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1. Introduction

As introduced by J.Tits, a group G is said to have a BN-pair if G has
subgroups B and N satisfying the following conditions:

(BN1) K=BNN is. a normal subgroup of N;

(BN2) W=N/K is generated by a set S of involutions;

(BN 3) sBw=BswBUBwB for any s€S and we W;

(BN 4) sBs+B for any s¢ S;

(BN5) G is generated by B and N.
The generating set S of the Weyl group W is uniquely determined by these
conditions, and the number of elements of S is called the rank of the BN-pair.

This paper is designed to be a preliminary of a subsequent paper [11}. Our
purpose is to show that if a finite group G satisfies certain conditions on the
intersections of Sylow 2-subgroups, then G has a BN-pair of rank 2 such that

B is the normalizer in G of a Sylow 2-subgroup P of G, and BNN
) is a complement for P in B.
In order to state our results explicitly, we need some definitions. Let G be
a finite group. We define £, to be the set of nonidentity 2-subgroups, H, of G
such that N (H)/H has a strongly embedded subgroup.”

REMARK. It follows directly from the definition that if He &, then H=
O0,(Ng(H)), and H is a tame intersection of Sylow 2-subgroups of G. In particular,
this definition is identical with that given in [6].

Let (P.)izo,1,....,» be a family of Sylow 2-subgroups of G and (H);-1,...,» & family
of elements of 57, and suppose the following conditions are satisfied:

(1) P#P,1=i=n;

(2) H,ZH;. and H, (. ZH,, 15i=n—1;

(3) H,ZP,  NP,1=i<n.

A proper subgroup H of a finite group G is said to be strongly embedded in G if
H has even order while HN H? has odd order for all g€ G—H. Groups with a strongly
embedded subgroup have been classified by Bender [1]. For other unexplained terminology
and notation as well as the background of the finite group theory, we refer the reader
to D. Gorenstein’s textbook “Finite Groups”, Harper and Row, New York, 1968.
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Then the pair of these two families, denoted by (P, H;)., will be called a path
of length n. Furthermore, it is a proper path if M- H;#1, and it joins P to
@ if P,=P and P,=Q.

This definition is motivated by the following fact (see §2):

If P and Q are distinct Sylow 2-subgroups of a finite group G and
PNQ=+1, then P is joined to Q by a path (P, H)), such that PNQ=N1.H,.

Thus intersections of Sylow 2-subgroups can be described by proper paths.
Now we can state our main result.

THEOREM 1. Let G be a finite group satisfying the following conditions:

(a) a Sylow 2-subgroup of G contains exactly two elements of 57;

(b)y if He 57, then N H)/H is of 2-rank at least 2;

(¢) if (P, Hp. is a proper path and H+H, is an element of 5, com-

tained in P,, then Py=H((\?-.H)).
Then G has o BN-pair of rank 2 such that B is the normalizer in G of o
Sylow 2-subgroup P of G and N is the normalizer in G of a complement K
for P in B. Furthermore, BAN=K and the Weyl group of the BN-pair is
of order 2(d-+1), where d is the maximum length of a proper path in G.

The maximum length, d, of a proper path does not exist in general, but
under the condition (¢) we can easily prove the existence (see §2). Although
BN-pairs of rank 2 have not yet been classified, Fong and Seitz [2] determined
all finite groups with a BN-pair of rank 2 satisfying B=F(B)(BN N), where F(B)
is the Fitting subgroup of B. Since (x) implies this condition, we can describe
the structure of the group G of Theorem 1 explicitly. Namely, if d=1, then
O*(&) is a central product of two groups each isomorphic to PSL(2,2%), Sz(2%),
PSUB, 2%, or SUB, 2%, n=2, and if d>1, then 0¥(G) is a covering group of
PSL3, 27), PSp(4, 27), PSU, 2%, PSU(5, 2%, G5(27), *D(2"), or *F,(2*). Here we fol-
low the notation of [2]. Conversely, all groups on this list satisfy the conditions
(a) and (c), and satisfy (b) if n>1.

Before stating our next result, some remarks may be in order on the relation-
ship between the results of this paper and those of [11]. In a previous paper
[5] we characterized finite simple groups PSL(8,2*) and PSp(4,2%, n=2, by
certain properties of fheir maximal 2-local subgroups. Our analysis essentially
divided into two parts. In the first part, from the given conditions on the
maximal 2-local subgroups of a group G, we obtained detailed information on the
structure of a Sylow 2-subgroup, fusion of involutions, and intersections of Sylow
2-subgroups, and in the second part we constructed in G a BN-pair of rank 2
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satisfying () on the basis of the results obtained in the first part. However,
the method used in the second part, which is due to Suzuki [10], depended heavily
upon the existence of central involutions with 2-closed centralizers, and so is no
longer applicable when we attempt to extend the result of [5] to similar charac-
terizations of other groups of Lie type of rank 2 defined over GF(2*). The re-
sults of this paper provide a method which will be applicable for all of those
groups, and show that only information on the intersections of Sylow 2-subgroups,
or strictly speaking proper paths, is needed in order to construct a BN-pair of
rank 2 satisfying (¥). In [11] we shall see how they can be applied to character-
izations of the classical linear groups of rank 2 and characteristic 2 in terms of
the structure of maximal 2-local subgroups.

In view of the applications described above, it is necessary to improve
Theorem 1 since, because of the condition (b), it does not cover the groups defined
over the prime field GF(2). The next result will serve our purpose.

THEOREM 2. Let G be o finite group satisfying the following conditions:

(a) a Sylow 2-subgroup of G contains exactly two elements of 57,;

(b'y if He 27, then Ng(H) has exactly |Nz(H)/H|,+1 Sylow 2-subgroups;

(¢) of (P, H)), is a proper path and H+H, is an element of 57, contained

in Py, then Po=H((\} H,).
If furthermore the maximum length d of a proper path in G is odd, then
G has a BN-pair of rank 2 satisfying (x) and its Weyl group has order
2(d+1).

It might be possible to prove the corresponding result for even d, but this
does not seem to be needed in the applications. It will be shown under the con-
ditions (a) and (c¢) that every element of &, is a maximal Sylow intersection.
Hence by a theorem of Suzuki [9], (b”) holds when N (H)/H is of 2-rank at least
2, and Theorem 2 is in fact an improvement on Theorem 1 in case d is odd.

