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§1. Introduction.

The object of this paper is to study the asymptotic behavior at infinity of
solutions of the equation

Lu=(P(D)+ % a/@)QD)u=f , fe&®). (L.1)

Here P(D) and Q4D) (=1, ---, N) are differential operators with constant coef-
ficients, D=(1/i)(8/6x), q,(x)e L.(BR" (j=1,---,N) converge to zero at infinity,
and &7(R") is the space of distributions with compact support. We shall consider
the following problems: (1) Decide minimal rates of growth. (2) Decide, if there
exist, widths of lacunas for rates of growth.

Problem (1) is related to the classical Rellich theorem, which says that a
solution of the reduced wave equation 4u-+u=0 outside a ball in R™ must vanish
identically if w(x)=o(jz|~" /%) as lx| — co. Some generalizations of this theorem
to higher order equations with constant coefficients were made by W. Littman
[6], [7] and F. Treves [11], and generalizations to the Schridinger equation were
made by T. Kato [5], S. Agmon [1] and many other mathematicians. In this paper
we shall establish the complete form of theorem of Rellich type in the constant
coefficient case. In addition we shall deal with the equation (1.1) in the case
that ¢,(x) (5=1, ---, N) converge exponentially to zero at infinity. We shall show
in this case that minimal rates of growth of solutions are decided by the geometric
property of complex zeros of the characteristic polynomial P(g).

Problem (2) is related to the following theorem: Let % be a harmonic func-
tion outside a ball in B* (n=3). Then

I@W(x)bo or |u(@)|=ZCixl-®2

This well-known theorem was extended by T. Kato [5] to the Schriodinger equa-
tion (see also L. E.Payne and H.F. Weinberger [9]). In this paper we shall
formulate a theorem of this type in the constant coefficient case from the view-
point of Fourier analysis. Furthermore we shall extend it to the equation (1.1)
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in the case that ¢,(x) (j=1,---, N) converge algebraically to 0 at infinity.

In the preparation of the manuseript the author has known that L. Hormander
[4] has obtained the analogous result as his theorem of Rellich type in the
constant coefficient case.
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This section is devoted to the study of the asymptotic behavior at infinity
of solutions of the equation

PD)u=f in R*, fe & (R". 2.1
For a polynomial P(§) and € R* we set VI(P)CC” and VI(P)c C™ as follows :

@, if PE+16) is not a real-valued function of &

multiplied by a constant,

Vi(P)= . . . 2.2)
{&+1i0; e R, Pe+16)=0, grad P(e+i6)+#0},
otherwise.
VHP)y={+1i0; £ R, P(¢+10)=0} . 2.3)
Set
o(P)=inf {i0|; VIH{P)*D}. 2.4)

For any g€ L,,..(R") we set

NR<g>=(§ 1g(x>l?dw)“2 . (2.5)

Rslzls2r
Then we have the following theorem.

THEOREM 1. Let P be a polynomial with complex coefficients, and let P=
f[ P; be the decomposition of P into irreducible factors P;. Let {1,2, ---, ki=
j=1
:flququ and let P; satisfy

(1) I(il:l;(PqV;(Pj)i@’ jedy;
®) Y VHEI=0, o, ViP)ED, jedu;
—Se,

161=0(P)
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(3) U ViP)=9g, jeds.

191=p(P )

Suppose u € Ly, .. (R*) satisfies
(0) PDu=fec & (R");
(i) for some 0; with V;(P)+& and |6;1=p(P;),

Ne(max {7, Bu(x)=0(R¥?) as R—oo, jedi;
(ii) for some 0; with Vi (P)+@ and 10;i=p(Py,
Ni{max %7, u@)=0R™*) as R-+co for any v, j€Js;
(ii) for some 6; with V5 (P)+@ and 10;=p(P)+e (>0),
Ne(max {6%7°, Bu(a)=0(R™™) as R— oo for any v, j€J5.

Then u has compact support.
This result is almost best possible, for we have the following theorem.

THEOREM 2. Let P be an irreducible polynomial of degree m, and let
o=p(P). Then the following statements hold :
(i) Iwa VIP)+ D, then there exists ¢ C-function vg &' (R") such that
i=p

P(Dyv=fe &R,
Naler"0(@))=0(R"?) as R—oo.

(iiy If |6l1) VU P)# @, then there exists for any v, and any finite sel
=0
I'c{feR; VIP)=0,0l=p} a C>-function v¢ &' (R™) such that

PDy=fec &R,
Np(eetp(z))=0(R™ V%) g8 R—oco,
Npe®v(2)=0R™) as R—oo, el .
iy If Il.J VIHP)=, then there exists a C=-function v¢ &'(R") such

gi=p

that
P(Dyw=fe &(R"),

Niler#lo(x)=0R™™) as R—oo, for any v.

REMARK 1. Let P be an irreducible polynomial. If o(P)>0 and wU HPY+

@, then there exist ccC,ac R, and 6 ¢ R» with |fl=1 such that P(&)=¢( glﬁj§j+
a-+pt). !

To give an answer to Problem (2) in §1, we introduce Lipschitz spaces
Lip (#,s; p) (=Lip(r,s; p; B™) on R" (i.e. 4 (r; p,s) in the notation of M.H.
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Taiblesson [10]) and Lipschitz spaces Lip(r,s; p; R*XS* %) on Rrx S+t (S»1
being the unit sphere of R defined by

Lip(r,s; p)= {f €L, (B ; | fllunc.sm

o8] J4)" <.

i= !LP

kE=[r]+1, r>0, (2.6)

=71, +(| |7 sup

0<|kl=t

Lip(r,s; p)={fe Z'(R"); | luncrsm= 10— | ipcrimssm <0} ,
m=[—r]+1l, r=0; 2.7

Lip(r,s; p; R"XS* Y)={fec @' (R"X S ; [|flusr.simr™x 571,
13
= ,~Z=:1 ll0sf et crsspsmin—ty <00}, 2.8)

where {¢};-1,...,. is a partition of unity of class C~ associated to an open covering
{Ugs=1,...c 0f 8771, each U; being diffeomorphic to B~ For any tempered dis-
tribution f we denote its Fourier transform by f and its inverse Fourier transform
by f

fo={, oo, fo=ea| fewde.

Then we have the following propositions.

PROPOSITION 1 (Proposition 1.a in [8]). Let fe€ Ls,1o(R*. Then Nz(f)=0(R~)
as BR— oo 1f and only iffeLip (8, o0 ; 2).

PROPOSITION 2. Let fe L,(R*,0>0, and s be a real constant. Then the
following statements are equivalent:

(1) Nz fx)=0R™) as B— oo.

(ii.a) f(C) is analytic in {{eC*; \Im{|<p} and satisfies the estimate

(1—%)p a 1/
([ 10—arfietizalitumgessnds | “=0@ o) as ¢10, @9)

(1—2¢8)p

Jor some r and p with s+{n—1)/4+1/p—r<0 and 1=<p=<co.
(ii.b) f(C) 18 analytic in LeC; |Im{|<p} and satisfies the estimate

o (1—2=F)p ” N p 2/p
;;1(8 Hf(f‘}‘“w)nLip(s+<n—1)/4+1/p,w;z;ngxs3'1) dT> <oo,

(1__2—k+1)|0

Jor some pell,2]. (2.10)

(ii.c) f(C) is analytic in e C™; \Im & <p} and satisfies the estimate
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[ . i/p
<g | f(g+izw)] £1p<s+<n—1>/4+1/p,oo;z;R’§><sg'1) dT> <co, for some p&i2, o] .
0

2.11)
In the sequel an answer Problem (2) is given.

THEOREM 3. Let P(E) be a polynomial with p(P)=0, and let d be the di-
mension of its real zeros. Let there exist a distribution E(§) and constants
e<(n—d)/2 and 1 such that

P®EE=1 in Z'(R", (2.12)
(1+1&1»)7E(#) € Lip (—e, o ; 2)+Lip (—e, 00 ; ) . (2.18)
Suppose 4 € Ly, 1,.(R™ satisfies
P(Dyu=fe WHR"N &'(R"),
Ny(w)=o(R®» %) ags R-—oco.
Then
Np(u)=0O(R*) as R—ooo.
Furthermore assume that Q is a polynomial such that
(1-+1E19)7QE)E(©) € Lip (—e’, 00 ; 2)+Lip (—é/, 005 o)  for some e¢'=e . (2.14)
Then
NQD)uw)=0(R”) as R—oo.

REMARK 2. If there exist distributions F, and E, which have the property
described above, then E,=F,.

REMARK 3. Let there exist a distribution E which satisfies (2.12) and (2.13).
Then e=—(n—d)/2-+1. (This inequality will be used in the proof of Theorem 6.)

THEOREM 4. Let P(£) be a polynomial with o(P)=p>0. Let there exist
Functions Eyf& w,7) (j=1,2) on R*xS*x(0/2,p) and constants ¢l, 1=p=co
such that

(1t 3 @Fino)) Pe+ico) =Bl 0,91 Eug 0,0) , 5-<e<p, (215)

00 (1—2—%*yp max(2,)/P
> (g 1E.(& o, ) Tipc-es (n—-l)/4+1/p:°=;2;R"><Sn—1)dT> <eco, (2.16)

k=2\ -2k +1p

sup [ E.AE o,7) HLip(—e+ (n—l)/4+1/p,m;co;RnXSn—1) <oo, 2.17)
0j2<T<p

Suppose % € Ly, (R*) satisfies
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P(Dyu=fec WiR"N €' (R") ,
Neleet=lyu(z))=0(R*™®) as R—oo.

Then u satisfies
Ne(e?#ly(z))=0(R®) as R—co.

