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§0. Introduction.

In [1], we studied the asymptotic distribution of discrete eigenvalues near
the origin for the Schriodinger operator. The purpose of this paper is to study
the distribution of discrete eigenvalues for the Dirac operator in a similar way.

Consider the following eigenvalue problem:

3
k§1 airpt+ao— Viz)p=2p .

Here Ekz—ia—i~ (k=1,2,8,i=v"1); ¢=(¢y, -+, 0. is a four component function
belonging to [iZ(R3)]4; a, (k=1,2,8,4) are the Dirac numerical 4X4 matrices sat-
1 0
isfying the relationship ayo;+a,0,=20;; as= L ; the potential
0 1
V(x), for brevity, is assumed to be a 4x4 smooth bounded symmetric matrix
function.

We denote by n*(r; V) and »n(r; V) (r>0) the number of eigenvalues of
the above problem lying in (0, 1—7) and (—1+7, 0) respectively. We are concerned
with the asymptotic behavior of n*(r; V) or w~(r; V) as r —0.

Main results of this paper will be stated in §1 and their proofs will be given
in §5 and §6. Throughout this paper we consider only the Dirac operators with
smooth potentials but some of results can be extended to the case of singular
potentials under some suitable assumptions.

Finally we note that we use the same symbol C to denote positive constants
which may differ from each other. If we want to specify the dependence of such
a constant on some parameter, say m, we denote it by C(m). When we take

integration over the whole space RE*, we write simply S Sfx)dz instead of g fle)da.

RS
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§1. Notations and main results.

In this section, we shall introduce some classes of functions and state our
main results.

Consider a smooth function p(x) (real-valued) defined on R? satisfying the
condition
(A-1) lim r™p(re)=a(o; p)
uniformly for « €S2, where m>0, r=lz|, =70, S? is the two dimensional unit
sphere and a{w; p) is a continuous function on S2.

Let 2 be the open domain given by 2={x{p(x)>0} and let X, be the subset
in S given by 3y={w|alw; p)>7} for each fixed y>0. By the condition (A-1),
we can take a constant R so large that £ contains (R, o)X 3;=G, in the polar
coordinate system. In addition we assume that p(x) satisfies the following con-
dition:
(A-2) For each x€Gy, there exist constants Ci(y) and Cy(y) independent of z
such that for ye{y|lz—y|=<Cup)(A+zh)},

Ip(y) — P =Ci(p) 1+ 1)) He—yl,
where Cy(y) is taken sufficiently small so that y belongs to 2.

DerFINITION 1.1. If p(x) satisfies the above conditions (A-1), (A-2), we say
that p(x) belongs to K(m).

DEFINITION 1.2. We denote by K*(m) the set of all functions p(x) satisfying
the following conditions:

(1) p(x) belongs to K(m);

(2) There exist constants C, and C, such that

Ci1+1zh) = pe)=Co(1+lz])™;
(3) For lz—yl=1/2(1-+]xl),
|p(@)— (W= Crolr)1-+ |z z—y] .

DEFINITION 1.3. We denote by S(m) the set of all functions satisfying the

following condition:

(S-1) p(x) belongs to K(m) and there exists a sequence {q.(¢)};~; such that for
each k q,(x) belongs to K*(m) and satisfies

C+l2l) ™= qx)= p*(z)=max (0, p(x))

for some constant C independent of %k and #, and that for each w a(w; ¢.) tends
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to a{w; p)=max (0,a(w; p)) as k — co,

We denote by H¥@G) the usual Sobolev space of order 7 on a domain G with
the norm |i-]l; and by H{(G) the subspace of H’(G) obtained by the completion
. of C2(R) (the set of all smooth functions with compact support in G) under the
norm | |J;, We denote the usual scalar product in L*(R®) by (,) and the norm
by || . Furthermore we denote the usual scalar product in [L¥R®*)]* by [, ] and
the norm by ||| |ll. For a linear operator A, we denote by Z(A) and Z(A) the
domain and the range of A respectively.

Now consider the following eigenvalue problem:

3
1.1 So= L a3
=Spt+ap—p(@lp=2p , @e[LX(R)]*,

where the scalar potential p(x) is assumed to belong to S(m) with 0<m<2 so
that S is self-adjoint with domain Z(S)=[H*R®)]*.

p+ap— p(E)p

THEOREM 5.1. Assume that p(x) belongs to S(m) with 0<m<2. Let n*(r; p)
(#>0) be the number of eigenvalues lying in (0,1—r) of the problem (1.1).
Then, as r—0,

n*(r; p)=Cirst¥mto(r®/27/m),
where

I'(3/m—3/2)

1.2) Ci=Q12Ex)" —Fars

S a*(w; pPdw,
:5'2

and a*(w; p)=max (0, alw; ).
The proof of this theorem will be given in §5.
In what follows, we introduce a certain class of matrix-valued functions.

DEFINITION 1.4. We denote by M(m) the set of all smooth 4xX4 symmetric
matrix-valued functions V{z) satisfying the following conditions:
(M-1) Each element v;,.(z) (4, k=1, ---,4) of V(x) belongs to S(m);
M-2) Vilo)=a,Viz)+ V(x)mz(vléx) V(zx)> has eigenvalues {¢ra(@) (i, k=1,2)
which belong to S(m), where g¢;,.(x) is t}ie k-th eigenvalue of the 2X2 symmetric
matrix Vix) (i=1,2); )
(M-8) There exist 2x2 unitary matrices T (x) (¢=1,2) such that

TV =" O ),

and that each element i;.(x; 1) (4,%=1,2) of the matrix Ti(x) satisfies the
estimate
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Kgi—)ﬁtj,k(x; )

for any multi-index B with |8]<2.
Now consider the following eigenvalue problem:

=C(1+lz))#!

(1.3) Se=(Sot+a)o—Viwp=2p, ¢elLAR),
where the potential V(z) is assumed to belong to M(m) with 0<m<2.

As an example of such a potential, we can consider V(x)= lx)+ V'(x), where
p(x) is a scalar function belonging to S(m) and V(x) is a matrix-valued funection
belonging to M(m), whose diagonal elements are identically zero. In this case,

we can take a constant unitary matrix as 7Ty(x) and the eigenvalues {4, 4(2)}2 et
are easily computed.

THEOREM 6.1. Asswme that V() belongs to M(m) with 0<m<2. Let w¥r; V)
be the number of eigenvalues lying in (0,1—r) of the problem (1.3). Then, as
r—0,

n-i-(,r; V):Ca-( V)T3/2—3/m+0(,r3/2—3/m) ,
where

+ _ —aymyo—1yae 4 (3/M—8/2) & . 3/m
1.4) CHV)=(1/24)27%m(2z~1)3/ h—F(3/m) kglgsza (w; 91,)¥"dw .

§2. Preliminaries.

In this section, we shall prove the fundamental lemma which plays an im-
portant role in the proof of the main theorems.