It would be useful to know whether the condition (c) can be replaced by a
weaker one without affecting the conclusions of the theorems. In this connection

we have the following result:

COROLLARY 1. Let G be a finite group with 0,(G)=1 and O (@) =G and
assume the following conditions:
(a) a Sylow 2-subgroup of G contains exactly two elements of 57,;
"y if He &7, then N (H)H has abelian Sylow 2-subgroups of rank at
least two;
(/) if (P, H)). is a proper path of length at least three, then 1. H,;ZH,.
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Under these conditions, the conclusion of Theorem 1 holds.

We remark that with the exception of PSU(5,2*) and 2F,(2%), all groups on
the preceding list with n>>1 satisfy the conditions (a), (b’’), and (¢/). It is very
likely that the conclusion of Theorem 1 also holds under the conditions (a), (b),
and (¢’), or even (¢/) alone, but there is some difficulty in proving this.

Presumably the simplest case to which the foregoing results are applied is the
classification of C-groups [10]. Until the end of §7 of that paper, it is implicitly
proved that if G is a C-group with O,-.(G)=1 and if the center of a Sylow 2-
subgroup of G is not eyclic, then either G is a TI-group or G satisfies (a) and
(b’’) and the maximum length of a proper path in G is equal to 2. Hence we
can apply Corollary 1, and conclude at once that O*(G) is isomorphic to PSL(3, 27,
n=2. This, however, is not surprising, because in case d is even the proof of
Theorem 1 and hence of Corollary 1 is a natural generalization of §8 of {10].
In the last section we shall give another example (Corollary 2). Namely, we shall
prove Theorem B of Gilman and Gorenstein [8] by using Corollary 1 and some
partial results of [6].

We shall retain the notation and terminology of [5]. Thus, an S,-subgroup
is a Sylow 2-subgroup, and an S,~intersection is the intersection of two distinct
S;-subgroups. If G is a finite group, SG) will denote the set of S,-subgroups
of G and 22°(P) the set of elements of 57, contained in an S,-subgroup P of G.
For any subgroup or element X of G, Ny(X) and Cy(X) will be the normalizer
and centralizer of X in a subgroup Y of G, while N(X) and C(X) will denote
Ng(X) and Ci(X). If ze G, then C*(z) is defined to be the set of elements of G
which centralize or invert x, so that C*(z) is a subgroup and C(x) is a normal
subgroup of C*(x) of index 1 or 2. Furthermore, if z and y are subgroups or
elements of G, we shall write z~y or x+y according as « is conjugate or not
conjugate to ¥ in G. I(() is the set of involutions of G. From now on, all
groups are assumed to be finite.

2. The uniqueness of a proper path

We begin by recalling some basic properties of 5¥,. The following proposi-
tion is 2.3 of [5].

PRroOPOSITION 2.1. If P and Q are distinct S;-subgroups of a group G and
PNQR=1, then there exist S,-subgroups Py,=P, P, ---, P,=Q of G which satisfy
the following conditions:

(1) H,=P,_.0\P; 1s a tame S,-intersection, 1=1=n;
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(2) H;e 87,1<i<n;

(3) PNE=Nr.H.

REMARK 2.2. We can in fact prove a somewhat stronger result. Namely,
there exist S;-subgroups P,=P, P,, ---, P,—=Q of G which satisfy, in addition to
(1)-(8) above, the following condition :

(4) P,.; and P; are conjugate by an element of N(H,), 1=i<n.

The next result is an immediate consequence of 2.1 and is simply a restate-
ment of 2.4 of [5].

COROLLARY 2.3. If P and Q are distinct S,-subgroups of a group G and
PNQ=+#1, then P is joined to Q by a path (P;, Hj), such that PNQ=Nr.H,.
The following proposition is a variant of a fusion theorem of Goldschmidt [4].

PROPOSITION 2.4. Let P be an S,-subgroup of a group G and A+1 be @
subset of P. If geG and A'<P, then there exist elements H,c 57, and
elements x;€ N(H,), 1=i=n, and an element yc N(P) which satisfy the follow-
ing conditions:

(1) H,=PNQ,; is a tame S,-tntersection for some @;¢ F (@), 1=i<n;

(2) g=2: - 2Y;

(3) A=H, and A™"™=H,,, 1=i=n—1.

ProOF. The proof given here is based upon 2.1. If P=P ", there is nothing
to prove, so we assume P#P?*. It then follows from 2.2 that there exist S,-
subgroups P,=P, P, ---, P,=P?" which satisfy (1) and (2) in 2.1 and (4) in 2.2
and also satisfy A<N}.H;. Let x be an element of N(H,) such that P,=P°7.
If n=1, then P=P* ¢ whence gc xN(P), so we may assume n>1. S,-subgroups
Pz=P, P, .-, Pz=P" = clearly satisfy (1) and (2) in 2.1 and (4) in 2.2, and also
A< P, (A")*9<P and A<\, H?. Hence we can easily establish 2.4 by induec-
tion on n.

Although the above three propositions focus on the prime 2 and S;-subgroups,
it should be remarked that they have direct analogues for arbitrary primes p
and S,subgroups. Finally, we require the following result, which is essentially
Proposition 8.2 of [6].

PROPOSITION 2.5. Let G be a group and let P be an Ss;-subgroup of G. If
27 (P) possesses the unique minimal element H under inclusion, then either
HG or m(G)=1.

Proor. Suppose H<|G. Then by the proof of the proposition mentioned
above, M=N(H) is a strongly embedded subgroup of G. If m(G)>1, then by a
corollary of Bender’s theorem [1], M=N(P)O(G). In particular M is 2-solvable,
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so again by Bender [1], m(M/H)=1. However, on the other hand, N(P)<N(H)
implies H=£,(P), so m(P/H)>1. This contradiction completes the proof.
Now we shall specialize to the case |SZ(P)|=2.

LEMMA 2.6. Let G be a group, P an S;-subgroup of G and 57 ,(P)={H,, H,},
H,-#H,. If either P=H.H, or 0,(G)=1, OG=G and the 2-rank of N(H,)/H,
is at least two, 1=1=2, then the following conditions hold:

(1) H; is o maximal Sy-intersection, 1=1=<2;

(2) N(P)Y=N(H),1=1<2;

(3) H, is not conjugate to H, in G.

Proor. First notice that a maximal element of &#,(P) is a maximal S,-
intersection. Our assumption and 2.5 imply that H,£H, and H,ZH,, so each H,
is a maximal Sy-intersection. As N{P) permutes the elements of &#,(P) by con-
jugation, either (2) holds or [N(P): N(P)NN(H,;)|=2. In the latter case, setting
Q=Nz(H,), we have Q<N(P), |P:Q|=2 and H.H,<Q. In particular (2) holds if
P=H,H,. On the other hand, 2.4 shows that no element of Q fuses to the elements
of P—Q. Since |P:Q|=2, the focal subgroup theorem yields that PNG'<Q.
Hence (2) holds if O%(G)=G. Since H,ZH, and N(P)<N(H,), another application
of 2.4 yields (8).