Furthermore assume that Q) is a polynomial such that

sup I(p +1+ Z &+ QE i PE+in T <oo ; (2.18)

17i<
(0414 3 Erticw ) QE Hiro) Pe+icw) "= Fi(6 0,94+ Fie 0,9, (219)

where Fi(&, w,7) (=1,2) are functions on Rrx S~ x(0/2, p) which satisfy the
same estimates as (2.16) and (2.17) with e replaced by ¢ (¢/<e). Then

Nplert=1Q(DYu{x))=0(R*") as R—oco.

REMARK 4. Let P(¢) be a polynomial with p=p(P)>0 and wu ViHPY=o.
If P(e-+in) satisfies (2.15), (2.16) and (2.17), then e=—(n—38)/4.
Before stating the proof of the theorems we shall give some examples.

Ezample 1. For PE= 3 £—1 in R*, Vi(P)=0.
j=1

Exzample 2. For P(&)= és} in R*, ViP)=0 and VI(P)£@. Moreover if
n=3 the assumption of Theorem 8 is satisfied with d=0, e=2—(n/2) and {=0. In
this case if we set Q(6)=¢;, then we have QE)E(€) eLip(—e+l, co; 2)+
Lip(—e+1, oo; o) (PEE(E)= 1 in Z"(Rv).

Example 3. For Pg)= Z &+1in R, p(P)==1, U ViP)y=9 and U ViP)=
{#eR"; 16|1=1}. Moreover the assumption of Theorem 4 is satlsﬁed Wlth e=1/2
and [=0.

Ezxample 4. For P(g)—=2¢i+ Z%I &2 in R* (n=2), the assumption of Theorem
4 is satisfied with p=1, e=—(n—J§)2/4 and [=0.

ProoF oF THEOREM 1. Inductive argument shows that it is sufficient to show
that £(@)P.(¢)~* is an entire function of exponential type and inPj(E)?fL(E) =P

Case I. Assume that for some 6, with Vi (P)#@ and |6,|=p(P,)

Ni(max {7, Bux)=0(R¥?) as B — .

Then we have
(a) The function Pi(6+16;,) of & is a real-valued function multiplied by
a constant, and there exists a point &eR" such that P,(&+i0,)=0 and
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grad Pi(g,+0.)+0 .

(b) The function @(&+26,) of z is, as a lip (—1/2, co; 2)V-valued function,
continuous in {z€C; 0=Im z=<1} and analytic in {zeC; 0<Imz<1}.
First we show that there exists a neighborhood Uc R* of &, such that

Flet+io)=0, eeUN{eecR; P(e+i6.)=0}. (2.20)

We have by (b) that P(§+i01)12(5+i01):f(s—l—iﬁl) in Z/(R"). We may assume by
(a) that there exist a neighborhood UUC R® of &, and local coordinates » in U such
that

7ML P=f0) in U.
If we set with pe Co(U)

v=gp ﬁ[ P4 and g=of ,
then we have

nv=g, velip ( - %, oo 2> NE' (R and geCs(RY . @.21)

Hence we have with some w(y’) e &’/(R*™1)
v=(g()—9g(0, 7"))9i* +g(0, n")(:+10)"*+0(n) ® w(x') , (2.22)

where § is Dirac’s function in R!. Since (g(p)—g(0, 7" ))nit € Ly(R®)lip (—1/2, 0 ; 2),
we have

90, 7)o +i0) "1 +3(0) @ W) € up( — 005 2) . 2.23)
This implies
e
Nx(g(0, Yo" Y(—x) + () =0(RY?) as R— oo, (2.24)

o ——

where Y is Heviside’s function. Hence we have #(2')==g(0, »"}(x")=0, which proves
(2.20). Since P, is irreducible, it follows from this that f(§)P.(6)™* is an entire
function of exponential type (see Lemma 4 in [6]). Moreover since

» hp(——éoo;2)={femp(—l,oo;z); sup (1= A)V2f (- +h)—(L— Ay 2f (Y] s

2 o<lhl=t

=o(t'/?) as ti()}, and || fllipase, o= lripc-1/2,00:2)-

This function space has the property: Let f& Ls10.(R®). Then Nx(f)=o(RY? if and
only if felip(—1/2,00;2). (See [8.)
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PO PAOUS—F OO0,
. (2.25)
HOULPOUO SO PO elin(— 5 =3 2) for any ¢ eCIRY,

we have by Liouville’s theorem (ef. M. Murata [8])
k A~
pis P&a@)=r@re" .

Case II. Assume that for some 6, with Vji(P)*#@ and |6;|=p(P;)
Np(max {1, 1}u{x))=0(R™) as R— oo, for any u.

Then we have

(a) {gcR"; P(e+i0,)=0}+~3.

(b) d(s-20,) is, as an &-valued function of 2, continuous in {2 C; 0= Im2=1}
and analytic in {z€C; 0<Imz<1}. We have by (b)

P.e+i0) I P +i0)i(e+i0)=fE+i0), TLPAcCR). (220

From (a) and (2.26) it follows in the same line of the argument of Treves [11]
that ]”?(E)Pl(é)"1 is an entire function of exponential type and 31iP,-(§)ﬁ(g)=f(§)P1(5)'1.
Case III. Assume that for some 6; with Vi{(P)= @ and |6:|=p(Py)-F+e
Ne(max {¢%%, Ltu(x))=0(R™™) as R—oco, for any v.
Then the proof of the claim can be done in the same way as the proof of Case
II. g.e.d.
PRrROOF OF THEOREM 2. Proof of Statement (i). It has been proved in M.
Murata [8] that if VI(P)# @ then there exists a C~-function v ¢ €/(R") such that
P(D)v=0 and N(v)=0(R*?) as R—co. Hence it remains to prove the case
o(P)>0. Suppose o(P)>0 and |o|=L)<p> VIP)#@. Then we may assume by

Remark 1 (the proof of which will be given below) that P(¢)=§+a+pi (aeRY).
Set

v(@)=e""1"" 10, (x)es(2) ,

where ¢,(z') e C7(R*™Y), and ¢,(z,) € C*(R") has the property
( 1 » wlé_l

Sol(xl):i

0, x,=1.
Then
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P(Dwe &R, ve € R,
Ni(er!*to(x) = CRY®

which proves the statement.
Proof of Statement (il). Let VIP)=¢ but Vi(P)#@. Then there exists
a polynomial Q,* relatively prime to P such that for some positive constants
C, Mt M{
1Q0($+730)]Mf§ClP(5+i0)1(1+lElz)Mg . 2.27)
For any v, and such finite set I as in Theorem, set
ﬁ(S)Z@(E)(ﬁI;IF QO PE . 2.28)
Here Mz(glapx M?%y,, and ¢eC:(R" satisfies the condition: $(;)=#0 for some
L, € C™ with P(Z,)=0 and gH[Qg(CO);tO. Then ¥ is not entire and 4(¢+160) € Wi o(R%)

for any 6<I’. Hence
P(Dye &' (R*, ve &'(R")
Nyplev(x))=0(R™) as R—co, 0el'.
It remains to prove the estimate: Ngz(ef!'*lv(x))=0(R™+»-/%). Since

Su [PE+ico)| " =Clo—)™, 0<z<p, (2.29)

we have
[8E+ic)zomyxsp-H=Clo—)™™ . (2.80)
By the application of Proposition 2 we get the desired estimate.

Proof of Statement (iii). Let o€ C2(R") be @{)+0 for some {,€C* with
P(L)=0, and set H(&)=@(E)P(E)~t. Then v¢ &’(R*. We have by Cauchy’s theorem

o(x) =e01®] g ¢ <€+ip l%)P (E—l—ip %)ﬁleixfdg ) (2.31)
Since
D?P<$+i9 iﬂ <C. 1+ lelHe (2.32)
J]

where C, and 1, are independent of z/|z|, we have by integration by parts

2 Qur original construction of the polynomial Qs is based on the method of Lojasiewictz
(Studia Math., XVIII (1959), 87-136), but L. Hormander [4] has shown that Re P or
dP/oz; (=1, ---, ) has the desired property. Hence we omit the construction.
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lo(@)|=Cre?=l(1-+|z|*)"* for any v. (2.83)
q.e.d.

Proor oF REMARK 1. It is sufficient to prove the following statement: If a
polynomial P with real coefficients satisfies the conditions

P0)=0, grad P(0)+0, (2.34)
PO+#0 in {{eCr; [Imf—pd|<p} for some OcR* with [#l=1, (2.35)

then it follows that with some real constant ¢

P(g)=c élﬁj& . (2.36)
For the first step we shall show that
lgrad P(0)|~* grad P(0)=2-40 . 2.37)
If (2.37) does not hold, then we may assume that
lgrad P(0)|* grad P(0)=(1,0, ---,0) and #+(+1,0,--:,0).

The implicit funection theorem shows that there exists an analytic funection f({)
in some neighborhood Uc C™* of zero such that

P(f€),0)=0 in U, f0)=0, gradf0)=(0). (2.38)
We have for any sufficiently small ¢>0

[Im f(386")| =

/12
%‘ ’ 0':(0% 03’ . '20n)i0 ’

which implies

(Im f5t8'), t6")-6 = %l— V{Im fGt)E+e167F .

Hence we have
(fatgh), ity e {LeC?; PQ)=0, | Im{—pd] <o} . (2.39)

This is a contradiction.
In the same way we have for some neighborhood WcC R* of zero

lgrad P(g)[T*grad P(§)==0, ¢c{ge W; P(O=0}. (2.40)

Since P{(&) is an irreducible polynomial, it follows from (2.40) that

3620 for any ¢, R' with 3 ¢,6,=0 . .41)
i=1 " 0¢; =t

This implies that there exists a polynomial P, with one variable such that
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PO=P( 3 08) . PO=0.

Since P is irreducible, P.(t)=ct. This completes the proof.

PROOF OF PROPOSITION 2. (i)==(ii. a). Since (m:a—d)” 2f(e-1-in),
we have only to show the case —s>(n—1)/4+1/p and »=0. We have by Parseval’s
equality

Wtz mpdo= {Is@els,ado

= 2 _[Wageomtser o 2.42)
Since
1

XeZTmzdw: Cle2r[x| lxl—(n—l)/2<1_i_ O<[x!