We can find a 4x4 unitary matrix M&)=(n; (&) (f, k=1, ---,4) satisfying
the following properties:
do(8) 0

do(8)
d.(&)

0 dy(8)
where do(€)=(1+[&[*)"* and d,(&)=—(1-+]&])2;
(ii) For any multi-index B, each n; ,(6) satisfies the estimate

(i) NEH 5 e+ NE)=

{(%)5%:‘&(5)]§C(1+[512)-Jﬂ;/2;

(iii) N(&) is decomposed into N(&)=1I--M(¢), where I is the identity matrix and
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M(&)=(m;,(8)=(1;,{6)—0s) ;
(iv) Each m; (£) satisfies the estimate
[m; (EN=Clel .
We define the unitary operator N in [L*(R?®)]* as follows:

@.1) No=(2n)~ Xew-sN@sb(s)ds ,

where (&)= ge‘”‘fgo(x)dx. (I.e. N is the pseudo-differential operator with symbol

N(g).) Similarly we define the bounded pseudo-differential operator M with
symbol M(&).
As an immediate consequence of the property (i), we see that
D, 0 §

D,

(2.2) N*(So +014)N= y
D,

0 D,
where D, and D, are the pseudo-differential operators with symbols d,(&) and
d.(&) respectively.

LEMMA 2.1. Assume that p(x) belongs to K(m). Let N be the unitary
operator in [LAR®]* defined by (2.1). Then, for any 6>0 small enough and
any ¢ < [CT(R®]°, we have

[BG; po, ol <IN*S—1/2)*No, o] =[A{G; pe,¢l,

where
E@; 0 0
E@; p)
2.3) A@; p)= FG: ) ,
0 ‘ F@; p)
G(@; D) 0
G{; »
. d; p)= ,
2.4) B@; » HG: p)
0 HG: )

EG; p)=1/2)(—4)2+1+20)(—D)—p(x)+C(0)qlw)+1/4 .
F@; p=Q+a)—M+3px)+COq@)+2+1/4,
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G(6; p=112—)(~2)—p(x)—-C(d)g(x)+1/4 ,
HG; p)y=0A—0—4)+3px)—Co)g(x)-+1-+1/4 ,

and q(x) ts a function belonging to K*(m,) with m,>m.
Proor. A simple ealeulation yields

[N¥S—1/2)*Ne¢, ¢]
=[N*(S,+a,—1/2)*Ng, ¢]—2 Re [S;No, pN¢]
—2Re [(a,—1/2)Np, pNe¢]+[pNp, pNy]
=I-II-III+1V.

Put p(x)=@A-+|2]*)=2. Then, by a calculation of the symbol of the pseudo-
differential operator p,Np;', we see that the operator p.Np;! is a bounded
operator in [L*(R®%}*. Hence, we have

(2.5) IV=||pNe|* < Cllp. Npi pogll= Clpie, ¢] -
Furthermore it is easily seen that

(2.6) ITH =0liSe Ne|| -+ C (o)l pNell?
=3[ 4o, 0]+ CO)vie, ¢] ,

where we have used the equality
[1Se Nell*=[N*SiNo, o]=[—4¢, ¢] .

Next we shall consider the term III. By the property (iii), N is decomposed
into N=I+M and M satisfies the estimate

@.7 II1MelF=Cl—4de, o],

which is an immediate consequence of the property (iv). Now we rewrite the
term III as follows:

I11=2 Re [(a,—1/2)(I+ M)e, p(I-+ M)¢]
=2 Re [(a,—1/2)¢, pp]+2 Re Ka,—1/2)p, pM¢]
+2Re [(e;—1/2) Mo, pel+2 Re [(a,—1/2) Mo, pMy)
=111, - ITL, + 11T, + 111, .

Noting that p,Mp;* is also a bounded operator in [L%R?®)]*, we easily obtain by
means of (2.7) that

2.8) [IL|, |ITL], (TIL|=6[—4p, o]+ C(8)pie, ¢]
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1/2 0
1/2 .
Since a,—1/2= , we easily see that
—3/2
0 -—3/2
p 0
¥y
(2.9) 1II,=[Q¢,¢] , where Q=
—3p
0 —3p

Finally we recall that the operator N*(S;+a.—1/2)N is expressed as

D, 0

N¥8y+a,—1/2)N= ~ ’

where D, and D, are the pseudo-differential operators with symbols (1-+1£1%)*—
1/2 and —(1-+1g]®)2—1/2 respectively. On the other hand, it is easily seen that

(2.10) U2l + 1A=+ 112 =12 = Q/2) (1 g1 +1/4
(2.11) e[+ 1+1/4=(A+1P) P +1/2)P =215P+-2+1/4

which give the estimate of the term I from above and from below. Therefore,
in view of (2.5), (2.6), (2.8)~(2.11), we immediately obtain the conclusion.
q.e.d.
We denote by #,(r; p) the number of eigenvalues lying in (r,1—7) of the
problem (1.1). As is well known, n(r; p) coincides with the maximal dimension
of subspaces lying in [C{(R®)]* such that

[(S—1/2)°¢, e} <(1/2—7)*[p, ¢]

It is clear that for any >0 small enough, the number of eigenvalues lying in
0, 7) of the problem (1.1) is bounded by a constant C independent of r. Hence,
in order to obtain the asymptotic formula for n*(r; p), it is sufficient to study
the asymptotic behavior of n,(r; ») as r—0. Therefore, the above lemma en-
ables us to obtain the estimate of m(r; p) from above and from below by con-
sidering the eigenvalue problems B(5; »)p=2¢ and A(§; p)e=2p respectively.
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§3. Fundamental solutions with parameters.
We shall define the following fundamental solution with a positive parameter
a (0=Za=1):
3.1 K9; a)=Se"”'f(a]&l‘*-F!Elz+1)‘““’d5 .
(s; non-negative integer)

For the sake of simplicity, we put PE; a)=alg|*+1£]2+1 and PYP(E; a)=

a i . y — “oe —
(a§k> P(e; a) (=01, 4, k=1,2,3).

LEMMA 8.1. For every mon-negative integer m, there exists a constant C
independent of a and £ such that for j=0,1,---,4,

32) (35 ) 1Pres oPes o scaiah =

PRroOOF. We shall give the proof only for k=1. It is clear that (8.2) is true
when m=0. Assuming by induction on m that (3.2) holds for 7=0,1, ---,4 when
m=mn, we shall show that (3.2) holds also when m=n+1. By a simple calcula-
tion, we have

a n+l . . . _y
3.3 (a&) POE; aPE; a) )
:< az- )n{PY“’(E; a)P(E; a) ' —PPE; a)P(E; a)y"PPE; a)PE; a) )
1
— a " (G4+1) . £ —1
( a&) P95 a)P(E; a) )
3 \?, .. a \? -
~- 3 C(p)( ) (POE; )PE; a)_1}< ) POE; A)PE; ) .
prg=n 08, 0&,
When j=0,1,2,3, it follows from the assumption by induction and (3.83) that
3.4 [( 8?5 ) PYE; w)PE; a>-1}l§0<1+151)-<n+v—f .
1
Since PY*V(e; a)=0 for j=4, it is easy to obtain (3.4). Thus the proof is com-
pleted. q.e.d.

LeMMA 8.2. For every mon-negative integer m, there exists a constant C
independent of a and & such that

3.5) () Ples arewwlscarighyme

0
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Proor. As above we shall give the proof only for =1 and use induction
on m. It is clear that (3.5) is true when m=0. Assuming that (3.5) holds when
m=n, we shall prove that (3.5) holds also when m=n+1. We calculate as follows:

( aa& >n+lP(E; )=

- C(s)(

az >n{P§l>($; @)P(E; @) P(E; a) 6D}
b
9&;

By virtue of this relation, our assertion is easily obtained from Lemma 3.1 and
the assumption by induction. g.e.d.
We now put g(&; a)=(£)%(£,)%(&;)% for each multi-index a with [a[=3.