HYPOTEESIS 2.7. G is a group satisfying the conditions (a) and (c).

From now on, unless otherwise stated, we shall assume that G is a group
satisfying Hypothesis 2.7. In particular, an S;-subgroup P of G contains exactly
two elements, H; and H,, of 5%, and moreover it follows from the condition (c)
that P=H,H,. Hence by 2.6, H; is a maximal S,-intersection, N(P)<N(H,) and
H,+H, Let (P, K,), be a path. Since every element of 57, is a maximal S,-
intersection, K; is determined by the equation K;=P; 0\ P;. Hence to simplify
the notation, we shall often denote the path by (P);=,1,....n- A path (P, K}), is
said to be a circuit if P=P,, K;£K, and K,ZK,. As a direct consequence of
the fact that H,+ H,, we have

LeMMA 2.8. There are no circuits of odd length in G.
We shall refer to the property (1) below as the “uniqueness of a proper
path”.

LEMMA 2.9. If P and Q are S;-subgroups of G, then the following condi-
tions hold:

(1) there exists at most one proper path which joins P to Q;

(2) P and Q are joined by a proper path if and only if P#Q and
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PNQ=1;

(3) if a proper path (P, K;), joins P to Q, then PNQ=N7.K;.

Proor. We first prove (2). In view of 2.3, it will suffice to prove the fol-
lowing :

@h if (P, K;), is a proper path, then P,#P,.
We proceed by induction on n. If m=1, the assertion is obvious by the defini-
tion of a path. Since P,NP,=K,#K,=P.NP,, P,4#P,. We therefore assume
#>2 and also assume by way of contradiction that P,=P,. Then clearly K, & ,(P,)
and N, K;=<K,, so the condition (c) forces K;=K,. On the other hand, applying
the induetion hypothesis to the proper path (P));-y,....n.-: of length n—2, we get
P, P,_,. But then we obtain the proper path (P, P, - - -, Po—y, P;) of length n—1,
in contradiction to the induction hypothesis. Hence (2/) holds for all n=1.

We next prove (1). Let &=(P, K;), and £€=(Q;, L), be proper paths joining
P to Q. We will show =& Dby induction on r=max {n, m}. The assertion
clearly holds when r=1, so we may assume r>1. There exists a proper path
(R;, M;), joining P to @ such that PN@=M;-:M; by (2) and 2.3. Since 1£NL. K=
PNQ=MN}-1M;, it follows that K,=M,. For otherwise we would have the proper
path (&, P, -+, P,, Ry, - -+, B:, Ry) which joins P to P, a contradiction. It then
follows that P,-;=R,.;. For otherwise we would have the proper path (P, P;,
«-yP,_y, Ry, -+, Ry, Ry), again a contradiction. By symmetry, we have P, ;=
R,_,=Q,-;. This in particular implies that n+1s£m. For if, say, =1, then
QRu1=P,_,=P,=P and m>1 because r>1, which is a contradiction to (2). Thus
we can apply the induction hypothesis to the paths P’ =(P)i=0,1,....n-; and &’ =
(@3)i=0,1,...,m=1 to conclude that F°’=&’, from which the desired conclusion that
F=¢ immediately follows. Finally (3) is a direct consequence of (1), (2) and 2.8.

The condition (2) implies that S,-subgroups which appear in a proper path
are distinct from each other. As a direct consequence we have

LEMMA 2.10. There exists the maximum length, d, of a proper path in G.

REMARK. The above argument can be applied to prove the equivalence of
the following conditions:

(1) there are no proper circuits in a group G;

(2) (2) holds in a group G;

(3) there exists the maximum length of a proper path in a group G.
Furthermore if every element of 57, is a maximal S,-intersection, these con-

ditions are equivalent to the uniqueness of a proper path in a group G.

LEMMA 2.11. Let b=2¢—1 be the largest odd integer not exceeding d. If



8 Kensaku GoMmi

(P, K,), ts & path of length b and 1#x€ i1 K;, then Cx)=N(K,).

ProorF. Let y< C(x) and R=P,. Since N(R)=N(K,), we may assume R+Rr,
Since 1#£2=avc RN RY, there exists a path €=(Q,, L,), which joins R to R and
contains z. We first argue that m is odd. For if m is even, then L,7 L, and
so L¥ =LY for each k=>1. Hence combining paths (Q%, LY"),, £=0,1,2, ---, in
order, we obtain a path of infinite length containing z, a contradiction. Thus m
is odd, or equivalently L;~L,. We next argue that K,=L,. For suppose false,
then L,#K? as L,~L,. But then combining the three paths (P.);w,1,...,., & and
(PY, ---, P, PY in order, we obtain a path of length 2¢c+m containing %, which
is a contradiction because d<2¢-+m. Thus K,=L;. Suppose that m=3, in which
case d=3 and so K., is defined. Moreover L,+KY., as K,=L,~L,. Hence
combining three paths (P, -, Pouy, Po), & and (PY¥);—¢,c41,...,» In order, we obtain
a path of length 2(¢—1)+4-m containing x, which is a contradiction because
2Ac—1)+m=2¢c+1>d. Hence we must have m=1, and so R*=N(K,). Since
N(R)<XN(K,), we have ye N(K,) by Sylow’s theorem. The proof is complete.

LEMMA 2.12. The following conditions hold :
(1) a path is proper iof and only if its length is at most d;
(2) if d is even, then all elements of &, have the same order.
PrOOF. Let Pe (G, &7,(P)={H,, H,} and ¢,=|P: H;|. Let &F=(P,, K,); be
a path of length d, K, #Ky,€5(Py) and D;=N{_1K,, 1=j=d41. Clearly
\D;: D, |=|P;: K;yy|l. Hence we have
q:(q192)"P/* if d is odd and K,~H,,
[Pyt Daf= (12((]1(12)@—1)/2 if d is odd and K,~H,,

(q192)%2 if d is even.

On the other hand, if & is proper, the condition (¢) implies that P,=D.,K,.,,
1=<i=<d, whence |D,: D;,|=|P;: K;:|. By the definition of d, such & does exist
and D,.;=1 always. Hence we have

S (9:9.)*/? if d is odd,
|Pyl=4 qi(g.q,)¥* if d is even and K,~H,,

q:(q:9)¥* if d is even and K,~H,.