>> as lal—e, >L, @)
we have for any R>1 and =>p/2

S[Nx(f(x)e””)]zdw=g !f(x)l?dxgemrdw

R=|zl=2R

gczR—(n—l)nS ]f(oc)}ze”‘”‘dx

R=|2|=2R
éczR—(n—-l)/26—2(p—r)R[NR(f(x)ep]z])]Z . (2.44)
Hence we have

”f(s_}“'i'[w)”%ﬂkgxsz—'l)é(jgkiw (27‘(‘0—‘[)—1)—(n—l)/26—2k+1[N2k(p_r)_l(f(x)epixl)]Z
H] ir@renndrsc 5 @e—aryemneigy
lzl=t =0
:Ca{(p_z.)zw(n—l)/z i (2k)-2s—(n—1)/2e—2k+1+1}
k=—co

§C4(,0-—‘L')2s+(”_1)/2 . (2.45)

If we integrate this inequality, then we get the desired estimate (2.9).
(ii. a)=(). Since

e2rlxl§65(1+}xl2)(n—l)/4 &eZTwzdw , > _52)_ , (2.46)
we have
[Na(fl@)1+ lez)”ze"‘”')P:g [f@)Pe* =11+ |x]?)te* 1= dy
R<|xz|<2R

< Cpetteo deg | PGP+ ]2y D sgrousy (@.47)

Rslz|=2R
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Hence
(1—R™hp
S Nalf @)L+l 2= e
(1—2R"hp
(1—R"ho 1/p’
=0, (' gomouse)
(1—2R " Ljp
(1—B~1)p 2/2 1/p
X [S <deg If(x)l2(1+Iw[z)“‘("'”’“e“‘”dx) d.{l
(1—2RLp R<lz|<2R
éCBR—ilp'l:X(l—R—l)p <deg |f(x)12(1+mlz)u(n—l)/4ezwxdx>p/2 dz.]llp ,
(1—2R—1)p R=iw|=2R
(2.48)
where 1/p’+1/p=1. We have for [—s>0
Ne(fle)(1+1x]?)2e1#!)
gCYRI—(l/pI) [S(FRM]W (Sdmg ]f(ac)l%l—!—lxl2)”<"'1)/462"””dx>p/2dz']l/p
- (—2r~Lyp R<|z|S2R
(1—R"1)p /2 1/p
=Cr B (Sd“’ﬁ lf<w>12(1+ml?)”‘"‘”’““"dw) dJ
(1—2RL)p R<|z|{=2R
(1—R~hp 2 i/p
§C7 [X ”(1_A){z+<n—1)/4+1/p}/zf($+,b'fw)ugz(Rnxsn—1>df:l
(1—2R"1)p
gCSR—-[s-!-(n—n/4+1/p—{(n—1>/4+1/p+z)}]:CsRl—s . (2_49)
This proves that Nyz(e®'*!f(#))=0(R™*) as B — oo,
(i) = (ii.b) and (i) = (ii.c). Let
J(Re, el da)={ e Ly (R ; [ flw)(L+x|?)"2e* ! 1y rmy <00}, (2.50)

Li=(Rr, @01*\de)={f € L(R"); No @) *)=0(R) as R—cc},  (@5D)
Xt3={ge @0 ImTi<e); 9@ my

o (1—2—kyp . max (2,9)/p
+5(] 1= 429 6+ 50 Fapey 2 ) <o, (259

(1—2—k*1p

vei={oe o @eCr; ma<e); 9@y

o (1—2—k)p . max (2,0)/p
+ % <X HQ(E“{‘W@)“fxpa,m;zm;xs;“l)df> <0°} . (2.53)

E=i\Jju—2—ktlp

Here Z{teCm; Im&|>o)={g; g is analytic in {{eC"; Im{[<p}. Then we have
in the same way as the proof of Proposition 1 that the spaces L$~™(R", e*'"'dx)
are equal to the intermediate spaces (as for the definitions of intermediate spaces,
see [2])
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(Li(R" e*'2'dx) ,  Li(R*, 6*17dX)) (smriystrg=rp oo s 11825 (2.54)
and we have in the same way as the case of Lipschitz spaces on R
(XS, XEFarpie—tip.e= Yoy » ki <l<ky. (2.55)

Hence to prove the claim: (i) < (ii.b) <= (ii.c), we have only to show that the
Fourier transform is a continuous bijection from Li(R", e*!*idx) to X§:5TD/etiip,

The case 1=p=2. We have obtained in (2.49) that for any real constants
1=p=<oco and r

(1—R~hp

NR(f(x)(1+lxl2)’”e‘””‘)§07<§ na—«A)M<"—1>/4+“P“2f<s+m>n£2<RnXSn—1>df>”” .

(1—2R—1)p
(2.56)
This implies that

| flz) A+ 1]y 2eot=1)3,

= ;21 [Ny (f(@)A+{2l?)2er =] + S [f@ QA+ lo?)reri=ide

[E S

o g2k 2 4
<c, {Z <g< in “(l_A)w(n—l)/4+1/p}/2f(5+iw)l‘gg(nnxsn_l)df)z/p+“f({:)“‘iz} .
Le

E=1\ J(1—2—F
(2.57)
Hence it remains to prove the inequality
o (1—2—Jyp " . 2/p
3 <S ' I}(I_A)m(n—1>/4+1/p}/zf(s_;_ww)”gz<RnXSn-1)dz->
J=1 (1—2—ItLyp
SO f@) A+ 1212721 |, (2.58)
We have
”(1_A)(r+(n—1)/4+1/p}/2ﬁ$+irm)Hng(RnXSn_l)
SCi 3 @776 @ 0% Ny (F@) L+ ol et
=0
_*_S [f(x)‘z(l_!_iwl2)r+(n—1)/4+1/pe2p]x[dx . (259)
lz|=t

We have by Holder’s inequality

| S @yre e o F NG (Sl e =)

(1—2—dt1p k=0

A

(1—2—J)p oo »/2
{i 5 @977 (o)t >~ [Nx (F@)(L-+ L)% =0] de |

(1—z—iti)p k=0

(1—2—ip 1-p/2
X <S (o—7)* dr>

(1—2—Ji+1yp

A

cn{ 5 (gzk—m‘”tw-le-tdt)[zvzk (f@)(1+ wyﬂeM)P}”z . (2.60)

E=0\ Jok—s,
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Hence we have

% (1—2—J)p ” 2/p
2(§ 2y em 2[5y - )

7=\ Ja—2—itl)p

§012 i (S(l—z_])p [{kwo (Zk)Z/pe—<p-z)2k+1[N2k (f(x)(1_§_lez)r/zep!xl)y}p/z

j=1 (1—g—3+1)p

»/2 2/p
2 2)r+(n—1)/4+1/pg2p1 21 ],
+<gm§1}f(x)l A+ la%) ¢ w) ]dr)

IA

o oo 2k—j+1p
Cls Z {Z <X tz“’_le"’dt)[Nzk (f(x)(l_;_ Ix|2)7/26p]x])]2
i=1 tk=0

2k—Jp

+(22“’)"'Ilf(x)(1+W)’”e"“"l]iz}

C([Teenat ) 3 N (F@AHaly o= I+l e 5
<Cull f@)A-+Halr e |, . (2.61)
The case 2<p=co. We have for any z>p/2

CH A @)L+ @) 272 ||, <[ (1—d)tr+ w=n /8372 (&+itw)l] 1y crmxsm1y
=0 @)A1zl 2emi= 4, , (2.62)

which implies that the Fourier transform is a continuous bijection from
Li(R, e*'2idx) to X2+ D/¢, Hence we have

XSfnr=X84,
which implies
(XL, XL -0r0,0= (X5 X1 0,p (2.63)
Let Zi={ge s C; | ImEI<oD); [lg(E)]zoayp <oo}, then
X P= L0, 0] 5 WV R X S)NTY . (2.64)
Hence?

(XLF, XEE)_0r50C Ly((0, 0 ; WEH(RX SN 2f 5 (2.65)
(XL, X;:;fn_z,p,p:Lp((o, pl; Lip (k + % p;2; RPX s)) nes
SL,(0,01; WEV2(R X S™ )N DY (2.66)

We have by (2.63), (2.65) and (2.66)
Xfyrir=X{d, 25p=sco. (2.67)

3 Cf. Tosinobu Muramatu, On imbedding theorems for Besov spaces of functions defined
in general regions, Publ. RIMS, Kyoto Univ., 7 (1971), p. 281, Lemma B.2.
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This completes the proof.
Proor or THEOREM 3. We have

FOE@=F@+e)(EE)+E) ,
where
Ei(§)eLip(—e,00;2), Ey(§)eLip(—e, c0; ).
On the other hand since (14|12 (&) e W(R"N Wx(R" for any v, we have
A+1E @ E @ eLip(—e, 005 2), j=1,2. (2.68)
Hence
Np(E#f)=0(R9) as R—oo.
Since
Nep(u—Exf)=0(R" 2/ and PD)(u—Exf)=0 in R*,
we have by the theorem of Liouville type (see [8])
u=Exf.

Moreover since

Q(D)u=m ’

we have by (2.14)
NQD)yu)=0(E*) .

q.e.d.
PROOF OF REMARK 2. We have for any ¢cCy(R?)