=0, 3 ) aa& V1Pt b ok ) Pe; oo,

LeMMA 3.3. For every mnon-negative integer m and any multi-inder a
with |a|=3, there exists a constant C independent of a and & such that

a ” . . —(s+1 —m—2(s+1)+]a)
[( a&) (9E; D PE; @)Y SO+ lep)mseroial

The proof of this lemma is carried out in the same way as in the proofs of
Lemmas 8.1 and 3.2, and so we omit it.

With the aid of Lemmas 3.1, 3.2 and 8.8, we can get the estimate for
K®(x; a).

LEMMA 3.4. For any positive integer m=3, there exists a constant C in-
dependent of a and x such that

K9 (@; e)]=Clz]™ .

ProoF. By using the relation

OCTK(S)(QG; a):CSe”"f(i)mP(E; a)‘(‘”)d{-‘ ,
08,

it follows from Lemma 3.2 that for m=3,

2" K2 ; a)|=C.
Hence, we have
(1™ + 2ol + 2™ K@ (2 ; a}]=C,

which completes the proof. q.e.d.

LEMMA 8.5. For any integer m large enough and any multi-index a with
|l <8, there exists a constant C independent of o and x such that
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(5 ) 5w 0| =0

ProoF. The proof is obtained from Lemma 3.3 and the relation

<a-i—>“K“’(x; a):CSe”‘fg(é; a)P(g; ay~¢todg ., q.e.d.

Let us define another fundamental solution with a positive parameter b
(0<b=1) as follows:

(3.6) Gow; b)=|ew e brewvde,

where

QE; b)=lgl*+blel*+1.

In the same way as in the proofs of Lemmas 3.4 and 3.5, we have the
following lemma.

LEMMA 3.6. Let G®(x; b) be the fundamental solution defined by (3.6).
For any positive integer m=3 and any multi-index a with \a|<3, there ewists
a constant C independent of b and z such that

GO (w; b)=Clal™™,
and

Ka%)aG“’(“; b>' <Clal™ .

§4. Eigenvalue problem for elliptic operators.

Let p(x) be a function belonging to K(m) (0<m<2) and let 2 be the domain
given by Q={x|p(x)>0}. Then, consider the following eigenvalue problem:

4.1) Au=({(—dy—DHu—pE)u=iu, ucHNQ).

Here A is the self-adjoint operator associated with the symmetric bilinear form

&, 0)=(—tu, —dv)y+ 5 (—@-u, 9 v) —(pu, V), u, v HYQ) ,
j=1\ 0x; axj 0

where (, ), stands for the scalar product in L¥%2). We denote by m(r; p, D¥r>0)
the number of eigenvalues less than —# of the problem (4.1).
Next we consider the following eigenvalue problem with a parameter h=1:

© (4.2) Hu=p"*(h((—4yP—DH+Dp 2u=2u, uecL¥Q).

Here H is a positive self-adjoint operator with domain 2(H)=B(p'*(h{(—4)*
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—4)+-1)"pt?).2  We denote by M,(i; p, 2) the number of eigenvalues less than 2
of the problem (4.2). Then, we see that M,(h; p, @=m(r; p, &) with r=1/h
(see [1D).

Our aim of this section is to prove the following theorem.

THEOREM 4.1. Assume that p(x) belongs to K(m) (0<m<2). Let m(r; p, 2)
be the number of eigenvalues less than —r of the problem (4.1). Then, we
have,

lim inf #¥ 7= %2m(r; p, 2)=C, ,
r—0
a2 4 (8/m—3/2)
I'3/m)
As a direct application of Theorem 4.1, we have the following theorems.

where C;=(1/24)(x)" g at(w; p)'™dw and a*(w; p)=max (0, a(w; p)).
52

THEOREM 4.2. Assume that p(x) belongs to K(m) (0<m<2). Let m(r; p)
be the number of eigenvalues less than —r of the problem

(= —DHu—p)u=2iu , we L} (R®.
Then, we have

(4.3) lim inf r*=*2m(r; p)=C,,
=0

where C, is the constant defined in Theorem 4.1.
Proor. For any ue HY2), we define % as “w=u on 2, u=0 on £°. Then,
we have

alw, w)=((— Ay, (—Di)+ 3 (% a, %@-(m@ 7.
i=t i i

This implies that m(r; p)=mlr; p, 2). Hence, (4.3) readily follows from Theorem
4.1. q.e.d.

THEOREM 4.3. Assume that p(x) belongs to K(m) (0<m<2). Let m{r; v, a,b)
be the number of eigenvalues less than —r of the following problem with
positive parameters ¢ and b:

(4.4) (—DHut+a(—Du—p@)u=iu , wucL}R?.

Then, we have

lim inf 3=~ 32m(r; p, a, b)=a"%2C, ,

=0

' The operator h{{—4*—4)+1 is the positive self-adjoint operator associated with the
symmetric bilinear form

3 3 i
h(—du, —dv)o+h X (_8_ u, —v) +(w,v)o, u,v€ Hy2).
i=1 \ 0x; ox; /o
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where C, is the constant defined in Theorem 4.1.
ProoF. By the change of variable z=(b/a)"/*y, the problem (4.4) is transformed
into the eigenvalue problem of the following form:

(—H*u+(—DHu— iz P(y)= %Zu ,
a a
where p(y)=p((b/a)**y). Hence, we have
m{r; p,a, b)=m<§;r ; %j:) .

Noting that a(w; §)=0b/a)y ™%a(w; p), we easily obtain the conclusion from
Theorem 4.2. q.e.d.

In order to prove Theorem 4.1, we introduce some notations and operators.

Let 7>0 be fixed arbitrarily. Let I, be the set in S? given by 2=
{wlalw; p)>7}. By the assumption (A.1), we can take R sufficiently large such
that £ contains (R, o)X 2;=G, in the polar coordinate system. For each fixed
t e G,, there exists a constant C(y) independent of ¢ such that the set {x|lz—¢|=
C()A+1E)} is included in £2.

We now introduce real-valued Cg-functions ¢(z), ¢(x) and x(x) such that ¢(x),
d(x) and x(x)=1 if |z|=1, =0 if [x|=2 and that e(x)P(x)=¢(x) and dlayxx)=¢(x).
For each £ Gy and any §>0 small enough (<C(1)/2), we define ¢, 5(x) as ¢, s(®)=
<p<5(—‘f_—;%l7> Similarly we define ¢, s(x) and X, 5(2).