It is immediate from this that |P,: D, <|P,|, which shows that every path of
length d is proper. As every path of length at most d can be extended to one
of length d, we have proved (1). If d is even, then

1 Pol=0q4(919.)**=q:(q:9.)**
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by (1) and the above equation, so (2) holds.

LEMMA 2.13. If (P, K)s: 18 @ path of length d+1, then Py Pyyy=1.

ProoF. Observe first that (P;, K,); is a unique proper path which joins P,
to P, by 2.9 and 2.12. In particular, we have P,#PFq;. Hence, if PN Py #1,
then P, is joined to Puy: by a proper path (@, Lj),. But then the uniqueness of
(P, K, yields first that P,#Q.-i as n—1<d, next that K, .#L, and finally
that n=d. Likewise we have K;#L,, and therefore (P, P, -+, Py, Qg -+, @1, Qo)
is a circuit of length 2d+1, contrary to 2.8. Hence we must have PN FPs=1,

and the lemma is proved.

3. The generators of the Weyl group
Tor the rest of the paper, we fix the following notation:
Pe F(G);
{Hy, Hy}=22(P);
N,=NH,) , 1=2k=2;
B=N(P);
K=a complement for P in B.
Throughout the section we assume, in addition to 2.7, the following hypothesis.

HypoTHESIS 8.1. There exists an involution s¢€ N,NN(K) such that N,=

BUBs,B, 1=k=2.
This in particular implies that P acts by conjugation transitively on the set
S (N)—1{P}. For each k, 1<Ek<2, we define the word s,(n) of length » in s, and
s, by: 3,(0)=8,(0)=1, s:(n)=8:8:(n—1) and so(n)=8,8,(n—1) for n=1. Thus
8:(7)=81858:8, *++ +

7 terms
For each k, 1=k=2, we define
PP =g,(@)Ps; (1), 1=0,
and
s (i—DHs(j—D™, jodd =1,
s (J—DHs(j—1™*, j evenz2,

® —

where k1. Thus H{®=H,.
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LEMMA 8.2. For any n=1, two families (P¥)e,1,.n and (H)es,....n de-
fine a path of length n, which we shall denote by F®.
PROOF. We need only verify the following relations:

PR, +P®£P®,  if ¢ is odd;
HP,+=HP+H®P, if 7 is even;
HP=ZPP NPP

However these are immediate from the definition.

LEMMA 3.3. The following conditions hold:

(1) 2d+1 double B-cosets B and Bs,(n)B,1=k<2,1=n=<d, are different
JSrom each other;

(2) Bsy(d+1)B,1<k=2 is different from any of the above 2d+1 double
B-cosets;

(8) 4f x¢ Bs{d-+1)B, k=1 or 2, then PNxPr-t=1.

PrOOF. Let x¢€ Bs{n)B, n=1. Since B<N,, 3.2 shows that P is joined to
xPx™' by a path (P;, K;), of length » with K,=H,. Therefore (1) is an immediate
consequence of the uniqueness of a proper path. Likewise (8) follows from 2.13.
As PNaxPr i1 if n=<d, (2) also holds.

LEMMA 8.4. If e G and P is joined to xPx~ by a path (P, K;), of length
at most d+1 such that K,—=H,, then x< Bs{n)B.

Proor. We will proceed by induction on . If n=1, then #Px ‘<N, and
s0 x€ N;=BUBs;B by Sylow’s theorem. But P#xPz* by assumption, so ze€
Bs,B as asserted. Assume next that #>1 and take y€ G so that P,_,=yPy*.
It then follows from the induction hypothesis that y & Bs,(n—1)B. Let s=s,(n—1)
and y=>bsb” with b,0’e B. As P%_,=sPs™*, replacing « by b~'z, we may assume
that P,_;=sPs™*. Thus P is joined to P,_, by the path &% .. Since n—1=d
by assumption, the unigueness of a proper path yields that K,.,=H®, and
consequently K,=H¥. Hence PP as well as xPx™* is an S,-subgroup of N(K,)
different from P,_;. It therefore follows that there exists an element ye Py,
such that

Py t=yPPy ' =ys,(n)Ps,(n)y™* .

But P,_,=(N{K)K, by the condition (c), so we can assume y< P. Hence z€
¥8:(n)B<Bs,(n)B. The proof is completed by induction.

LemmA 3.5. If 1=k=2, 1=I=2 and k+l, then the following conditions
hold :
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(1) s.Bsi(n)=Bssi(n)BU Bsy(n)B, 0=n=d-+1;

(2) siBsi(n)=Bs;s(n)BU Bsi(n)B, 0=n=d.

ProoF. If n=1, then s,Bs,(n)=(s;Bsy)s;(n—1) and Bs.s,(n)B=Bs(n—1)B.
Therefore it will suffice to prove the following:

N.s;(n)=<Bs,(n+1)BUBs{n)B, 0=n=d.

Let z=ys;(n) € Nys,(n), so that ye N,. We may assume y ¢ B, as otherwise «¢€
Bs,(n)B. As P is joined to P¥=s;(n)Ps(n)"! by the path &P, P is joined to
Pz~ by the path (P, yPPy™, ---,yPPy ™). This path is of length at most d-+1
and PNyPPy*=H,, so x€ Bs,{n+1)B by 3.4. The proof is complete.

LEMMA 3.6. We have G=<B, 81, 8.
Proor. Suppose M=<B, sy, s,>#G. We first prove the following:

(%) If Qe & (G) and QN M+1, then Q=M.

Let QN M<Rec S (M) and suppose Q@+R, then @ is joined to R by a proper
path. Hence in proving (¥t), we may assume that H=QNRe &, for some
Re &(M). Take an element yc M such that R*=P, then H¥=H,, k=1 or 2,
and so QS N, =M. Thus Q<M as asserted. Suppose z€ G and M*N M has even
order, then there exists an S,-subgroup S of M such that S*NM=+1. It then
follows from (¥%) that S*<M. Since N(P)=<M,x< M by Sylow’s theorem. Hence
M is strongly embedded in G. Further m({s,>H,)=2 and B<N(H,),1=k=2, by
2.6. However, this is impossible by Bender’s theorem [1]. This contradiction
completes the proof.

4. Theorem 2
All lemmas in this section except 4.4 are proved under the following hypothesis.
HyPoTHESIS 4.1. G satisfies (a), (b’) and (¢), and d is odd.