PD)Exo—Ex0)=0 in R* and Nyp(FExo—Exp)=0(R"72)
Hence we have
E1*@:E'2*¢ ,

which proves the claim. q.e.d.
ProOF OF REMARK 8. If e<—(n—d)/2+1, then we have for any veC~(R"
with Nz(»)=0(R*"9/%)

(P(D)yv, Exp)=(v, PID\Exp))=(v,¢), 0eCg(R" . (2.69)

Here P(&)=P() (¢cR", and (-, -) denotes L, inner products. (See Lemma 1 of
[8].) On the other hand there exists a C*-function v#0 such that

P(Dyv=0 in R", and Nz(v)=0(R™ /%) ag R— o, (2.70)
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(See [8].) This is a contradiction. q.e.d.
Proor OF THEOREM 4. We have by assumptions

Fle+ito)Pe+izo) =ferico) ot +1+ 3 (E+iro) Y ELE, 0, )+ EBal€, 0, 7) ,
i=1

% <z<p. @71

Here E; and E, satisfy the estimates (2.16) and (2.17). Set g()=(1+ Z’” (.
o
Then we have !

511150 (”g("*"iﬂ)nwg &g +in)wymm)<oo, for any v. (2.72)

o (1—2_7‘)p . » max (2,p)/p
h) <§ lg(€+itw) B¢, o, T)”Lip(—e+(n—l)/4+1/p,oo;2:R’gXSZ_l)dT> <oo,

E=2\ ) (1-o~k+1y,
k=1,2. (2.78)

Since it is obvious that

o/2 4 . . . max{2,p)/p
<g |fE+irw) PlE+itw) ”Lip(—e+(n—l)/4+1/p,°°:2:R'g xgn =1y dT)
0

+Hf(§)P(5)_1”L2<R")<°° , (2.74)
we get by Proposition 2
—
Np(ee!#1P(&) % f)=0(R®) as R-—oco.
Since
P(D)u—P '+f)=0 in R~

to show the first half of the theorem we have only to prove the following state-
ment: If

P(Dw=0 in R* and Nzle*'*v)=o(R'%) as R— oo, (2.75)
then v=0.
We set E(x)z(l/_;;-‘/l(—x). Choose ¢ € C3(R™ such that
1, o=izisl

0, lz|=2,

P(x) =

and set ¢,(w)=¢(ha) (0<h<1). Then we have for any e Cg(R") and sufficiently
small 2
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(0, 90= (0, $uPD)(Bs)
= (PO, u(Bxe)— (0, T 22 D9 PO D)) )

~— 51 L (v, D*¢, B@(D)(Ee)) - (2.76)

>0 «!

Since Ngle*'*! ExP@(D)p)=0(R?) as R— oo, we have

(v, D¢, P (D)(Exp))| = (v, 1= (har)(ExP @ (D))
=|(e~*=l0, hi«Ig@ (ha)er = (ExP @ (D)g))|
éChlalNh_l(e—plxiv)Nh_l(eplxiE*P(a) (D)e)
=o(h'="1) . @.77)
Hence

(v, )= lim (v, 3 —1—Da¢hP<a>(D)(E*go)>:0, @.78)
0 lai>0 )
which implies v=0.
i
To prove the latter half of the theorem we have only to remark that Q(D)u=

QBPEf(e). q.ed.
PROOF OF REMARK 4. Choose € C™ with P({)=0 and {Im{[=p(P). Then the

function v(x)=e*¢ is the solution of the equation: P(D)v=0 in R". Hence if we

show the estimate
Neleei=p())=O0(R™/%) as R—oo,

then we have in the same way as the proof of Remark 3

P o T P B

4 4

Now we prove the estimate: Nz(e™'®le™8)=0(R**>/*). We have

[Naerte 0= |

e—zplx]e—2z-lmcdw: X e—2p(lx]—z1)dx
RZ|xiS2R R=|z|<2R

<

e—zp(\/x%ﬂz'[z—zl) dmldx/ +4- S e-—Z‘a([zi—zl)dx
2712 (0

Slxqg(l/ﬂxl AN
E kAR

2~lR=2;<2R

:I+O(Rne-2p(1—4/‘/1_'7)12) . (2.79)
We have
I=C, Sm dx, S(LH)xle"ZP(‘\/W-II) r2dy

0

2R 1/4 \/__2
:Clg dxl S e-—szl( 1+s ‘”x{"ls"‘zds

R
<, Y D/, < C, R (2.80)

2—lR
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Hence we have Nj(erislgist)< CR®+1/4, qg.e.d.
Finally we shall give the estimates of fundamental solutions of Example 3
and Example 4.
Proof of the estimate:

(S dng [A"[(1+ﬁ(5j+i7;j)2)-1](2d5)mgca—f)—lfw-w—%, 0<r<1 .
7=z RrR® i=1

(2.81)
We have
10+ 5 = 5 G+ 5o (2.8
We have for any » with 271<|y|<1
|l £ etinn ae= {nier—taierai.of-as
= [iet-+1— i+ zieu il
:S]a]y’l2+a2y§+a+2i]77[ayll‘z"a”""”’zdy (a:]__miz)
éa(n+1)/2—2kgll+[y112+2i]77[y1]—2kd,y
éca(n+1)/2—2k . (2'83)
Since a=1—[7}A+In)=2(1—|3]), we have
S]A"[(H— ,é &+ 1 2deSC(L— gy nD/e-2m | (2.84)

This proves the eclaim.
Proof of the estimate:

<g dng 4@ +in)+ 3 (§j+i77j)2—{-2)'1]12d5>1/2§C(1_.‘.)(n—a)/4+<n—1>/4-2n’
I7]=z R” Jj=1

0<z<1. (2.85)
We have

(w5 B ) eut Bora=3 cosen St @)
Hence we have only to show that

(S dvgl(2(&+i7]1)2+ i2(§j+?:7]j)2+2)_klzd€)1/2éC(]._T)(n_s)/4+(n_1)/4_<k_1) .
171=7 =
2.87)
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We have for any 7 with 1/2<|pi<1
|@etingt 5 @ingearsidg
:S12(5?——713)+IE’P—17}’12+2+2i(2§17;1+5’77’)l‘“d5
< glls[2+<z~rﬁ—17712)+2NW&|-2%5

- §]a2y3+aly'l2+a 20V A Py R0 2 dy (a=2—73—nl?)

éa'(n+1)/2—2k§Ilyll2+1+2i\/m2—yl|—2kdy
<(C.alr+v/2-2% (2.88)

Hence we have
[, _anfieerint+ 5 rinyroiias
7=t =

=C, g (2(1—2?) o2 — ) D22y

I7l=c

=:C2 gr(2(1~T2)_I_Tz_v%)(n'%l)/Z—Zk(\/zr?ﬁ)n—sdyh
0
§03+CZ gr (2(1_72)+Tz_7ﬁ)(n+1)/2—2k(\/(_1.?_—77—§)n—-3d771 ) (2.89)
21z
We have

T (8/4) c2
I =)+ (V=2 T Qe ey e s
2=l

y

<, Sm(a_i_as)—zs(n—s)/2a<n—1>/2ds (a=2(1—7%)
0

= gD/t gw (148)-ls=0 /2 | (2.90)

[}
Since a=2(1—7*)=<4(1—17), we have
n /
(S dn§1(2(51+m)2+ x (5j+¢77j)2+2>-k12dg>1 ® < O ) -0 a5
i71=c i=

(2.91)
This proves the claim.

§3. The variable coefficient case I (a theorem of Rellich type).

In this section we shall consider the following problem: Let g;(x)<€ L.(R™
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(=1, ---, N) satisfy for some a>0
sup le*lg )] <oo; 8.1)

ze R™
G=1,000, N

and let polynomials P and Q; (=1, ---, N) satisfy

sup |Q;(O)IPE) <o, 8.2
2y
where P()=v };} [P0, Then decide minimal rates of growth of solutions
jal 20
of the equation
Lu=(P(D)+ % a,@Q(D)u=F, fe LRI E®. (3.3

To state a theorem precisely, we introduce the following definition.

DEFINITION 1. Let P(£) be a polynomial. Let a>0, and let I'; and I’y be
subsets of R* with I';ul', being bounded. We shall say that P has property
C#,.r, if the following conditions (a) and (8) are satisfied:

(@) I''c{fcR~; VIP)+ o},

I',c{fe R*; VI{PY+0},
£eC; PO)=0,|Imll< sup {0} U ViP).
fel Ul 0Ty

(8) For any R>0 there exist non-negative constants {a;};q,...,r such that

(1) ao—e sup lﬁ], a >R, 0<a;—a;, <a (j=1,---, k),

(2) for any Qoe{c eC™; P)=0,{Im{|<a;} there exists a continuous path
7(®) ¢<€[0,1]) in £eC™; P)=0,|Im{|<a;} with

10=¢, @ e(U Vé(P))U((}EJF Vi(P); gradg P(r(£)+0, 0<t<1.

Now we have the following theorem.

THEORF‘M 5. Let P be a polynomial with complex coefficients and let
P= H P; be the decomposition of P into w'reduczble Sfactors P;, Let P; have
p’roperty C[‘i r (=1, ---,m), and let 1= U I, Iry= U I'j. Suppose u € Ly, 1,.(R™)
satisfies

Lu=fe & (R*) N L{(R") ,
olRY¥%) as R->c0, Gel}

Ne(max {2, 1}u(z))=
OR™ as R—oo, forany v, §ely,

N Q;(D)u)=0(R*») as R-—oo, for some v, j=1,---,N.

Then w has compact support.
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Concerning to the property C#,,r, we shall give some examples. Especially
Example 5 suggests the importance of the property C#,r, in deciding minimal
rates of growth of solutions of the equation (8.3). The proof of the examples
will be given in §5.

Ezample 1’. The polynomial P(&)= fi &—1 has property Cg,,z for any
a>0.

Exzample 2’. The polynomial P(g)= Z7}L & has property C3,, for any a>0.
=1

Ezample 8’. The polynomial P(g)= ﬁs%%—l has property C%,n for any a>0
and 0e 8™, if n=2. H

Example #. The polynomial P(§)=2§§+J§}2 &2+2 has property C%,ic1,0,..00
for any a>0.

Example 5. Let P(&)=(&1+&i—k)*—£&I—(k-+1)® where k is a positive constant.
Then the following statements hold:

(0) P& is an irreducible polynomial.