Next we define the operators 4,(1) and R,(2) (2>0) acting on L*(2) as follows:

A D=h((—4)}—DH+1+2p,
B,)=(h((—4*—D+1+2p)*,

where A,(1) is the positive self-adjoint operator associated with the symmetrie
bilinear form

(—du, — dv)g+h 3, (i L ) S ( v)oE AP, W)y, w, v € HEQ) .
=1\ 0x;  0x; Jo

Finally we define the operators A,,,(2) and R, ,(2) for each € G, as follows:
A =h((— =D +14+200) ,
B, iD= {(— A —DH+1+2p@)7",
where A.,,(1) and R,,,() are operators acting on L*(R®). The operator R, .() is

an integral operator with the kernel H, ,(x—y; 2) given by

4.5/ H, (z; A=(2n)7° Se“”f(h(lél4+ €19 +1-+2p(E) 7 dé .
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J
We denote by R{.(2) the operator <¢%> R, .(» (1=1,2,---), which is also an
integral operator with the kernel HY,(x—v; A) given by
(4.5) HP\(m; H=(—1(GHe2a)p@)} FP(x; ),
where

Fii@; D= [e=iheIH1eh +1+20()de

We often write R{®,(2) and H®,(z; 2) instead of R, ,(4) and H, ,(x; 1) respectively.
If a@)=r""2(1+2pt)) 2 <1, FP(x; ) is rewritten by the change of variable
E=h"12(1+2p(t))2€ and (8.1) as follows:

FP.(w; D=al)*1+2p@)" Y KP(alt)r; alt)?) .
Similarly if a®)=1, F¥,(x; 2) is rewritten by the change of variable &=
A4 2p@)4E and (3.6) as follows:
FP(x; H=a)*(1+2p@)" PG at) 2 ; a®)™) .

The following lemma is an immediate consequence of Lemmas 3.4, 3.5 and
3.6.

LEMMA 4.1. The following estimates hold :
(1) For any positive integer k=3,

[FP(as DISCs/2 (L4 ap(e) -0
__I_ k—3/4+k/4(1+1p(t))3/4—k/4—(j+1)} ‘xl—'k ;

(2) For any sufficiently large integer k and any multi-index « with
laf=3,

{(i)a Fgf)h(x . Z) [Sc{h—3/2+k/2—n’afi/2(1+Zp(t))3/2"k/2—(j+1)‘HM/?
o ’ ’ 1——

+h~3/4+k/4—]0{|/4(1_{_2p(t))3/4—k/4—(j+1)+|al/4}lxl—k .
Here C is a constant independent of t,xz,h and A.

Proor OF THEOREM 4.1. For each t€G, and any >0 small enough, the
following equality holds in L*(2) (ef. §4 of [1]):

(4.6) 01,50 PRy (D) D=, 502 Ry, n(D:,50" 2
+ 0,50 R, (DB 1 (2, 0) By () P2,
where
By 22, 8) = (A2 (DPr,s— 01,6 AN 5
=4, (V91,5 00,54:(8) .



180 Hideo TAMURA

Let {#;}-, be the eigenvalues of the problem (4.2) and let {#,}7., be the normalized
eigenfunctions corresponding to {#;}7-;. Then, by letting (4.6) operate on each u;,
we have

(4.7) (520720, 5% =02, a0 2 Ry 1 {A) 00 s DM 1
F (A7, 50V 2R, h (A By, 1 (4, 0)p™ P u;

Furthermore, by differentiating (4.7) »-times with respect to 2 in the sense of
L#(R* and rewriting the obtained equation in the form of the integral equation,
we have

4.7.1) (D@D Ve, sa)usix)

=0 o)) | HE 0=y '3 D00,s@)pw) u,w)dy
J

+ A+ éOCl(r)(;tj )~ () pla)t 2§H Mle—y 5 AL, y, ) dy

n—1
+ éo Cor) 5+ 2" ¢, () ()t ZSH O x—y; AL, y,0)dy

+h é Cy(r) ()0, 5() p(x)/* XH O z—y; ABE, D, 8)py) uiy)dy

=a,(a,t, )+t )™ T Clr)dy. ol t,0)

+ T, Culr)ds 8,04+ 3 Culres (a8,

where we have set

(4.8.1) 04(t, 9, 6)=(p)— p(Y) DY) 20, 5(1)us(y)
and B(¢, D,d) is the differential operator expressed as
4.8) B(t, D, 8)=((—4P— Do, s—¢.,s((—4)}*—4) .

Since each #; is a smooth function, (4.7.1) is well-defined for all . Hence,
putting x=¢, in particular, in (4.7.1), we have

@9 (DD P u)=a, )+ M) X Cirdy, (6, 0)

+ T s 6,00 3 Cilrlen, (t,0)

=a,(t, 8)+b,(t, 0)
where we have set a;(t,d)=a,,t,0), d; (& 6)=d; (tt 5 and e; (£, d0)=e; (¢t 0).
This is our basic equality in proving this theorem. We now fix positive integers
k, and n such that
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(4.10) ko=2">8/m (I>0: integer)
(4.11) n>max (0,8/2m—1)+k,>8/m .

From now on, we denote by a some constants satisfying 0<a<1 and independent
of 6,k and 2, which may differ from each other, and write simply ¢; instead of
P,5e

Now we shall state some lemmas concerning the estimates of the terms
a;(t, 8),d;,(t,0) and e;,.(t, 6). The proofs of these lemmas will be given after the
completion of the proof of this theorem.

LEMMA 4.2. For any 6>0 small enough, there exist constants C(@8) and «
independent of h and A such that for 2=COh* 0<a<l),

oo

Z‘ S aj(t,g)Zdt__ f(k, T)h—3/223/m—‘2(n+1)
G

Jj=1

I ,
égch—wzza/m—ﬂm-l) s

where C is a constant independent of h, 2 and & and

1 Ire/m'2n+1)—38/m)
m r'2(n+1y)

x| sietigerma

(4.12) Sh, )=l @2x)~°

S alw; p)™dw
%

LEMMA 4.3. For any 6>0 small enough and i=h* (0<a<l), we have with
a constant C independent of h, 2 and J,

5 S 0y (6, P AE<FCR R0 | (p=0,1,2, -+ -, 7) .
i=1 Gy
LEMMA 4.4. For ony 6>0 small enough, there exist constants C©) and «

independent of h and 2 such that for A=C@)h* (0<a<l),

i\ S ej,,(t, 5)zdt§5Ch~3/2—223/m—2(n+1> R (/,-:0’ 1, ceey, %) s
Gy

j=1

where C is a constant independent of h, 2 and é.
Completion of the proof of Theorem 4.1. Taking the square of both sides of
(4.9), summing up with respect to 7, and integrating over G,, we have

(4.13) (D) 3 (ke X us(tyde
=1

Gy

= ig a,(t, 0 di+2 i& a,(t, B)b,(t, St~ ig by(t, 0)dt .
Gy i=tJe, tie,

i=1 =1 Jg i=
Hence, by virtue of Lemmas 4.2, 4.3 and 4.4, it follows from (4.18) that for any
>0 small enough and 1=C(6)A%, 0<a<l,
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(4_14) [ Z‘e (yj+2)'2<”+1)0j—(n!)—2f(h, T)h—3/223/m—2(n+1)lé&h—3/213/m—2(n+1) ,
j=1

where ojzg u;(t)*dt.
(&)
Now we Tare in a position to apply the following Tauberian theorem to (4.14).