LEMMA 4.2. If (P, K), and (Q, L;). are paths of length d and K.+ L,
then (N2 K)N(N%iL)=1, and therefore the elements of (Ni-.K,)* are mot
conjugate to the elements of (N-.L)%

Proor. Observe first that K;~K,; and L;~L,; as d is odd. Hence we can
reverse the numbering of (P;, K;); or (@,, L;); without affecting the assumption
of the lemma. By way of contradiction, we assume D=(N%-.K;)N (N L;)+1.
We distinguish two cases.

Case 1: There exist integers & and ! such that P,=@Q,. We first argue that
0<k<d and 0<l<d. For suppose false and let, say, P,=Q,. If I=0 or d, then
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correspondingly K,#L;, or K,#L, by our assumption, while if 0<l<d, then
K;#L; or K;#Ly;,. In either case, since D#1, (P, K,),; is extended to a longer
proper path, a contradiction. Thus 0<k<d and 0<i<d, so that K, K,.., L, and
Ly, are defined. Since P,=Q,, it follows that {K,, Ky..}={L; L;s:}, and so
reversing the numbering of (P, K});, if necessary, we may assume that K,=1L,.
Since K+ L, by our assumption, k%! and so we may also assume k>I. But then
combining paths (P)iq,1,....s and (@.)is,i+1,....s, we have a proper path of length
k+(@d—1)>d, a contradiction.

Case 2: P,#Q, for any k and !. Since 1#D=P,NQ,, there exists a proper
path (R; M;), which joins P, to @; and contains D. Choose P, and @, so that
the length # of the path is minimal. It then follows if 0<¢<n that R, ¢ {P;}U{Q.}.
If 0<k<d, then M,€{K,, K.}, while if k=0 or d, then correspondingly M,=K,
or K; as otherwise we would have a proper path of length d+1. Thus M, e {K3
in either case. Similarly M,e{L;}. Let M=K, and M,=L,. Reversing the
numbering of (P;, K;); and (@, Lj),, if necessary, we may assume p=c¢ and ¢=e,
where d=2¢—1. Now we consider the path (P, P, -- -, PRy Ry, Qpyy oo+,
Q1, Q). Since D=1, this is proper and is of length (p—1)4-(g—1)+n, so that we
must have p=c=q and #=1. But then K,=M,=M,=L,, which is a contradic-
tion proving the lemma.

LeMma 4.3. If Qe (G) and PNQ=1, then for each k, 1=k=<2, P is joined
to Q by a path (P, K. of length d+1 with K,=H,.

Proor. Without loss k=1. Let d=2¢—1. We can take a path (@, L. of
length d so that L.=H,. Let H,4He 57(Q) and let (R, M), be a path of
length d such that M.=H. Furthermore let ze I(N%.L,) and ye I(N%.M)).
Since Li#M;, z7y by 4.2. Hence there exists u< I(G) such that [z, u]=1=[y, u].
Since Clx)<N(H,) and C(y)=N(H) by 2.11, there exist Re S(N(H,) and Se
&(N(H)) such that uc RNS. If PNS=#1, then P is joined to S by a proper
path (P, K;),. Since PNQ=1, we have that K,#H and S#Q. Thus setting
K..;=H and P,,;—Q, we obtain a path (P, K;),., which joins P to Q. Since
PNQ=1, we must have d<n-+1, and consequently n=d. Since d is odd, it
follows that H=K,,;#K;. Thus K,=H,, and hence 4.3 holds if PN S+=1. Assume
therefore that PNS=1. In this case, we apply the above argument with S, R
and P in the roles of P, S and Q respectively and conclude that P ig joined to
S by a path (P, Kj)er: of length d+1 with K,=H,. Since K7 K,.,, we must
have K,.,—H. Hence replacing P, by Q, we obtain a path with the desired

properties.
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LEMMA 4.4. Let N be a TI-group such that | (N)=|Nl,+1, and let P
be an Se-subgroup of N. Then the following conditions hold :

(1) P permutes by conjugation transitively the elements of & (N)—{P};

(2) if P£Qe SP(N), then there exists an involution t€ N such that P'=Q.

Proor. Let P=Qe & (N). Since N is a Tl-group, N(@)=PNQ=1, which
implies that P is semiregular on &/=S(N)—{P}. Since [&’/{=|P| by our
assumption, (1) follows immediately. Let se {(N)—I(P) and set R=P*. As Re &/,
there exists an element z¢€ P such that R*=@Q by (1). Thus we have @Q=P¥=
P %= proving the lemma.

LeEMMA 4.5. If (P, K)sueo 18 a circuit of length 2d-+-2, then MIEN(P) is
a complement for P, in N(P,).

Proor. It will be sufficient to prove the following: if (P;, K)).r: is a path
of length d-+1, then N(P,) N N(P,.,)=NiN(P,) is a complement for P, in N(F,).
To prove this, we set B,=N(P), 0=i=d—+1, and D;=N}-.K;, 1=%=d. Then P;=
D.K,.,, 1<i<d, by the condition (¢) and B,=Py(B,N By.), 0=1=d, by the preceding
lemma. Hence B,=D,K,..(B;N B;..)=D,(B;N B,,,), and consequently B,N --- N B;==
D,(B,N---NB,.),1<i<d. Thus we have B,=Py(B,N By)=P(N{:B,). As N B.=
B,N B,.: and B,N B,.; has odd order by 2.13, we have proved the lemma.

Let us recall our notation introduced in §3: Pe F(G), 27 (P)={H,, H,}, N,=
N(H,), 1<k=<2 B=N(P) and K is a complement for P in B,

LEMMA 4.86. For each k, 1=k=2, there exists an involution s,€ N, N(K)
such that N.=BUBs;B and P&,=P®, (see §3 for the definition of PP).

PrROOF. Take Qe S(G) so that PN Q=1 and take paths (S, K)as: and (T, L;)zeq
of length d+1 joining P to @ so that K,=H, and L,=H,. This is possible by
2.13 and 4.8. In view of 4.5, we may assume (HNSHNN(T)H=K. We will
show that involutions s; and s, of G can be chosen so that for each 7,1=1=<d+1,

8:S:8:=T,., and 8T;5,=8; ;.