(i) For any ¢>0 there exists a number K such that it holds for any k=K
(I) P(&) has property Cli'z™*"* but has not property Ciy'z™™ ",
(I) P(&) has property CG " (I'={ € R*; |0|=a,+¢, VY(P)#=D),

where a= o (b+5)(k+2) - (k45 ).

(ii) For any sufficiently large number % there exist C~-functions ¢(z) and
u(zx) ¢ €' (R*) such that

P(Dyu@)+q@)uwlx)=f, FeC7 (R, (3.4)

and
lu(@)| = Ce e @isD Izl (] g}y =272, (8.5)
lg(@)| = Cem*Hi-T 122 1=l(] +|g]) (3.6)

where 7, is a continuous function of w/lx] with 7.(2/lx])=a; and l;,molo rl2/lz])=1.

Proor oF THEOREM 5. To simplify the notation, we denote
N —~ .
Tu=— % ¢;@Q,Dyu, Mz(w)= sup. [Pe+inaE+in |y »
iz

B.={ecC; Im{I<R}, O(Bp={g; g is analytic in Bg}. 3.7

We first claim:
N
(i) Suppose #({) e Z(B;) and Mz(u)<co. Then Tu(l) € Z(Bz:,) and satisfies
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/\ .
sup ([ Tue+ i)z, mp =C Ma(w) 3.8)
where C does not depend on E.
(i) Let ue Ly (R and Lu=re & (R")N Ly(R"). Suppose that Tu(() ¢ #(B,)
PN
satisfies [slu<% [ TuE+ip)| Ly <0, and () € Z(Bz). Then for any 0<§<R there
7

exists a positive constant C¢ such that
N .
Ma-s)=C( sup |TuE+inlzmp+e7), (3.9)

where b=max {|z|; « € Supp ( f)}.
Claim (i) follows from the following inequality :

AN N
sup | Tu(f"{'?:?)ilr.z(ng): sup [e=7"*7" 21 4R (D)yuliz, rny
I<Bta [771<R o z

12"|=a

i7

N ~
=0z sup 1Q/D)ue™ |z, =Ce sup [|PE+17)E+i7)] aory
i=1 1w(<R (11<R
=CyMz(w) . (8.10)
Next we show Claim (ii). Since fe & (R*) N L.(R*, we have

sup [+ oy =Co’® , (3.11)
where b=max {{z]; x €Supp (f)}. We have by Malgrange’s inequality that

l?(E-i-i’/)ﬁ(E-Hv)I?éCag I(Pa)E+in+L) ML, (3.12)

[C7i=a

where d{’ is the Lebesgue measure in C*, and the positive constant C, depends
only on ¢ (see Hormander [3]). Hence we have for any < R* with |y]<R—d

1Perima+inluap=0s(]  ar| 1Paerinronds )"
Rn

1gri=s

2N o 1/2
=ca(§ dc'g lTu(5+in+c’)+f($+i77+€’)12d5>
15718 R™
<C sup | Fule+in)lsap+em . (319

This proves Claim (ii).
Using Claim (i) and Claim (ii) we shall show that 4() is an entire function
which satisfies for some constant b’

Mp(w)=e” v | R>0.

For the first step we shall consider the case that P is an irreducible polynomial
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with property Cr,r,. Let R>0, and choose positive constants @, :-+,a, as in
Definition 1. We first show that 4() € Z(B,)) and satisfies M.(u)<co (z<p(P)).
Let p(P)>0. We have for 6>0

sSup ”@(f‘i‘iﬁ)nmmg): sup || % (Ij(x)Qj(D)u(fv)eﬂ”Lzatg)
171 <a—s 7<a—s = j=1

<Cs 2 QD) ula)e ! rycagy <o (3.1

Since #Q)=(F)+ @(C))P(C)‘leﬂ’(Bm{,,m,a}), we have by Claim (ii)
M, o(u)<co, 0<a—20<p(P) .

If p(P)<a, this proves that () € P(B,e) and M (u)<co (c<p(P)). If p(P)=a,
we have only to repeat this process finitely.
Second we show that #(Q)e(B,) and M.(u)<oo (c<a,). Let a,>p(P).
We have by Claim () that PQiQ=Tu@+FOePBrr.) and
sup | @(s+i7y)llL2<R;><oo (3>0). Since

In1<e(P)+a—s

Ng(max {¢%=, Bu(x))=0(R™>) for any v, 6¢l,,
{feC; PO)=0, [Iml<a}c 09 VP,

the same argument as in the proof of Theorem 1 shows that 4({) € O (Buintoey+a,aq)-
Hence we have by Claim (ii)

Mopyra-s(tt)<oo , 0<p(P)+a—é<a, .

If o(P)+a>a,, this proves that 4(0) € P (B,ry:a) and M (u)< oo (¢<a,). If o(P)+
a=a,, we have only to repeat this process finitely.
Third we show that 4() € 2(B,,) and M. (u)<co (r<a;). We remark that since

N PN
0<a,~a,<a, Tull) € Z(B,,) and sup [ Tu(¢+in]z,ap <oo. For any L e{leB,;
a1
P()=0, grad P({)+0}, choose such continuous path 7(¢) as Definition 1. Let Wc B,,
be a sufficiently small connected open set such that

r@®); 0=t<}c W, grad PQ)+<0 in W.

Then the set Wr={{e W; P({)=0} is a connected analytic manifold of dimension
n—1. We get in the same way as the proof of Theorem 1 that the analytic
funetion (@(C)—l—f({))lwp in Wp vanishes in the intersection of W, and a neigh-
borhood of T(l)e(ayrl Vi(P))u( 0LeJr2V§,I(P)). Hence the unique continuation

theorem shows that @(C)Jrf(C) vanishes in W». Hence we have

Tu@+f©=0 in {eB. ; P{)=0, grad P()=0}
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which implies

(T +F PO e (Ba,\C € B, ; P()=0, grad P(O)=0}) .

Since P({) is irreducible, we have by the theorem on removable singularity

(TUQ+F PO e 2By .

This proves 4 <?(B,,), which implies M. (u)<co (r<a,). The same argument
shows that % € (B,,) and M (u)<co (r<a,), and so on. Since a,>F, this proves
that 4€ Z(Bz) and Mgu)< .

Since R is an arbitrary large number, it follows that # is an entire function.
Moreover we have by Claim (i) and Claim (ii)

M) SCo(Mp-arf(u)+€%) , 0<R<oo . (3.15)
We have by (3.15)
M aroy(0)+ €2 * = Col M (o 2y o1y () + €42 )

<CEFH M, () +e™)2CE, k1.
Hence

MR(u)§M<a/2>([gR/a3+1>(u)§CE“”“”lée“”’“’”}‘°g°8§e”"3“) R 0<R<oo . (3_16)

The general case. Now we shall consider the case that P(£) is not irreduci-
ble. For any irreducible factor P; and R>0, choose non-negative constants
{a{?}i=1,...,kj as in Definition 1 and place in order: a;<a,<:--<a; (ai=a, for some
). We shall show by induction that #4()eZ(B,,) and M. (u)<co (z<a;) (1=
1,-+-,D. Let 4() be analytic in B,, and M/ (u)<c (r<a;). Then we have by
Claim (i)

11 POO=T80+Q) € P Bur) , 50D ITUE+iDzacnpy <o

r<la,+a . 8.17)
Let g¢; and v; be numbers such that
{y oo pad=11, -, m}
a=aiisalls - =afr, @bl =a;, j=1,---,m. (3.18)

Since II B(OA) e (B, fm_ ) and P,,m(C)( 1'1 Py(O)i©) e 7(B, ym), we have by
the property (8. 2) in Deﬁmtwn 1 for P, that 11 Pi0)a) e Z(B, #m) Next we
get i H P () e (B, ;z,,,_l), and so on. Hence UL € P (Bay, 1), Whlch implies
w1th Claun (u) that M (u)<co (r<a;,1). Since o> R, this proves that 4() e (Bz)
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and Mz(u)<co,

Since R is arbitrary large number, the same argument as the irreducible case
shows that 4({) is an entire function with Mp(u)=<e* &2 (R>0). Hence we have
by the Paley-Wiener theorem that ue &/(R"). qg.e.d.

§4. The variable coefficient case II (lacunas for rates of growth).

In this section we shall generalize Theorem 3 and Theorem 4 to the variable
coefficient case. We consider the equation

Lu=(P(D)+ él 2(@)QDNu=f, feL,(B)N & (R"), (4.1)

where (1+|z?)/2q,(x) € L (R for some b>0, j=1,---, N.