LEMMA 4.5 (Tauberian theorem, see §2, [1]). Let 8 and 7 be positive numbers
satisfying B>y>0. Let o0,(2) be a non-negative mnon-decreasing function
defined on [0, o) with a positive parameter h, and let ¢,(0)=0. Assume that
for any 6>0 small enough, there exists a constant C.(8) independent of h such
that for t=C,(®)h*, k=0,

=0t ¢,

S”(m)-ﬁdah(z)—ah)t’—ﬁ

where C(h) is a constant depending only on h. Then, there exists a constant
Co(d) such that for A=C,(0)h*,

I'()
W) — —— e C(h)AT| =827 .
O rernra—p ‘Y

We put M, (1; »,2)= Z O and apply Lemma 4.5 with ¢,()=~1*"2M,,(2; p, Q)
to (4.14). Then, we see tha,t for any 8>0, there exists a constant C(d) such that
for 2=C(e)h®, 0<a<l,

(4.15) My r(2; D, D)—Cull, DA™ | 0B322,

()2 ' 2(n+1))
where Cylh, 1= ) Fa D F @+ D)—3/m)
flh, 1) given by (4.12), we have

E—I}l Cl(h, T):Cl(r) ’

f(h,7). Recalling the expression of

where

Cpy= @y m B | as p¥edo ((er+1rrmde
T

'/m+1) s
I'(3/m—38/2)
I'(8/m)

(S(I$(2+1)—3/7nd5 = g8/2

= (1/24)(x)~>"2 S: wo; P do .
7

I'(3/m—3/2) )
r@emy

Obviously, M,(2; p, @9=M, (4; p, 2). Hence, since 0<a<1, we easily obtain
liril inf h¥23m M (h; p, Q)= Hm B3 M, Ah; p, 2)=C7) .
o Py

On the other hand, since m(r; », =M, (h; p, 2) with r=1/h, we have
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lim inf /=32 r; p, 2)=lim inf A¥2"¥™M,(h; D, NH=Cuy) .
r—0 hoo

Since y is arbitrary, this completes the proof. q.e.d.

Proor oF LEMMA 4.2. According to the Parseval equality, we have

?:1“7'“’ 8y =p(t) len(t—y s Do) 1Pp(y)dy
— p(t)? ngsw—y; Drdy
+ p(t)? SIH m (t—y 3 D Hesly)—1)dy

() XiHi’fi(t—y; Do) — p®)esy)dy
=I)+11(, 0)+ 111, 3) .

We shall prove the following assertions:
@ S I(t)dt=f(h, P22 3+D (14o(1)), as 21— oo,

]

T
where o-estimate is uniform in % and f(h,7) is the constant given in Lemma 4.2.
(b) For any >0 small enough, there exist constants C(5) and « independent

of & and 2 such that for Az=C(@)h* (0<a<l),

S TI(t, 3)|dt <OCh-3/28/m—2+ |
Gy

(¢) For any 6>0 small enough,
S \TTL(, 6)|dt <6Ch-*/220/m=2n+D>
Gy

If we have proved (a), (b) and (c), the proof of this lemma is completed.
PROOF OF (a). Recalling the definition of H{*\(y; 4) given by (4.5) and using
the Parseval equality, we have

| 1E s Drdy=(ee) sty pteye [(Geis+ et 14- a2

By the assumption (A.1), there exists a constant R{s) for each fixed ¢>0 (small
enough) such that for r=|¢|=R(e) and we 2y,

(alw; p)—arm=p)=(alw; p)+)r ™.
Since g(t, h, &)=t (c(h, £)+141£)2**V is a monotone increasing function defined

on [0, o0), where c(h,&)=h(|&|*+1£]%), we have

(4.16) SG I()dt=(@m) () de r

T

redr Sg«a«o . B+ or ™, b, Q)de+

R(e)
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+C S(C(h, £)+1-4+2) 2 de

=I+1,,
where the second estimate follows from the fact that for te (R, R(e)) X Z,
Cila=pt)=<Cye) .
Since m<2, it is easily seen by the change of variable £=h"Y222f that as
A= 00,
4.17) TS O3/ /220 — /2 p/m=2nsD (1)
On the other hand, a change of variable yields

(4.18) L= @) )¢ | @lw; p)+9vmdo [(eth,e1rrmae

7
X Soc ,'.2(7.715_’_1)—2(n+1)d7ox3/m—2(n+1) ,
R(&,A,R)
where R(¢, 4, h)=2""™(a(w; p)+e)~™(c(k, £)+1)V"R(e). Since n>3/2m—1 by (4.11),
rHr™+1)72"*D ig integrable on (0, o). Hence, we have

(4.19) rrm-- 1) gy = Xm'r?(fr’”—}— 172 0drde(&, 4 h)

_ 1 r@mi@mn+1)—3m) |
_m F(2(’I’b+1)) Tcl(gy 2: h) ’

ER(E,Z,M

where ¢.(&, 4, k) is a bounded function tending to zero for each fixed & as 1 — co.
Furthermore we have by the change of variable &=k %2¢ and the Lebesgue con-
vergence theorem that as 1— oo

(4.20) B(G(h, §+1)7mel(§, 2, h)dg=h"* (1) ,

where we should note that c-estimate is uniform in %, which follows from the
uniform convergence of ¢, (h™*/%£,2, h) with respect to & for each £. Hence, in
view of (4.17)~(4.20), we see that for any >0 small enough, there exists a con-
stant C(3) such that for A=C(5),

S I(t)dtéfl(h, 7, 5)23/m—2(n+1) +6h—3/213/m—2(n+1) ,
Gr

where we should note that C(3) is independent of %, and

1 I@mIQn-+1)—3/m)
m r@mn-+1))

x S@(k, H+1)-/mde .

Silh, 7, ©)=(2m)*(n!)?

g (a(w; P+ mdw
ET
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Since ¢ is arbitrary, we obtain for 2=C.(3),

(4.21) g I(t)dté‘f(h’ 7,.)h—3/2/28/m—2(n+1) +5h—3/223/m—2(n+1) .
G

T

(Jcetu e+ 1ermde=nor (it igre-rpy-mde. )
In the same way as above, we obtain
S L= F(h, )l 1m0 ],/ jssm-scard)
Gy

for 1>C,(5), which, together with (4.21), completes the proof of (a).
Proor oF (b). It follows from the definition of H{")(y; 1) given by (4.5)
and Lemma 4.1 that for any sufficiently large integer k,

(4.22) [HME—y; DISCp@y{h= 274214 ap(t))s/2-#/2- D
+ h-3/4+k/4(1+ ).p(t))3/4—k/4—(n+1)} It_,yl -t
=g, h, Dlt—y|7* .

By using this estimate, we calculate as follows:
11, ) =Cygule, ky A2p()? Sl(%(y)z—l)l t—yl~*dy

=Coutt, b, 2peP|it—yl iy
=C(d)gx(t, b, Z)210(t)221~1— [gl)-eere
where Qi={y|lt—y|=6(1+1¢t])}. Furthermore, we have
@) (L4 2p(E)*F 2O (L4 [2]) 2 S O
where C(¢) behaves like Clg|~-@-m%+30-m  Hence, by the condition 0<m<2, we

can choose k large enough so that C(f) is integrable. Thus we have

(4.23) g fII(t, 5)]dtéC(5)h_3+kl3"k_2("+l)+h"a/Hk/?ZS/Z_k/Q—Z("“)
GT
:C(E)h"3/213/m"2("+1>(hril_ﬁl+h722—p2)

where 7,=—38/2+k<8,=8/m+k—3 and 7,=k/2<B,=8/m-+k/2—8/2. Hence, there
exist constants C(8) and a (0<a<1) such that for i=C(6)h*, the right side of
(4.23) is dominated by h~3/223/»2(+D_ Thys the proof of (b) is completed.