It follows from 4.4 that there exists an element s€ N(K,) such that Si=T7, and
ste K,. Let se Re ¥(N(K,). Then T,#S;#R and so there exists an element
ze S, such that T¢=R. As S;=K,(N#iK,), we may assume %€ Sy, so that
L., STz As R=K.(N%.L?), we may also assume s€[1%.Lj. Thus s is an
involution, S:=7T, and L4 .:<Si.. As T,NSi.:=(S:0S;)'#1, 213 shows
S, =T,, and so S:=T,., 1<i<d+1, by the uniqueness of a proper path. Thus
s;=s satisfles the desired properties. By symmetry of the argument, s. also
exists. Since s, is an involution, it follows that s.€ N(K). Since s Ps;#P,
N,=BUBs,B by 4.4. Finally,
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$:8:8:8:5:=8: Ti118,=S4p , 0=0=d—1,
and so we have by symmetry
$(d+1)Ps,(d+1)=Q=s,(d-+1)Ps,(d+1)* .
This completes the proof of 4.6.

LEMMA 4.7. Let N=<(K, s, s,>, thenn BNN=K.

PrOOF. Set D=<(s;, s,> and C=<s,5,>. Suppose BNN>K. Then as N=KD
and |[BNN:K]| is a power of 2, BND contains a non-identity 2-element, whence
PND+1. On the other hand BNN=(PNN)x K, so we have

BND=(PNDyx(KNDy=(PND)x(KNC) .

Since D is dihedral, PNCD and so PNC<PNPR,=1 by 2.13. Consequently,
[PND|=2 and an involution of PN D inverts KNC. Thus we have

BN D=<sx(n)>,

for some k, 1=<k=2, and some odd integer m. By the choice of s, and
83, (818:)""'€ BND so (s:8,)%"'=1., Thus we may take n<d. But, as P=P®,
this contradicts 2.9.2.

We can now prove Theorem 2. We have already seen that B and N=
<K, s1,8,> satisfy the axioms (BN1), (BN2) with S={Ks,, Ks,}, (BN4) and (BN5).
It follows from 3.3 that W=N/K has at least 2(d-+1) elements, while 4.6 and
4.7 show |W|=2(d+1). Thus |W|=2(d--1), and moreover W consists of the cosets
Ksy(n), 1=k=2,0=n<d+1, and Ks,(d-+1)=Ks,(d+1). Hence 8.5 shows that
(BN3) is also satisfied.

5. Theorem 1

In the next two lemmas, we assume G to be an arbitrary group. The proofs
are based on Suzuki’s idea [10], §8.

LEMMA 5.1. Let G be a group, P an Sy-subgroup of G, B=N(P), K a com-
plement for Pin B, J=NxK) and N=N(J), then BzBN N=Jz for each z< N.
Proor. Clearly J=Np(K)xK, and so K is a characteristic subgroup of J.

Hence we have
BNAN=BNNK)=J.

Let y=b'wbc BxBN N, where b and b’ are elements of B. Since ye N, J<BN B,
Also z€ N by assumption, so J'=J*<BNB*=BNB’. It now follows from the
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Schur-Zassenhaus theorem that there exists an element z€ PN PY such that K’=K>,
As bzte Ny(K)=J and ze P*=P*, there exists an element a<J and an element
# € P such that b=au*’. A simple computation gives b=x"‘uza, so y=b'urac Bra=
Bz, whence ye (BN N)x=Jx. This proves 5.1.

LEMMA 5.2. Let the notation be as in 5.1. If H is a subgroup of P,
B=N(H) and N(H)/H is a non 2-closed TI-group of 2-rank at least two, then
there exists an element se N(H)N N such that

(1) N(H)=BUBsB and

(2) Js is an involution of N/J.

Proor. It follows from Suzuki’s theorem [9] and 4.4 that P acts by con-
jugation transitively on S (N(H))—{P}. Consequently, if P#Qe¢c S (N(H)), then
B=(N@Q)NB)P, and so replacing & by its conjugate, if necessary, we may
assume that K=< N(Q). It also follows that there exists an element z€ N(H) such
that P*=@Q and x’¢ H. As K, K*<BN B®, there exists an element k€ H such
that K**=K by the Schur-Zassenhaus theorem. On the other hand, as K has
no fixed points on (P/H)*, we have J=Cp(K)K=Cyx(K)K. Thus setting s=xh, we
have that se N(H)N N and P*—Q, whence N(H)=BUBsB. Finally, we have

st=zhzh=x*z heyhe HNNSBN N=J

by 5.1, and hence Js is an involution of N/J.
From now on, we assume the following:

HyYPOTHESIS 5.83. G satisfies (a), (b) and (c).
We also use the notation introduced at the beginning of §3.

LEMMA 5.4. The following conditions hold:

(1) BxBNNEK)=Kzx for any x<€ N(K);

(2) there ewists am imvolution s, N,NN(K),1=E=2, such that N,=

BUBsB.

ProoF. Set J=Nz(K). It then follows from 5.2 that there exists an element
t.€ N,N N(J) such that N,=BUBt.B and tieJ. Since JSBNt(d-+1)Bt(d+1)™,
2.13 shows that J has odd order, whence K=J. Thus (1) follows from 5.1. If
we take an involution s, of <{,, K>, (2) holds.

LeMMA 5.5. If d is odd, then (B, N(K)) is & BN-pair of rank two of G,
and its Weyl group has order 2(d-+1).

Proor. Let ze G—B. If PNxPx'+1, then P is joined to Pz ' by a proper
path, so that it follows from 8.4 that z € Bs,(n)B for some k and n with 1=n=d.
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On the other hand if PNaPxr =1, then 4.3 and 3.4 show that xz¢ Bs,(d+1)BN
Bs,(d+1)B. Since PNxPr*=1 for any z¢< Bs,(d+1)B by 8.3, it follows that G
is the union of 2(d-+1) double cosets B, Bs,(n)B, 1=k<2,1<n=d, and Bs,(d-+1)B=
Bs,(d+1)B. Thus by 5.4, W=N(K)/K consists of 2(d+1) cosets K, Ks.(n),
156<2,1=0=d, and Ks,(d-+1)=Ks,(d+1). As in the proof of Theorem 2, we
can readily check now that B and N(K) satisfy all the axioms of a BN-pair.

It now remains to consider the case d is even. Let d=2¢ and let ¢=|P: Hyl,
1=k=<2, in view of 2.12.

LEMMA 5.6. Let (P, K,). be a proper path of length n, then the following
conditions hold :

(1) if n=d and 1#z<c N, K;, then Cl)=N(P,);

(2) if n<Ze, then Z(P)<P,, and conversely, if Z(P)NP,#1, then n=ec.