THEOREM 6. Let P(&) be a polynomial with o(P)=0, and let d be the
dimension of its real zeros. Let Q&) (j=1, ---, N) be polynomials. Let there
exist a distribution E(&) and constant e<(n—d)/2 such that

PEEE)=1 in Z2'(BvH, | 4.2)
E@©), Qi&E() eLip(—e, o;2)+Lip(—e o; ), j=1,---,N. (4.3)
Let qi(x) € L(R") (§=1, ---, N) satisfy
sup [X+xl?)P2q (x)] <oo  for some b with

j=1,, N
2n—d , e n n
b>max{ 2+l B, sze}. (4.4)
Suppose that w € L,,,..(R”) satisfies

N
Lu=(P(D)+ ZL g,(2)Q{DNu=rf¢e &' (RN LR, - (4.5)

=
Ny{u)=o(R®®/2) qs R-—oo, , (4.6)
NQ@AD)u)=o(R™ ) as R—oo, j=1,---,N. 4.7

Then

O(R9) as R-—oo, e20, or e<0 and b>%,
Np(u)= (4.8)

O(Ret/-v+sy g R—oo, for any ¢>0, otherwise.
REMARK 4. Let (4.3) be replaced by

1+ EE) , (1+161)'QE)E(E) e Lip (—e, o0 ; 2)+Lip(—e, o0 ; o)
for some 1>0. 4.3y
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Then the conclusion (4.8) holds if the following conditions (4.4)’ ~(4.7) are satisfied
for some sufficiently large number v in place of (4.4)~(4.7):

sup [+ [(1—d)g{x)]i<co for some b with

PEARY

b>max{2n4-d g e, %+2e}, 4.4y
Lu=fe & (RN WiR"), 4.5y
N((1—dyu)=o(R™ /%) as R—oo, (4.6)
No(1—4y@/D)=0(R*®/%) as R—oco, j=1,---,N. @y

For proving the theorem we prepare a lemma.
LEMMA 1. Let f;eLip(rs,s;; 25, §=1,2,8. Then we have the Sollowing
statement :

(1) If 7.>0,r.>0, and 0=1/p,+1/p,<1, then f.f.<Lip (min{r,rs},s, »),
where

81 ’ Tl<7'2
$=<max (s, Sy , ri=r;, l:i +._1_ .
V2 GO
8 , r>Te

(ii) Let r=z—r,20,7>0; 1<8,<00; 8,<8) if ri=—7r; (s,+1/st=1);: 0=
Yp+1/p.<1. Then we can define the product of f. and f, by
fifoor={Sf, fip>, ¢eCHR",

and fif; € Lip (ry, 825 ) (1/p=1/p,+1/ps).
(ifi) Let rizr,=—r:=0,7,>0; 1<s:500; $8) 0f ro=—74

<s:{82”‘1>ﬁ sy Hl/s = 1); 0=Up,+1/pe+1/ps<l. Then we have
max (s, 8p), 7:=17

(flfz)f3:f1(f2fs):(fsfl)fz .

Proor. We first show Statement (i). Let 7 =r,=k--60 (0<8<1, k; non-nega-
tive integer). Since

D fif)= B g (DANDHIE Ly, ik,

we have only to show the case k=0.
The case 0<8<1. We have
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Sp_ I ASILE( sup 14 LAl A sup 140A,) , (49)

0<ihl£t
where 43 flae)=f(z-+h)—f(x). Since

Lip(ry, 815 p)CLip (rs, 855 ps), 7:>75, or ri=7, and 8,=<s,,

we have
© . sd__t 1/s o . sd_t 1/s
(1, 1 smm i srn ) < (712 sup nsonnor2E) s,

0 _ . sd_t 1/s
Al |1 smp 1AL L)
§C1 uflnLip(rlssl;pl)“f2HLip(r2,sz;p2) . (4'10)
The case 6=1. We have

sup lldi(ﬂfz)llé(o sup. tlldiflllpl)lllelpﬁ( oi‘.l}.’gt”‘”‘f‘ 12 S tlldéhfdlpz)

o<lhist

Al sup 143 £l (410

where 45 flx)=Ffx+2h)—2 flz--h)+f(x). Hence we have
“ -1 2 SQE s “ -1 2 S(it_ e
(1, e smm pannrnr ) ([T s, 1t it ) 1,
-1/2 1 “ -1/2 1 s@_ s
s 1 s 165D ([ sup, 1 £ 1 L)

1Al | 15 3 108 Al )T ) SO s s - (412

This proves Statement (i).
Using Statement (i) we shall show Statement (ii).
The case r,<0. We have

”fﬁD”mp(-rz,s;;pz’) éca”flunxp(—rz,s;;pl) ”gD”I.Ip(—rz,sé;P')
SCH iluwepspoplPlicrysin - (4.18)
Since (Lip (ry, 8;;p,))' =Lip (—7y, 85 }), we have by (4.18)
K fo .f1§0>‘§C5”90”L1P(—r2,s;;p') , ¢eC(R") . (4.14)

Since C7(R") is dense in Lip(—7,, 85; p’), we have f, Je€Lip (7, 855 D).
The case 7,=0. Since Lip (0, s;; p.)C Lip (—7./2, 8, ;. D), the bilinear form

S fi>, ¢eCi(RY

is well-defined. Since

1fig« ”pr (£71/2,5923p) = Ca”gz“ Lip(27r1/2,593p3) (4.15)
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Lip(0, 8¢5 po)={(Lip(—171/2, 855 P2), Lip(r/2, ss; D) is2,sy s (4.16)
we have
”flfz”mp(o,sg;p)<oo .
This proves Statement (ii).
Statement (iii) is almost obvious. q.e.d.
ProoF OF THEOREM 6. For brevity of notation we set Q,(&)=1. Since
Nx(g@)QADyw)=0(R /27 (j=1,---, N), we have

.
P N . rn_d

Tu=— 3, (@)@ Dyu e Llp< ~2=d 1 b, oo; 2> .
~

Hence we have by the imbedding theorem

@(s)eLip(—-@—‘—derw(—l——l), oo p1> , 2<p<co.  (417)
2 2 m
In the same way we have
Q&) E() e Lip (—e—n(%—?%) oo p2)+Lip (—, 005 0), 2Ep<oo
2
(4.18)
It
b>7—’“—d+,e+n<1—l—i> and =l 1 g
2 P P 27 p B D
then we can define the product Qj(é)E(g)@(s) with
S . . n—d 1 1 . 1 1 .
Q;(S)E(S)Tu(E)GLlp(mm{ =240 n( : 'p1>’ ¢ n( : p)} oo p>
. . n—d
+Lip (mm{ B -+ b, —e}, o0 ; 2) . (4.19)
This implies ’
QOBETue) € Lip(min{ nd ﬁ}, o 2)
2 Do P1
4+ Lip (min{‘—”—‘—;dw, ~e}, oo 2). (4.20)

Let g(b) be a function defined iﬁ b>e+(n—d)/2:

{ d 'n} < 1 1
g(b)=sup {mm{——2 —H)——p2 —e— 7 ,O_-—pl_”-2 ,
1 1 1 1 1 —d 1 1
<L <2 _—<_+ + te— SN
0= P.T 2727 > <1 2 ¢ b<n<101 pz)} (4.21)
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Then
(i) if e<o,
) —mp < h=a
2b—(n—d)—e 5 b= 5
s n—d -, n— n
b=y Ty g ShETgtery
9(b)= ) p p (4.22)
L _r—a 6_n n—- Pyl P
271 2 a0 3 TetpstETmoer
’ n—d n
— Kl P (A
e, 2 e+ 2 =b,
@ii) if e=0,
n—d n n— n
et g, T <r—a 2
b 5 ¢ 2 = 5 +e+2
g(b)y=+< " . p (4.23)
— >r_ x
k e, “ b= 5 +e+ 5 -

It follows from (4.22) and (4.23) that

W it b>max{2”jl 2 B, l;—+2e}, then g(b)> —ﬁg‘—i; (4.24)

) b~@—;il>g(b) . (4.25)
Hence we have A

QOEOTuE eLip (min {gB)—e, —e, 032, e>0.  (4.26)

On the other hand since f(s)e Wi(R™, we have Qj(g)E(g)f(s)eLip(—e,oo;2).
Hence we have

QJ(E)E(E)T/’%\L(EHQ:-(S)E(S)f (&) € Lip (min {g(b)—é, —e}, 0 2) . (4.27).
Moreover we have by Lemma 1
PQETu+=@PENTut+ H=QTu+f), i=0,1,---,N,
from which it follows that

POIQAO)A—Q,BE) Tu—Q,EE)f1=0 .  w®)

Hence we have by Liouville’s theorem (M. Murata [8])
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QUOI=QEQTu+QEQf, j=0,1,---,N. (4.29)
This implies that
Qi(€)% € Lip (min{g(b)—e, —e}, 05 2), >0, j=0,1,---N,
that is,
NAQAD)u)=0(R=2=i-s@+e,ely g4 R 0o, (4.30)
Next we have in the same way as above
NR(Qj(D)u):O(Rmnx{—a[g(b)+(n—d)/2+b]+s,e)) as R .
Since ¢’()=1 in b=(n—d)/2+e+n/2, we have by finite repetition of this process
O(R°), ez0,
N(Q;(Dyw)= j=0,1,---,N. (4.31)
O(R%), <0,

This completes the proof if ¢=0. In the case ¢<0, since

g'(b)=% , i;~d+e+% <b<”—;—d~e+ % ,
we have after repeating this process v-times
NQAD)u)=0(Rmexitetnz-n =20 4eely | o0, (4.32)
Hence
O(R?), b>,
NQs(Dw)= Jj=0,1,---,N. (4.33)

O(Re+n20+) | >0, bé% ,
g.e.d.

THEOREM 7. Let P(¢) and Q&) (=1, ---, N) be polynomials, and let o(Py=
0>0. Then the following statements (A) and (B) are valid.

(A) Let there exist a constant v such that if v € Ly, 1.(R™) satisfies
P(Dywv=0 in R,
(4.84)
Nile*'#lp)=0(R") as R—oo,

then v=0.
Let there exist functions Ei(g, 0,7) (§=0,1,---,N,i=1,2) on R*xS"x(p/2, p)
and constants 1Sp<co and e<y+(n—1)/2+1/p such that
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P(e+itw) =EY¢, 0, 1)+ B¢, 0,7) %<r<p,

Qie+itw)PE+ito) =Ei&, 0, )+ Eig, 0,7), L <z<p, j=1,--,

2
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(4.35)

N;

(4.36)

o /(¢ a—g=Fkp . max(2,0)/p
Z: (S Il ¢ o, T)Hglp(—ei»(n—l)/4+1/p,w;2:Rgst—l)d7> <oo, (4.37)

(1—z—k+1yp

sup [E#(E, o, 7)luipcex (n=1)/4+1/p, =33 R} xsn=1 <0,
pie<r<p

Let
Sup (Qj(5+'i7])P(E+i77)"i<oo .