ProoF OF (¢). By the assumption (A.2), it follows that for any 6>0 small
enough and y e Qy={y| lt—y| <201+ 12)},

(4.24) () — 2@ <5Cp(E) .
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On the other hand, by the assertion (a) which has been already proved, we have
(4.25) S Z’(t)zdtglﬂi’fi(t—y; DAy Ch3/2p/m=2tD

GT

Hence, by combining (4.24) and (4.25), we immediately see that

X IIII(t, 5)1dt§50h—3/223/m_2 (n+1) .
[ &

Thus the proof of this lemma is completed. g.e.d.
Next we shall prove Lemma 4.8. To this end, we need the following lemma.

LEMMA 4.6. Let k, be the infeger fizxed by (4.10). Let {p;}7-, be the eigen-
values of the problem (4.2). Then, for any k=k, and 1=h* (0<a<1),

i (ﬂj+2)—2kéch_3/223/m_2k ,
j=1

where C is a constant independent of h and A.
ProoF. Let g{x) be a function belonging to K*(m) and satisfying ¢(z)=p*(z)=
max (0, p(x)). Then, consider the following eigenvalue problem :
—hdv+v=2iq(x)v, vel*R?.
Let {v;}7.; be the eigenvalues of the above problem. Then, we easily see that
for each j
(4.26) UiV .

On the other hand, we have shown in §3, [1] that for any k=k, and A=he,
f: (yj+2)—2k§Ch—3/223/m—2k ,
i=1

which, together with (4.26), completes the proof. q.e.d.
Proor oF LEMMA 4.3. The proof is divided into two cases.
Case 1, 0=r=n—k,. We shall show that there exists a constant C inde-
pendent of 7, %,2 and 6>0 (small enough) such that

w  L={ sod((Eowy; 206,00y ) secaers
&7

We first note that by the assumption (A.2), for any >0 small enough and
y € Qo={y | lt—y|=20(1+1tD},

p(y)ZpE)—1pt)—p(|=A—Co)pt)=Cp(t) .
Hence, we have p(y)*<Cp(t). Furthermore, again by the assumption (A.2) it
follows that for y €2,
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(4.28) @2 (p(t)— p(y) p(y) A =Cp®) A+t t—yl .
Therefore, by virtue of Lemma 4.1 with k=3, (4.5) and (4.28), we have

@2 H Dt~y 5 (0O — ) p() ™
=Cp@y*(1+2apE)~ A+ He—yl ™
S0 oA+ -yl .

Hence, by using this estimate and recalling the definition of ,(,y,d) given by
(4.8.1), we obtain

I,-,écz—w”g (1+it1)-2dt<g lt——yl'2lu,-(t)ldy>2
G

7 225

lzr?dzg (64 gL+ [ED)] s+ 2L+ 1ED)IE -

Gy

-<—:C'2—2<T+1)S ly1—2d,y S

lyl=2s lz) =28

Since S lu G-y +1ED)] lusE+2(1+16)|dt=C, where C is a constant independent
G

7
of |y1=25,12{=26 and j, we get our assertion (4.27). On the other hand, by
Lemma 4.6, it follows that for n—r=k, and i=h?,

(4.29) S (b DD SO mE D
=1

Hence, by combining (4.27) and (4.29), we obtain the desired estimate in the case
of 0=r=n—rk,.
Case 2, n—k,<r=<m. Using the Parseval equality, we calculate as follows :

(430) 5 dyt 0= O | HEM =5 DpO)— )l dy
oCir o pe? | HE 6~y Dy

where we have used that for y € 2., p(y)~2<Cp(t) /% and |p{t)—p(»)|=Cp(t) by
the assumption (A.2). Since r>n—k,>8/2m—1 by (4.11), we obtain in the same
way as in the proof of (a) in Lemma 4.2 that

X p(t)%t&lHﬁ?h(t—y; l)lzdyg(jh-s/zxs/m—z(rﬂ) ,
G

which, together with (4.30), gives the proof in the case of n—k.<r=n. Thus
the proof of this lemma is completed. q.e.d.
ProoF OF LEMMA 4.4. Integration by parts gives

€5+t )=(+ 2~ p(t)V/ 2S(B"‘(if, D, OHH.(t—y; Mpy) " uy)dy ,



188 Hideo TAMURA

where B*(t, D,d) is the formally adjoint operator of order three for the operator
B(t,D,0) given by (4.8), whose coefficients vanish outside the domain 8205=
{1+ 1EN=1t—yI=25(1+1t))}. It follows from Lemma 4.1 that for any sufficiently
large integer k& and y €,2,;,

éC(a)p(t)r{h—3/2+k/2(1+lp(t))3/2—k/2—(7‘+1)
_,_h—3/4+k/4(1+Xp(t))3/4—k/4—(r+1)}(1_j’_ It[)—k .

By use of this estimate, the remaining part of the proof is carried out in the
same way as in the proof of (b) in Lemma 4.2. qg.e.d.

§5. Eigenvalue problems with scalar potentials.
In this section, we shall prove Theorem 5.1 stated in §1.

THEOREM 5.1. Assume that p(x) belongs to S(m) with 0<m<2. Let nrr; p)
be the number of eigenvalues lying in (0,1—7r) of the problem (1.1). Then, as
r—0,

n+(7.; p):C§T3/2—3/m+0(7.3/2—3/m) ,

where C¢ is the constant given by (1.2).
PrROOF. We shall first recall the definition of n.(r; p) given in §2:

7o(r; p)=the number of eigenvalues lying in (r,1—#)® of the problem (1.1).

Next we shall recall the definitions of the operators A(5; p) and B(§; p) given
by (2.3) and (2.4) in Lemma 2.1 respectively :

E@; p)

a 0
(0; »
A 5; = ’
@D FG; p)
F@; p)
G@; p) 0
G(3; p)
B(@; p)= )
@ » HG; )
0 H@; p)
where E@; p)y=1/2)(—4)*+1+20)(—4)— p(x)+-C@)q(x)+1/4 ,

B Without loss of generality, we may assume that r< 1/2.
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F@; p=2+)(—4D)+3px)+Co)glx)+2+1/4 ,
G3; p=1/2—80)(—4)—p(x)—CB)q(x)+1/4 .
H(s; p=01—(—D+3p@)—Co)g(x)+1+1/4,

and ¢(x) is a function belonging to K*(m,) with m,;>m. We denote by
no(r; p, A(6; p)) the number of eigenvalues less than (1/2—)? of the problem

A@; po=ip, pell*R)]*.

Similarly we define n¢(r; p, B(§; p)) for the operator B(d; p). Furthermore we
denote by m(v; p, E(@; p)) the number of eigenvalues less than (1/2—7)? of the
problem

E@; pyu=iu, ucLl*(R%.

Similarly we define mo(r; p, F@; 0)), mo(r; p, G6; p)) and my(r; p, H@G; p)) for
the operators F(6; p), G(5; p) and H(5; p) respectively. We easily see that

(6.1) no(r; p, Al p)=2my(r; p, E@; p))+2mr; », F@; p),
(5.2) no(r; B, B@; p)=2my(r; p, G©; p))+2m(r; p, H@; p)) .

We shall first give the estimate of n.(»; ») from below. It is clear that
no(r; p) is equal to the maximal dimension of subspaces in [CF(R®)]* such that

[N*(S—1/2)*Ng, o] <(1/2—7)[o, o] ,

where N is the unitary operator defined by (2.1). Hence, by virtue of Lemma
2.1, it follows that for each >0,

(6.3) nolr; P)=Znor; p, A@; D).