PrROOF. (1) Since ze NiiK,, C@)=<N(K,) by 2.11. Likewise C(z)=N(K,:1).
Hence C(x)<N(K,)NNK,,)=N(P). (2 We can extend (P;, K;), to a path (P;, Kj).
of length d. Let 1#x¢ N¢.K;, then Clx)<N(P,) by (1). Hence Z(P)<P,NP.=
Né: K,<K,<P,. Conversely, assume Z(P)NP,#1. Let (Q; L. be a path of
length ¢ such that Q,=P, and L,#K,, then Z(P)=(\-:L; as was proved above.
On the other hand, since (P, K;), is proper, we also have Z(P)N P,={1}-.K;.
Thus Q,, -+, Qs Q1, P,, P, ---, P,) is a proper path of length ¢-+n, and hence

n=e¢ as asserted.

LEMMA 5.7. The following conditions hold:

(1) the centralizer of every central involution of G is 2-closed ;

(2) central involutions of G are all conjugate.

Proor. Let (P, K;); be an arbitrary path of length d. 1t first follows from
5.6 that Z(P)<P,NP,=N%.K; and next that C(x)<N(P, for any ze€ I(Z(P,)).
This proves (1). As there is an S,-subgroup @ of G such that PNQ=1 by 2.13,
(2) follows from (1) and 4.48 of [5].

DEFINITION. Define &, to be the set of S,-subgroups of G which can be
joined to P by a path of length at most ¢. Let C denote the set of central
involutions of G and define

Cr={zeC; xe P or zc€Q for some Q¢ ,}.
The proof of the next result is based on Suzuki’s idea [10], §8.

LeMMA 5.8. If Q¢ S(G) and PNQ=1, then there exists an element ze€ C—C;
such that Q@=P=.
PROOF. We first argue that PN P*=1 for any 2€ C—C,. For suppose false,
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then as PiP’,P is joined to P® by a proper path (P; K;),. Since 2 is an in-
volution, (P?, K?), is also a proper path joining P? to P. Hence the unigueness
of a proper path shows that Pr=P,_,0<i<n, and K=K, ;1=j<n. If
n=2m, then P:=P, and K:=K,,,, but this is not the case since N(P,)=N(K,).
Hence 7 is odd, and so if we set n=2m—1, then we have Kz=K,. But as
m=c¢, this is in contradiction to ¢ C,. Thus PN P>=1 for any ze C—C,p.

The uniqueness of a proper path implies that there is a one to one corre-
spondence between the set of S;-subgroups Q%P of G such that PNQ=+1 and
the set of proper paths which have P as an end. On the other hand, it follows
from the structure theorem for Tl-groups and the definition of q that each
element of 5%, is contained in exactly 1+g¢ S,-subgroups of G. Hence exactly
1+2 3%, ¢" S;-subgroups of G have non-identity intersections with P.

We define

T ={P*; 6 C—Cp}.

In view of the above two paragraphs, 5.8 will be proved once we establish the
following inequality :

[ zlG: Bl—1-2 X, ¢ .

Let z¢ I(Z(P)) and r=|I(Z(P))|]. Then C(2)<B and |B:C(z)|=r by 5.7 and
the Burnside Lemma. In particular, each coset of B is a union of 7 cosets of
C(z) and |Cl=7|G: B|.

We next argue that each coset of C(2) contains at most one element of C—Ch.
Suppose = and ¥ are distinct elements of C—C, and C(z)x=C(2)y. Since ¥ is an
involution, zy€ C(z). If zy has odd order, then xc C*(xy)—C(zy) and so 2 is not
conjugate to z in C*(xy). Hence in this case, <xz)> has even order and so contains
an involution #. In case zy has even order, let # be an involution of {z%>. In
either case, u€ C(2)NC(x). Hence if we set {Q}=S(C(x)), then ue PNQ and
P+Q as x¢ P by assumption. Thus P is joined to @ by a proper path (P, K),.
Since ¢ Cr,c<n. But then xe Z(Q)<P,_.€ &, a contradiction.

The above two paragraphs show that each coset of B contains at most r
elements of C—C». Hence we have

T 1=IC—Cpljr=IG : BI—|Csl/r .
Hence we are reduced to proving
(5.9) [Cpl=r(1+2 D¢ g9 .
From (2) of 5.6, we get
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CNP=IZPHu(UKZ@Q) ,
where @ ranges over all elements of %». Moreover this is a direct union, since
the centralizer of every central involution of G is 2-closed. Similarly we have
CNH,=I(Z(P)) U(UIZ(@Q))) ,

where @ ranges over all S,-subgroups of G that are joined to P by a path
(P, K}), such that either

K,=H, and n=<ec
or

K,+#H, and n<c.
Again this is a direct union. Hence we have

|ICN Pl=r(1+2 X5 ¢)

and

[ICNHl=r1+q) Zi=i ¢ .

Consequently,
[ICN(P—-H)|=rg

for 1<k=2. We can now calculate |{C»|. By definition, an element @ of % is
joined to P by a path (P, K;), of length at most ¢. Since such a path is uniquely
determined, we may set H,==K;,. We have

Ce=CNPYU(UICN@Q—HY)) ,

where @ ranges over all elements of <. For if ¢ Cp,—P, then, by definition,
ze @ for some Q€ . If we take Q so that the length of a proper path joining
Q to P is minimal, then clearly xe Q—H,. Hence the above equality holds.
Moreover, it is a direct union. For if @ and R are distinct elements of &,
then Z(P)<QNR, and so @ is joined to R by a path (P, K;), containing Z(P).
As either K,=H, or K,=H; by (2) of 2.9, QNN RE=<H, or Hy and so CN{Q—HyN
(R—Hp) is empty. Likewise if Q€ %, then PNQ=H, and so CNPN(Q—Hy) is
empty. Hence we have

[Cpl=1CN P}+ |- ICN(P—H)|
=7r(14+2 2 {~1¢*+ @2 2ie1 4999)
=r(1+2 2%, ¢%) .

Hence we have proved 5.9 and the proof of 5.8 is therefore completed.
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LEMMA 5.10. N(K)/K consists of 2(d-+1) cosets K, Ks(n), 1=5k=2,1=n=d,
and Ks(d+1)=Ks,(d+1).

Proor. Set N=N(X) and let € N—K. If PNaxPz '+#1, then ze Ks,{n) for
some k& and n,1<n=d, by 5.4 and 3.4. On the other hand, if PNePx ‘=1, it
follows from 5.8 that there exists an element ye€ C—C, such that P*=P%. As
BN B'=BNB*=K and y is an involution, y€ N(K)=N. Hence zy ‘¢ BAN=K
and so z¢ Ky. Thus if we denote the coset Kx by Z, non-identity elements of
W=N/K are classified into the following two types of elements:

I s,(m), 1=k=2, 1=n=d,

II. z2e(C—Cs)NN.

Let V=435, 5,>. As every element of W—V is of type II and so is an involution,
elements of W—V centralize each §,1<Ek<2. Hence W=V UC,(V). But as
5.5,78,5,, V is non-abelian, whence we conclude that W=V.