5eR” 17t
i=

yeeey

Let qfz)e L{R™ (=1, ---, N) satisfy
Sup Al ) <co
sF=Lyeee,

zeR

Jor some b with

D 4 p 4
2n—— 1 n 1
2ot 2 p}
where
'a+ﬂ—2”2_ 1 B, O<atp=Zr=Ll
I, §)= ( atp— 2”;) , 2”2_ L <0t B, la—
min (a, ) » ?"—Z‘Lgaw, Z"T‘lg

Suppose u € Ly 1..(R") satisfies

Lu=(PD)+ 1 ¢,@QD)u=Fe ERINLARY ,

Nyle?i®ly)y=0(R") as R— oo,

Nyle#=QDyw)=0(R") as R—oo, j=1,-+-,N.

Then
Ny(er = u)y=0(R®) as R—oo.

2n—1

—8l.

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
(4.45)

(4.46)
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(B) Let Q4¢) (=1, -+, N) satisfy
sup Qi+ PE+in <o, <p. (4.47)
N ) .

G=1,00e,

Let q(z)e L(R") (j=1, -+, N) satisfy
| lim lg)i=0, j=1,---,N. (4.48)

Suppose that w € L, (R satisfies

Lu=(P(D)+ ﬁ 9D)QADYu=Fe E'(RN LR , (4.49)
e~y gm<co for some &, (4.50)
“3_(”_5)"”»IQj(D)u[le(R"‘)<°° for some 8, j=1,---,N . (4.51)

Then for any >0 )
]{e“’_“”“ull PRI (4.52)

Proor. For brevity of notation we set Q,(6)=1. We first show Statement
(B). Let’s define the operators S; and S; on Ly(R*, e2*1=1dx) (0=<r<p) by

jS— [
Sig=Q,QPE4¢) , S,g=QEPE 4, (4.58)

then the operators S; and S; are bounded liﬁear operators on L, (R® e*<isdy),
Since Ly(R", e7**'*!dg)=(Ly(R", ¢**'*1dx))’, we can extend the domain of definition
of the operator S; to L.(R", e *'=idz) by

(S;9,9)=(9,8¢), ge LR~ e7*'*'dx) , e Ly(R", ¢*!='dg) . (4.54)
We denote the operator norm of S; on LXR”, e**1=idg) by [ISill.. Since
Tu=— 2 q/0)QD)u e Ly(Rr, e*¢~9141da) ,
j=1

we have
U—8, Tu—S,f & Ly(Rr, e 20D 1=idy) | (4.55)

P(DYu—S,Tu—S,f)=0 in R". _ (4.56)

C—.J
Since P(S)‘l(x)§Ce‘({"5/”"‘, the same argument as the proof of Theorem 4 shows
MZSOTu-!—SQf. (4.57)

Let 0<e<p. Since lllim lg{®)l=0 (§=1, ---, N), if we modify the functions Qi [y
and % in a compact set, we may assume that

8% 0l KN S S, (4.58)
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Hence the operator S,T is a bounded linear operator on the function spaces
L2(Rn, e2z‘lzldx ; {Ql}):{g € L2.10c(Rn) H
N
”g”Lz<R",e2rlxidz:(o,-}>:(jzzjo 1QAD)ge=!|2,)2 <0}, |rl=max {p—3,p—e} (4.59)

with norm smaller than 1. Indeed

2 1QADNS,To)er 155 3 ISl Talls,

< 2 IS max. ladlzN* £ [Q4D)ge =15,
<LleDge . (460
Hence we have
U=(1—S,T) 8o f - : (4.61)

Since S,fe€ Ly(Rr e@21%idy; {Q}), it follows that u e Ly(R" ¥ 21%dy; {Q}}),
which proves Statement B).

Next we shall show Statement (A) only in the case p=oco (the proof of the
case 1<p< oo is almost the same as the case p=o0), Let

;,q(Rn’ eizp]z[dx): {g € LZ,loc(Rn) H “g”Lgaq(R",ein“d:c)
‘ n e , '
=([ _Jo@irds)" (£ @y Natengya<en) , 15ese,
: jz <2 =1

L= (Rr, ex2eisidg)={g € L{-"(R”, ¢**'=idg) ; R°N(e*¢1"ig) -0 as R— oo},

[g]s.=- rr.ex20151amy =[G [l 23,2 7, ex201215 (4.62)

We define the operators S; and S, (=0,1,---,N) on the function spaces
L9 R~ e*i=ldg) by
e Q

S;g=Q&PE)4(&) , S;g=QAP(E)7*g4(&) . (4.63)
Then S; and §,~ (j=0,1, ---, N) are bounded linear operators from L$%R", ¢**'!dzx)
to Lit-etnD/astn=0/0=c,q Br g2olaldy) (s>e—(n—1)/4, ¢>0), where h is the function
defined by (4.42). We shall show this claim only for S;. We have by the imbedding
theorem

IZSBILP 1B, o, T)I[Lip(—e+(n—l)/4+(2n—1)(1/2—1/p1),oo;p1;Rz><SZ-l)<oo , 25p, 5.
T

(4.64)

I3

We have for any g < Lj%R" e*'"'dx)

mg;lpq“§(5+iT€U)IIpr<s+<n—1>/4+<2n-1)<1/2-1/p2>,ee;p2:ngxsg;1><°° , 25p.=co . (4.65)
2
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Hence the similar argument as the proof of Theorem 6 shows that
oSup QA&+ 17w) P(e+i20) e+ 170) | Lip et nosr/s,es (n=1)/9)-2/2, 323 RE X581 < OO,
>0, (4.66)
Since it is obvious
Sup ”Qj(f‘*‘ifw)P(f+7:Tw)_1§($+iw)”Lip(n(-e+(n—1>/4,s+(n-1>/4>—e/2,w;z;kgxs;;-b
HQAEPE) )| Ly m <0, (4.67)
we have by Proposition 2
1Sigllspc-er 18,54 (=1 132,007 c201 015

§CIHS,~gHLg(-e+<n-1) 18,5 (=D /) ~e/2,% (g7, (2012145

=C, ”g“L;Am",e?PIzldz) . (4.68)

Since (Li-%(R", ¢*'='dx)y = L;*9"(R", e~21#ldy) (1/¢’+1/g=1), we can extend the
domains of definition of the operators S; to L; (et (n=1D/4,s+(n=D/t4e,¢’(RBr g=2012l )
by

(8.9, 0)=(9,80) , p& Ly (R, e**dg) .
Since by assumption

7—b+——“zl <h<—e+ L N 1),

1 ,T+——4

S; are bounded linear operators from L7~ (R", e7212\dg) to L;7-=-(R", ¢~2!#\dx),
This implies with the estimate

N(Tu(z)e**)y=0(R™?) as R— oo, (4.69)
that
Ne(S;Tu(w)e*'*")=0(R") as R—oo, j=0,1,---,N. (4.70)
Moreover since
P(DYu—S,Tu—S,f)=0 in R*, (4.71)
it follows that
u=S, Tu+S,f. (4.72)

We may assume as in the proof of (B) that the norm of the operator S,T
on the function space
Lz7-=(R", e7**'=1de 5 {Q1)={g € L;,10(R") ; Nx(e*'*1Q/(D)g)=0(R") ,

.=Oa1a ""N s
! } (4.73)

N
“9”1.2‘7."’—<R",e-2"'ﬂdz:{e,-}): ZO HQJ(D)QHL;T,””<R",e-2Plrldz)
=
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is smaller than 1. Hence we have

u={1—=S5,T)'S, f . 4.74)

Since h{—e+(n—1)/4, —e+(n—1)/4+b}=—e+(n—1)/4 if b>max {(2n—1)/2, 2e+n/2},
S,T is a bounded linear operator on L;%“(R" e*'*!dx; {@;}). We may assume also
that its norm is smaller than 1. On the other hand since S,fe L;®=(R*, e*¢!?idy ;
{@:}), it follows that

% € Lye"(R", e*i=idx; {Q,}) . (4.75)

This proves the theorem.

§5. The property C?, r,.

In this section we shall prove the statement of examples in §3. We denote
the set {{eC; P()=0, Im{i<r} by W,(P).

Proof of Example 1/. Since grad P+0 in W.(P) (PQ)= Z {*—1), we have
only to show that the set W,(P) is connected for any »>0. Let Co e W.(P), and set

HO)=vIT e é", Fitn,, 0<t<1. (5.1)
[13

Then we have

e WPy, )=, 10)= é"{ e VIP).

This completes the proof.

Proof of Examples 2. Let & e W,(P) (P(Q)= X {3, and set
P

r)=t;, , 0=t=1. (5.2)
Then we have

1) ew.P), V=L, r0)=0eViP),

grad P(y())#0, 0<t<1. q.ed.
Proof of Example 8. Let € WAP) (P{Q)= ZLC§—I—1). Choose the special
=
orthogonal matrices {A.os.s; which depends continuously on t such that A,=I

and A4;7,=1710, and set

AL, 0=t=1,

7O)=3 V@D +(E—DI— ‘?1’[" @28+ (¢ —1)] fll;?l" ,

1=t=2,

(5.3)
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Then we have
T®eWAP), H0=(, 7(2)=if, grad PG)+0, 0<t<2.

This completes the proof.

