times}, 1 \mapsto 1+T.$$

Taking lim we obtain an injective group homomorphism

$$\hat{Z}_{(p)} \hookrightarrow k[[T]]^{\times}$$

which is χ .

The quotient group $\hat{Z}_{(p)}/Z$ contains at least one torsion-free element $x \mod Z$ with $x \in \hat{Z}_{(p)}$ by (4.3). Hence we have an injective group homomorphism

$$\alpha: Z \times Z \longrightarrow \hat{Z}_{(p)}, \ \alpha(1,0) = 1, \ \alpha(0,1) = x.$$

This induces an injective Hopf algebra map

$$\bar{\alpha}: k[X, X^{-1}] \otimes k[X, X^{-1}] \longrightarrow \text{hy } (\mathfrak{S}_m)^{\circ}$$

where $\bar{\alpha}(X \otimes 1) = X$, $\bar{\alpha}(1 \otimes X) = \chi(x)$. The composite

$$\mathfrak{G}_{m}^{*} \!\! = \! \mathrm{Spec} \left(\mathrm{hy} \left(\mathfrak{G}_{m} \right)^{\circ} \right) \xrightarrow{\mathrm{Spec} \left(\bar{\alpha} \right)} \mathfrak{G}_{m} \! \times \! \mathfrak{G}_{m} \xrightarrow{\mathfrak{pr}_{1}} \mathfrak{G}_{m}$$

where pr_1 denotes the projection onto the first term, is γ . Since pr_1 is not etale, \mathfrak{G}_m is not (PE). Q.E.D.

4.3 Lemma. The group $\hat{Z}_{(p)}/Z$ has a torsion-free element.

PROOF. This is perhaps a known fact. We give an elementary proof. Let e>1 be an integer and

$$x = p + p^e + p^{e^2} + \cdots + p^{e^n} + \cdots \in \hat{Z}_{(p)}.$$

We claim that $x \mod Z$ is torsion-free in $\hat{Z}_{(p)}/Z$.

Suppose there is an integer m>0 such that $mx \in \mathbb{Z}$. Write $m=a_0+a_1p+\cdots+a_np^n$ where $0 \le a_i < p$. Take an integer N>1 so that $e^{N+1}-e^N-n>1$. Let

$$\sum_{\substack{i \leq n \\ j \leq N}} a_i p^{i+\epsilon^j} = b_0 + b_1 p + \dots + b_M p^M$$

where $0 \le b_r < p$. Take an integer $l \ge N$ so that $n + e^l \ge M$. Thus $b_0 + b_1 p + \cdots + b_M p^M < p^{n+e^l+1}$. On the other hand

$$\sum_{\substack{i \leq n \\ N < j \leq l}} a_i p^{i+\epsilon^j} \!\! < \! p^{n+\epsilon^l+1}$$

since $i_1+e^{j_1}=i_2+e^{j_2}$ with $i_1,i_2\leq n$ and $j_1,j_2>N$ implies $i_1=i_2$ and $j_1=j_2$. Hence

$$\sum_{i \le n \atop j < l} a_i p^{i + e^j} \!\! < \!\! 2p^{n + e^l + 1} \!\! \le \! p^{n + e^l + 2} \!\! \le \! p^{e^l + 1}.$$

Therefore

$$\sum_{\substack{i \leq n \ i < l}} a_i p^{i+e^j} = c_0 + c_1 p + \cdots + c_L p^L,$$

where $0 \le c_r < p$ and $L < e^{l+1}$. We have

$$mx = c_0 + c_1 p + \cdots + c_L p^L + \sum_{\substack{i \leq n \\ i > l}} a_i p^{i+e^j}.$$

Here $i_1+e^{j_1}=i_2+e^{j_2}$ with $j_1,j_2>l$ implies $i_1=i_2$ and $j_1=j_2$ and $L< e^{l+1}\le i+e^{j}$ for all j>l. Hence $mx\notin \mathbb{Z}$ a contradiction. Q.E.D.

References

- [1] Demazure, M. and P. Gabriel, Groupes algébriques, Tome I, North-Holland, Amsterdam, 1970.
- [2] Sweedler, M. E., Hopf algebras, Benjamin, New York, 1969.
- [3] Takeuchi, M., On coverings and hyperalgebras of affine algebraic groups, Trans. Amer. Math. Soc. 211 (1975), 249-275.
- [4] Takeuchi, M., Tangent coalgebras and hyperalgebras, I, Japan. J. Math. 42 (1974), 1-143.
- [5] Takeuchi, M., Tangent coalgebras and hyperalgebras, II, to appear.
- [6] Takeuchi, M., A characterization of the Galois subbialgebras $H_k(K/F)$, J. Algebra (to appear).

(Received January 30, 1976)

University of Tsukuba Ibaraki 300-31 Japan