On the other hand, we see that mq(r; », E(0; p)) is equal to the number of eigen-
values less than —7-+7? of the problem

A/DU—D2+ A2 —Nu—plw; du=2iu , uweL*(R%,

where p(x; 8)=p(x)—C(8)g(x) which belongs to K(m) for each §>0. Therefore,
by virtue of Theorem 4.3, it follows that for each >0,

(5.4) lim inf /"% mo(r ; p, B} )=, (0)=(1/2+8)"*2C; ,

where C, is the constant defined in Theorem 4.1 and we have used that
alw; pla; N=alw; p).

Similarly we see that m.(r; », F(5; p)) is equal to the number of eigenvalues
less than —r+7*—2 of the problem

@+ —DHu+plx; dju=iv, uecLl*(R?,
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where B(z; 8)=8p(x)+ C(d)q(x). The origin is the only possible accumulating point
of discrete eigenvalues of this problem. Hence, there exists a constant C(6) in-

dependent of 7 small enough such that
(5.5) mo(r; p, F(6; p)=CE) .
Hence, in view of (5.1), (6.8)~(5.5), we have

lim inf 7*/*no(r; p)22(1/2+8)7/C; .

Since § is arbitrary, we obtain

(5.6) lim inf r¥/=*2p(r; p)=2°2C,=C7 ,

-0

where C§ is the constant defined by (1.2).

Thus we have established the estimate of n.(r; ) from below.

Next we shall give the estimate from above. To this end, we need the result
obtained in [1].

THEOREM A (Theorem 6.1, [1]). Assume that p(x) belongs to S(m) with
0<m<2. Let m(r; p) be the number of eigenvalues less than —r of the prob-
lem

—Adu—plx)u=2iu , ueL*R?).
Then, we have

lim #3324 (r; p)=C,,

r—0

where C, is the constant given in Theorem 4.1.

We shall proceed with the proof. As in the case of the estimate from below,
we have by virtue of Lemma 2.1 that
(6.7 (T ; PI=Ne(r; D, B@; D).
On the other hand, m(r; », G(J; p)) is equal to the number of eigenvalues less
than —r-+7® of the problem

A/2—o—Du—p(x; Du=2iu, ucLl*R?),

where p,(z; §)=p(x)+C)g(x) which belongs to S(m). Hence, by means of

Theorem A, we have

(5.83) Ii_r’% =3 mo(r s p, G@; p)=Cy(8)=(1/2—8)2/2C, ’

where we have used that a(e; pi(2; §))=alw; p). Furthermore, by an argument
similar to that given to m(r; », F(3; p)), we easily obtain
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(5.9) mo(r; p, H@; p))=C@) ,

where C(3) is a constant independent of  small enough. Hence, in view of (5.2)
(5.7~ (5.9), we have

lim sup r¥/™=32p(r; p)=2(1/2—8)%C, .
r—0

Since § is arbitrary, we get

(5.10) limjup r¥m=tig (p; )220, =CF .

Therefore, by combining (5.6) and (5.10), we have
lim r¥m=32q(r; p)=C7 .
=0

From this, we easily obtain

lim r¥/»=32q*(p; p)=Cy ,

0
since the number of eigenvalues lying in (0, 7] of the problem (1.1) is dominated
by a constant independent of » small enough. Thus the proof is completed.
g.e.d.
As for n~(r; p) (the number of eigenvalues lying in (—1-7,0) of the prob-
lem (1.1)), we have the following theorem.

THEOREM 5.2. Assume that —p(®) belongs to S(m) with 0<m<2. Let
n-(r; p) be the number of eigenvalues lying in (—1+r,0) of the problem (1.1).
Then, as r—0,

n—(r; p):Co—,r3/2—3/m+o(,r3/2—3/’m) ,

where C7=(1/12)(2z7")** P—-———(?’I/,g;f)/z)
»)).

PROOF. By considering the operator S+1/2 instead of S—1/2, the proof is
carried out exactly in the same way as in the proof of Theorem 5.1. q.e.d.

The assumption (A-1) is weakened as follows. Consider a smooth function

X a(@; p)¥"dw and a (w; p)=-—min (0, ale;
s2

p(x) satisfying the condition
(A’-1) lim rpro)=a{w; p), weS?,
where we don’t assume that the above convergence is uniform in o and that

al{w; p) is a continuous function on S?. Let Z* be the subset given by X*=
{wlalw;p)>0}. Then, we assume the following conditions:

(A’-8) 2% is an open set in S%;
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(A’-4) The convergence in (A’-1) is locally uniform in X* and a{w; p) is a con-
tinuous funetion in 3,
In addition we assume that
(A’-5) there exists a constant m, satisfying m,>m/2 such that
[p(2)| =C(1+12l)™™ .

We denote by K’(m) the set of all functions satisfying the conditions (A’-1),
(A-2), (A’-3)~(A’-5) and define S’(m) corresponding to S(m) with K(m) replaced
by K’(m) in (S-1). Then, we have the following theorem.

THEOREM 5.8. Let m, and m, be positive numbers satisfying m., m,<2.
Assume that p(z) belongs to S'(m) and that —p(x) belongs to S'(m,). Then, as
r—0,

(5.11) nH(r; P)=Ciy¥/23/myy o(pd/2=3/my)
(5.12) w1 p)=Cird/amato(r¥/2-3/ms)
where
- I'@3/m,—3/2)
C+:(1/12 Qr—1)8/2 S at ; 8/myd, ,
3 )(27) F(S/m) Hw; v) »

Cs =(1/12)@rryre L Gm 3/2" ai(o; P¥mda

r@emy J

aw; p=lmr™p(re) , ai(e; p)=max (0,a(w; p),
a0 p)=lmr™pre), a;(@; p)=-—min (0, ¢:(0; ).

Here we should note that for p(x) belonging to S'(m), the integral X a*(w; p)¥"dw
g2
< Ho0.
Proor. By the definition of S'(m,) and S'(m,), there exists a constant m,
satisfying m,>max (m./2, m,/2) such that
[p@)| =CA+x)) ™0 .

By replacing po(x)=@1+|z[>)"2 by (1-+{z]*)~™’% in the proof of Lemma 2.1, we
see that Lemma 2.1 is still valid for p(x) belonging to S’(m,). Furthermore it
is easily seen that Theorem 4.1 is also still valid for p(z) belonging to S'(m,)
since the integral Sszai(w; p)¥™dw<+oco, Therefore, (5.11) can be obtained in

the same way as in the proof of Theorem 5.1. g.e.d.
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Here we remark that the order of 7 in the leading term of the asymptotic
formula for n*(r; p) may be different from that for n=(r; p).

§6. Eigenvalue problems with symmetric matrix potentials.

In this section we shall prove Theorem 6.1 stated in §1 without using the
results obtained in §4.

THEOREM 6.1. Assume that V(x) belongs to M(m) with 0<m<2. Let n*(r; V)
be the number of eigenvalues lying in (0,1—7) of the problem (1.8). Then, as
r—0,

n*(r; V):Cg(V),,.3/2—3/m+0(,,.3/2~3/m) ,
where C;(V) 1is the constant defined by (1.4).

Before proving this theorem, we need some preparations.

We now denote by n*.~(r; V) the number of eigenvalues lying in (—14,
1—7) of the problem (1.8). The first half of this section is devoted to the study
of the asymptotic formula for n*.~(r; V).