Proof of Example 4. If we change the coordinate ¢ to 2z so that L=z,
Li=v'22; (=2, ---,n), then we have

W.(P)={zcC"; _an 23+1=0,(Imz,)*+2]Im 2" [><#%} . (5.4)
i=

Hence W.(P) (r>1) has two connected components W=(P) such that W=(P)>
+(1,0,---,0). q.e.d.
Proof of Example 5. We have in 2XC (2=C\{it; te R, |t|=k--1}),

PO=CHG—k+VE+EFDNC+G—E— VT (E+1)1)
:PI(C)P2(C) . (5.5)

We first claim that for any ¢>0 the set
£e2XC; P)=0,ImlI<r}, re(0,k+1—e)Uk-+1+e¢, c0) (5.6)

is connected if k is sufficiently large.
We have

£e@xC; P(0)=0, [ImI<r}
={{e2XC; L=+ VE—C-+VETEF+1F, fECI<r}. (6.7

Here f({;) is a continuous extension to C of the real-analytic function

(Im &)+ (Im VE—+ VL e+ 1)) (5.8)
defined in

O\(it; te RY [tIZk+1}U{te RY; (11284,

where 8= Vi+1/2+4V {(k+1/2)(k-+5/2). Since the branch points -+ 8,, of the function
Vi—zt v 22-+(k-+1)? are included in the set

{2eC; fRI<r?}, re(0,k+1—eUlk+1+e, ), (5.9

to show the connectedness of the set (5.6) we have only to show the connectedness
of the set (5.9). We have

g:(Im VE—Z VL kT

< (Im [(1—2vV T ET IV ET BT V7 VETRT I ), z=E+i7 .
5.10)
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It follows from the equation Im Vk—2*+v 22+ (k+1°=0 that

ve {xi 1= tis ve B buGit; te Ry 1Sh+)

UfteR'; <8 (5.11)

and from the equation Im [2(1—2VZ2F(k-F L)V ZFk+112Y k—2*-- V2 +(E+1)) ]
=0 that ; -

ze{teRY; 1HI<BIUL*UL-, (5.12)

where L* are open curves such that

LEa+9 x/(k—i—lV—% , L3 x(k-+1)Y, sup [zi(k-{—l)iI:O(L)

zer* k
as k—oo. (5.13)
On the other hand we have for any 7
lglir_{lwf(& n)=co . (6.14)

Hence there exists for any ¢ a number K such that for any k=K it holds that

(i) for any fixed 5 (Ipl<k--1—s), £ %) attains a minimum 7* at £=0;

(ii) for any fixed n (Ip|>k-+1+¢), f(&n) attains a maximal value
(\/n4+(2k+1)772—(2k+1)+'7]2—k)/2 at £=0, and a minimum %* at &=
+Re[tvVEi+(k+1) —1/4+ti], where ¢ is a solution of the equation [y|=
Im [ivV$2+-(k+1)2—1/4+¢i]. Since the extremums f(0,7) is an increasing function
of 7, it follows that the set (5.9) is connected.

Next we claim that the set

£e2xC; PO)=0,Im{l<d, de@, k+1—e)Uk+1+e, ) (5.15)
is connected if k is sufficiently large. We have

{{e2xC; PO=0, | Im | <5}

={LeQXC; =+ VE—C—VTF+EF1E, 9¢)<6Y . (5.16)

Here g(Z,) is a continuous extension to C of the real-analytic function

(Im &) (Im VE—G— VG +E+1)) (5.17)

defined in C\{it; te R, |t|=a;}. Since the branch points *a of the function
VE—22— V2 (k+1) are included in the set

2eC; g2)<éy, de(,k+1—e)U(k+1+4e, o) (5.18)
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to show the connectedness of the set (5.15) we have only to show the connectedness
of the set (5.18). We have

Z—g =—(ImVk—22—VZ+(k+1))

X(Im (1 +2V 2T E+ 1DV ETEF1VE—22— V22 + L 1DD)™]) . (5.19)

It follows from the equation Im Vk—2:—+v 22+ (k+1)*=0 that
zefit; te R, o, =|t|<Ek+1}; (5.20)

and from the equation Im [z(l+2\/z2+(k—{—1)2)(~/zz+(k+1)2\/k—z2~\/zz+(k+)2)‘1]
=0 that

zefit; te R, < }UM*UM-, (5.21)

where M* are open curves or an empty set such that

sup IzTr(k—}-l)il:O(%) as k—oo. (5.22)
zeM*®
On the other hand we have for any »
Igll_rgo g(& n)=c0 . (5.23)

Hence for any fixed » (Iyl €(0, k-+1—¢) U(k+1+e, o0)), g(&, 7) attains a minimum at
£=0. We have
VEFIE—¢ —Fk, l=Za
90, 1= 17", = <k+1 (5.24)
(Vr+ @k -+ —Ck+1) +9*—k)2, |pl=k+1.

Hence the minimums ¢(0,7) is, as a function of 7%, decreasing in (0,a?) and in-
creasing in [af, o). This proves the claim. Moreover we have obtained

min {{Im{]; { e 2XC, P ()=0}=a; . (5.25)

Since the branch points of the function vZ2+-(k+1)* are (k+1)i and the
domains

£e2xC; P)=0,{Imli<d}, o>k+1+e, 7=1,2
are connected, it follows that the domain
{£eC*; P)=0,ImlI<8}, o>k+1+e (5.26)

is connected. Since grad P({)#0 if P({)=0, this implies that P(€) has property
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Cor (=10 R"; 16| <a,+e, VI{P)*~3}). Since
{{e2xC; P(O=0,Iml|<d=0 , o<a, (6.27)
and the domain
{{e2xC; P(0=0,(ImlI<3}, o<
is connected, it follows that the domain
{£eC?*; PO)=0,{Im{lI<d}, 0<i<a, (5.28)

is connected. Moreover we see

grad P(&)#0 on {£cR*; P(&)=0}. (5.29)
Hence P(£) has property Chyg*™. It is obvious that P(&) has not property

Cila™ ™. This proves Statement (i).
As for Statement (0), we omit the proof.
Now we shall prove Statement (ii). Let ¢ € C(R?), and set

(@)= gsb(s)(Pl(s»-Iew-fds . (5.30)

We shall show that

u(x)zCo<i)(\/!'ﬂ)‘1e"°1<ﬂwm<1+0<-1—>> as lzl oo, (5.31)

o] o]

where Cy(x/lz!) and C.(x/lx]) are continuous functions of x/|z]. We have

u(e)= [pe)er =gt et v (aE—BETF (b T " dedss (@b=2%)

gL S (5.52)
1§3122 165152

We have for |Rel|=2,|Img|<2

Re [G+8—Ek+V{(al,— bl +(k+1)%]
=|gl2—Ipl*+ v (Re [al, —bC]*—(Im [al,— L1+ (b + 1) —k
24—4+V{EFIP—4—k

1
. -

(5.33)

1%

Hence we have

ng dt, Ssb(é)e”"‘fi(EHS%—kwL V@E BT I e,
1§9122
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16g122

X[ +200+&—k+V {6 +20) =&+ (k+1)] 6 =0(*) . (5.34)

To study the asymptotic behavior of I,, we must look for the root of the equation

LG —k+ vV (al,—b0)*+(+1)=0, [Rel)<2, |Im Cz!é%. (5.35)
We have
inf G+G+11= inf  {(CGHIVITOEG—IVIFE)

;cl—i\/1+c§|=1olk |cl—i«/1+c§i=m/k
— 10 10 - 10 10
>(2v 2——)—2<¢ __>_
_( - ) =(VE-2 )4
1

> ==
_ky

E>20(2v'8 —8)1, (5.36)

We have

sup  |V(al,—bL) (k1) —(k+1)

18—V 14231 =100k

é(k+1)[ (kiw {lal <%+ «/m)ﬂbi 1521}2]

<+ 1)-1{<l£— + \/€>2 +4} < % . ES10(VE—=VE)t.  (537)

Hence the theorem of Roché implies that the equation (5.85) has one root A(%)
such that

() —ivVITE < -lkﬂ : (5.38)
In the same way it follows that the equation (5.85) has no root in {{,eC;

1€~V I1+GI=10/k, 0=Im {,<8} if k is sufficiently large. Using this root we have
by Cauchy’s theorem

—co

L= S de, S“’ HEH30, E)e = eI (g, 8023
1ég1=2

—k+v{aE+30)—b&F+(E+1)1de + X 2rig(h(&s), €2)

legls2

X gD [2h(8,) + alah(§) —b&)(V (h(E) —bEIF (B +D) ] dé,
=0(e™*") + Xz e =D o(g,)dE, , (5.39)
—2

where ¢(,;) is analytic in {{,€C; [Im{,|=<1/2, |Re{,]=2}. It follows from the
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inequality
. 5 10
sup )+ VIFEI= ==, (5.40)
|Re Lp/<2 k
1Im {pl=1/2
that
> 5! CZ <_@_ 10 1 |<25‘10
|c§é}3/4 W)+ Vel 1;?1211)14 TR+ (\/1_%2)3!: Pk (5.41)

Hence the equation 2/({,)=0 has a simple root £} in &, e C; ZI=1/4} such that

> , RE)#0, lih(C‘z’)Jrll:O(%) . (5.42)

mﬂ:oQ%

Moreover we have for any‘ >0

sup ImBREG)IS—V14+27%552, (5.43)
26=|Re {g]=2
|Im ¢y

if k is sufficiently large. Hence we have by the saddle point’s method

L=0(¢"*)+ ﬁ% <C0+ o(ﬁ)) : (5.44)

Here C,#£0, if the function & € Co(R?) satisfies
9C,5)#0 in {£eC?; |,]=3,1(I=2}. (5.45)

(In the following we assume (5.45).) This proves (5.31) with the estimate:
Col/l})=0, Re Ci{z/lz)=a;, and %Eorj Cy(z/la)=1.

Since the funection Poy(Q)=0+0—k— v+ (k+1) is analytic in {{€C?; {Im|<
k+1} and

sup (| Po(- +29)¢ (- +illuipeare,wn <0 , (5.46)
191 <k+1
we have
I@(w)léC’e“"“’"']x]“m as ]iI’}] IR (547)

(This is shown in the same way as the proof of Proposition 1.) We set

o)== — Pl (u(@))e(x) , (5.48)
where ¢ € C*(R?) satisfies for some sufficiently large R,
{ 0 ’ lx[ <R0

ple) =
1 s lx]>R0+1 .
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Then we have by (5.81) and (5.47)

Q@) SC¥ x|t~ ®ti=Cyla/tzDilal (5.49)
Moreover we have
PD)u+qx)yu=f, feCyR?). (5.50)
This completes the proof.
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