Let U=<X5.3,>, then clearly |W: Ul=2 and §,¢ U, 1=k=2, which shows that
an element of U* is either of type 1 with # even or of type II. Hence to prove
5.10, it will suffice to show that U contains no element of type II. Suppose by
way of contradiction that U contains an element Z of type II, in which case
|Ul=d+2. As € Z(W) and K has odd order, we have N=KCy(x). By defini-
tion, xe C and C(x) is 2-closed by 5.7, and so also is W=Cy(x)/Cg(x). But as
W is a dihedral group, W must be a 2-group. Hence if we set {Q}=5(C(x))
and T=NNQ, then N=KT. In particular, we may assume s,€ T,1<k=<2. On
the other hand, s € N, by definition and so s, is contained in some S;-subgroup
S of N,. Since s,€ SNQ but S#Q as ¢ Cp, S is joined to @ by a proper path
(P, K;),. Since s, ¢ P, we have P#S and H,#K,, and consequently P is joined
to @ by a path of length n-+1. But as z€ Z(Q) and z¢ Cp, it follows from (2)
of 5.6 that n=d. Thus P is joined to @ by a path of length d+1 which has H,
as one end. Hence if we set Q=yPy~*, then ye Bs,(d+1)B,1=k=2, by 3.4, and
consequently Bs,(d-+1)B=DBs.(d+1)B. But then s;(d+1)=s.(d+1) and hence 3,3,
has order d+1, which is a contradiction proving 5.10.

Exactly as in the case d is odd, we can show now that B and N(X) satisfy
all the axioms of a BN-pair. Thus we have proved Theorem 1.

6. Corollaries

We first prove

COROLLARY 1. Let G be a group with 0,(G)=1 and OYG)=G. Assume
the following conditions:
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(a) an S,-subgroup of G contains exactly two elements of 57,;

) if He 57, then N(H)/H has abelian S,-subgroups of rank at least

two;

(¢'y if (P, H), is a proper path of length at least three, then M-, H,ZH,.
Under these conditions, the conclusion of Theorem 1 holds.

Proor. Let Pec &7(G) and Ke 5Z,(P), then K is a maximal S;-intersection
and N(P)=N(K) by 2.6. Moreover P/K is abelian of rank at least two by (b’’).
It therefore follows from Suzuki’s theorem [9] that N(P) acts irreducibly on P/K.

Now we will show that the condition (c) of Theorem 1 is satisfied. Let
(P;, Hj),, be a proper path and let Hi=He 2£(P,). We will prove P,=H((\}-.H;)
by induction on #. Assume n=1. Since N(P,)<N(H)NN(H,), HH, is a normal
subgroup of N(P,), and H<HH,<P,. Hence we have P,=HH, by the above
remark. Assume therefore n=2. Let D, =N%.H; 1=k=<n, then P,=D.H..,,
1=k=n—1, by the induction hypothesis. Let xc N(P,) and let 1=k=n. Suppose
there exists an element y€ P, such that zye N(P;) for 0=<i=k—1. Then in
particular zye N(P,_))=N(H,), and so P7¥ as well as P, is an S,-subgroup of
N(H,) different from P,_;. Hence there is an element z¢ P,_, such that Piv"=
P,. Since P,_;=D,_H, we may assume z€ D,_;, and so setting ¥’ =yz, we have
that '€ P, and «zy’ € N(P,)),0=Zi=<k. Proceeding by induction, we thus obtain
an element y<€ P, such that xye N(P,),0=1=n. Therefore

N(P)=N(D,) P, N(P))=(N(D,)N N(P)) P, .
Since P,/H is abelian, it follows that HD,<{N(P,). As D,ZH because of the
condition {¢’), we conclude that P,=HD,, as desired. We can now apply Theorem
1 and complete the proof of Corollary 1.
Finally we prove

COROLLARY 2. Let G be a stmple group with S-subgroups of class at most
two. If all 2-local subgroups are 2-constrained and have trivial cores, then
either G is a TI-group or G is tsomorphic to PSL2,T), PSL(2,9), PSL(3, 2"
or PSp(4,2"), n=2.

Proor. Reviewing §4 of [6], we see that the following conditions are satisfied
in the present case:

(i) all S,-intersections of G are elementary abelian;

(ii) if & is not a TI-group, then an S,-subgroup of G contains at least two
distinet maximal S,-intersections;

(iii) suppose Pe S (G), D; and D, are distinet maximal S,-intersections con-
tained in P, D;=<P;c &°(G) and P,#P, then
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(1) DP, -

(2) |P:D.|=I|P: Dy,

(8) D.ND,=2Z(P),

(4) every elementary abelian subgroup of P is contained in D, or D,, and

(8) P=Z(P)D.=Z(P,)D,.
Furthermore we have

(6) Z(PYNZ(P)=1.
For if ze {Z(P)NZ(P)), then H=0,C@)=P,NP=D,. Since D, is abelian and
C(H)=H by assumption, H=D,  Hence Z(P)NZ(P)=Z(P)NZ(P)N Z(P,)~=1.
Assume that [P:D;]=2. It then follows that P=D; or Z,XD,. But then P=D,
by a theorem of Harada [8], and so G=PSL(2,7) or PSL(2,9) by a theorem of
Gorenstein and Walter [7]. Hence we may assume |P: IJ,|>2. Now we will show
that the conditions (a), (b”) and (¢/) of Corollary 1 are satisfied if G is not a
TI-group. Let He S#(P), then H is elementary abelian by (i) and so H=D, or
D, by (4). But as C(H)=H by assumption, we must have H=D, or D,. Hence
S (P)={D;, D;}. Since we are assuming |P: D,|>2, (/) is a consequence of (1)
and (5). Let (@; K,), be a proper path such that n=>8. If n=>4, then Ni- K=
Ni-.Z(@)=1 by (3) and (6). Hence we must have n=3. As Q,=K,Z(Q,)=
K (K;NK,) by (6), and in particular K, N K, ZK,, (¢/) is also satisfied. We now
apply Corollary 1, and conclude that G is isomorphic to PSL(3, 2" or PSp(4, 27,
n=2. Hence we have proved Corollary 2.
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