The following lemma is proved in the same way as in the proof of Lemma
2.1. We recall the definition of S given by S=S,+a,— V().

LEMMA 6.1. Assume that V(x) belongs to M(m) with 0<m<2. Then, for
any 6>0 small enough and any ¢ [CT (R}, we have

[B.(3; Vo, (=[50, ¢1=[A:0;5 Ve ¢l ,
where A;(6; V) and Bys; V) are written as follows:
(6.1.1) A5 V)=1+)(—NH+C0)q@)+1— Vo(x),
(6.1.2) B,(6; V)=0—3)(—4)—C@)q(x)+1— V(=) ,

while qx) 1s a scalar function belonging to K*(m,) with m,>m and V(z)=
V(@)ay+a.Vix).
We define the 4X4 unitary matrix T'(z) as

=" ),

where Ti(x) (=1,2) are the 2Xx2 unitary matrices defined in (M-3). Then, we
shall define the unitary operator U acting on [L*(R?®)]* in the following way:

(6.2) (Up)a)=T(x)p(x) .
LeMMA 6.2. Let U be the unitary operator defined by (6.2). Then, for
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any 6>0 small enough and any ¢ € [Co(R®]¢, we have
{6.3) (UM~ DU~ (—Mg, el <[— 4o, o] +COIA+ [z} e, 0] .
Proor. Each element of U*—4)U—(—4) is represented like a(x, D)=
é‘l ak(x)g%—!—b(x). Here by virtue of the assumption (M-3), the coefficients a,(x)
(k=1,2,3) and b(x) satisfy the following estimates:
6.4.1) la(@)| =CA+ 1z,
(6.4.2) @ =CA+|zl®) .
In order to prove (6.3), it is sufficient to show that for u,ve CH(R?®),
I(a(x, Dyu, v)| S8{(—4u, w)+(—4v, V)}+CENA+12*) " u, w)+(L+|z*) v, )},

which is an immediate consequence of (6.4.1) and (6.4.2). q.e.d
By means of Lemma 6.2, we easily see that for o€ [CO(R]Y,

(6.5.1) [U*A.6; VIUg, ¢1=[4:(6; Vg, ¢l ,
(6.5.2) [U*B.@; V)Ue, ¢1=[Bx(6; Ve, ¢,
where
(6.6.1) A58 V)=1+28)(—DH+C0)q(x)+1—-Q,(=) ,
(6.6.2) By@; V)=(1—25(—4)—C@)g(®)+1—Qux) ,

q1,1(%) 0
6.7 Qula)= 2

qz,:(®)
2,2(%)

With the aid of Lemma 6.1, (6.5.1) and (6.5.2), we can obtain the following
theorem concerning the asymptotic formula for n*~(r; V).

THEOREM 6.2. Assume that V(x) belongs to M(m) with 0<m<2. Then, as
r—0,
(6.8) at~(r; VY=Cg (V)pd/2-3/mLo(ps/2-3/m) |
where

Cs-(Vy=(uazner o LEHEBR. 3 [ av(a; guoedo.
S

I'B/m) =t

ProoF. We first note that n*~(r; V) is equal to the maximal dimension of
subspaces in [CP(R?®]* such that
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[Ste, gl <(1—1)2lo, ¢] .

Hence, as in the proof of Theorem 5.1, (6.8) is obtained from the estimates for
the number of negative eigenvalues less than —2r-+® of the following problems:

(A—20)(—Du—q; (x)u—~CE)glz)u=21u,
1+20)(—Du—g; ()u+CO)qg)u=Au , uecL¥R3. g.e.d.
The following lemma is a generalization of Lemma 2.1 to the case of matrix-

valued potentials and its proof is carried out in the same way as in the proof of

Lemma 2.1.

LEMMA 6.3. Let N be the unitary operator defined by (2.1). Assume that
Vix) belongs to M(m) with 0<m<2. Then, for any 6>0 small enough and
any ¢ e[Cy(R®)]¢, we have

[BG; Ve, (]<IN*S—1/2)*No, ¢l ,
where
G@o; V) 0
BG; V) G Vo)
H = - X)
HG; V) ’
0 HG; V)

G6; V)=@12—)(—DH—C@)gx)+1/4,
H@; V)=(1—-3)(—H)—C@)gx)+1—5+1/4,

> 1/2) V(=) 0 >
Volx)=
@=(  apr)
while q(z) is o function belonging to K*(m,) with m,>m and Viz) (1=1,2)
are the 2X2 matrices introduced in (M-2).
Now we shall prove Theorem 6.1.
ProOF OF THEOREM 6.1. Let U be the unitary operator defined by (6.2).

Then, by means of Lemmas 6.2 and 6.3, we have for any ¢<[C3(RY],
(6.9) [B@; Vo, J<[U*B@; V)Up, o) <[(NU)HS—1/2:N Uo, ¢l ,

where
G, (3; V) 0
_ G...(6; V)
B@; V)= H..6; V) ,
0 H,.(6; V)
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G105 V)=(1/2—20)(—4)—(1/2)qs,1(x)—Cld)g(x)+1/4 ,
H,(@; V)=(1—20)(—4)—(3/2)¢:.x(x)—C(0)g(x)}+1—d-+1/4 .

We denote by m,(r; ¢1.:,0) (k=1,2) the number of eigenvalues less than —r
of the following problem:

(1/2—20)(— DHyu—CE@)gx)u—(1/2)q ()u=2u , uweL¥R?) .
By virtue of (6.9), an argument similar to the proof of Theorem 5.1 shows that
for each fixed >0 (small enough),
nt(r; V)ééi1 my(r—r*; gs,,0)+C0) .

On the other hand, it follows from Theorem A in §5 that
Iirgl I (15 Qae 8)=(1/2—28)"%2C},% ,

where

s (3/m—3/2)

Ci=1/24)27%™(z)” T'@/m)

S at(o; Q1,k)3/mdw .
s2
Hence, we have
lim sup r¥/==320%(r; V)=(1/2—25)7"* ﬁ Cip.
r—0 k=1
Since 6 is arbitrary, we obtain
(6.10) lim sup p¥mI 2ty V)S23/2 kﬁil C.=C3(V).

Similarly, by considering the operator S+1/2 instead of §—1/2, we have

6.11) lim sup 7= ~</n~(r; V)=2 3 Co
7 k=1
where
o TBIm—8/2)
— 3/m 3/2 RPN 3/m
Cua= (1220 m(ey LTS Ss2a (@} g0)"mdo.
Next we shall show that
(6.12) lim inf ¢¥/m 3204 (r; V)=C5 .

0

Noting that n*(r; V)=n*(r; V)+n (r; V)+the multiplicity of zero eigenvalue,
we see by means of Theorem 6.2 and (6.11) that

lim inf r¥™ 320 (p; V)=lim r¥/» 3205 (r; V)

r—0 0

—lim sup p¥msliy (s VIZCHV),
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which, together with (6.10), completes the proof. g.e.d.
In the proof of Theorem 6.1, we have obtained also the asymptotic formula
for n=(r; V).

THEOREM 6.3. Assume that V{z) belongs to M(m) with 0<m<2. Then, as
r—0,

/n—(,r; V):C(-)—(V)T3/2—3/m+0(7-3/2-3/m) ,
where

e 5 | o' guedo
s2

= —_ 3/2-3/m(,\—8/2
Ca(V)=(ahve=sim@y S tE 50
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