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§1. Introduction

In the present paper we shall investigate the spectral properties of the
generators of the Klein-Gordon type equations and then study the asymptotic
behavior of the generated semigroups, i.e., scattering problems.

The perturbed Klein-Gordon equation, to which we shall apply the abstract
theory to be developed in the following, is

(L1 {(%—z‘bo (x)>2 + < - ng < ai - ibj(x)>2 + m2+q(x)>}¢'(x, £)=0,

where by(2), b;(x), 2
0% ;

at infinity. The ﬁrsé order equation in ¢, which is associated with (1.1), is in

b,(x) and q(x) are real functions which behave like 0(lz]™*~)

an abstract form

O e

In the case of the Klein-Gordon equation, the operators H and K in the above
equation are specialized as

3 2

H=—73 (i——ib,@) e mi-t (@) —by(@)? and K=2b,(x) ,

j=t ]
and fi(t) corresponds to ¢(x,t) and f*(@t) to %gb(x, t). When H is positive or K
is zero, we can construct a nice Hilbert space in which the generator of the
equation (1.2) is selfadjoint (see [2], [3], [5], [9], [12], [17], [19], [23], [26], [27] and [28]).
In general we can not find out such a space a priori and the generator may have
the non-real spectrum (see [9],[17] and [24]). Therefore, we handle the equation
(1.2) in the space for the unperturbed equation

(1.3) %(;Z:):i(i?io 7)(;2;) H,=¢>0.
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In the case of the Klein-Gordon equation, we take H, as —4+m?. Now, we
must treat a non-selfadjoint problem, while we have a nice Hermitian symmetric
form (not necessarily positive definite) for which the generator of (1.2) is
symmetrie, i.e., J-selfadjoint”. Then, using the limiting absorption method, we
construct the perturbed spectral measure and the invariant subspaces which
reduce the equation (1.2). The above mentioned form becomes positive definite
in these spaces and we can develop the scattering theory with two Hilbert
spaces.

§2. The unperturbed eguation

Let X be a Hilbert space with an inner produet (f,¢) and the correspond-
ing norm ||f], f/,g€X, and let H, be a positive definite selfadjoint operator in
X:Hy=z¢>0. We denote the square root of H, by h,. The Hilbert space 9, is
then defined as the direct sum of spaces D(h,) and X, where D(h,) is the domain
of h® which is a Hilbert space with an inner product (hf, hog), f»g<D(h,).
We consider the following equation

b A NG - ()

ProprosiTioN 2.1. The operator B, which is defined as

0=(30)

5 D () eme

Bof o:<
1s selfadjoint in Y.

Using this proposition, we can integrate the equation (2.1) and obtain a
unitary group V,(f), —co<t<co, with the generator 4B,. A simple proof of
this proposition is given as follows. We transform the equation (2.1) into a
“diagonal” form. Let ¥, be another Hilbert space which is the direct sum of
two copies of X, and let T be a unitary operator from ), to ¥, given as

1 (h—i
Tfﬂ“\/? (ho 1:>f0 .

Then the equation (2.1) is transformed into

1 For the notion of J-selfadjointness, see the book of Bognar [4].
2 1In this paper we denote the domain and the range of an operator A by 9©(4) and
R(A) respectively.
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d_ o (b O _
@.2) F00=i(" 3 Joutt, gult=T,t) .

g" (;L>=TB0T“1 by A,. Then D(A,)=TD(B,)=
Iy

@EZ*)D and A, is selfadjoint in X,, so that B, is also selfadjoint in ¥,. We
0.

denote the unitary group TV, ()T * by U,(t).

We denote the operator <

§3. The perturbed equation and the indefinite inner products
3.1. Generation of the perturbed semigroup

We shall now investigate the perturbed equation (1.2) under the following
assumption.

AssuMpTION 3.1. (1) H is a selfadjoint operator in X with domain ©(H)=
D(H,) and bounded from below; (2) K is a closed symmetric operator in X with
domain DK) >D(h,).

We then define an operator V as

DAV )Y=D(H,) and Vf=Hf—H,f, feDV).

Under the above assumption we obtain the following theorem.

THEOREM 3.2. The operator B, which is defined as

_ _{ 0 —2 /!
D(B)=D(By) and Bf-(iH K)f, f_( f2>e€D(B),
18 a closed operator in Y, and generates a Cl-group V{(i), —oo<lt<oo,
In order to prove this theorem, we need the next lemma.

LEMMA 8.3. If H is positive definite: H=c¢>0, B is selfadjoint in 9,
which is equipped with the inner product (f, ¢dv=(v Hf, v Hg)+(f2 ¢ and
the corresponding norm.

ProoF. First we remark that each of the inner products (f, g)», and (f, g)»
defines the same topology in ¥, by the closed graph theorem. Now let {f,}<D(B)
and

fo—f and Bf,—g, as n—co.
Then, since {fZ<DK) and
IEf = el £+ U= (1B fallog+ 1 fallse) 5
we have that f?e®(K) and Kf2— Kf*=iKg'. On the other hand, since H is
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closed and
iHfa=(Hf i+ Kf))—Kf: —g*—iKg*,

we have that f'e®(H) and ¢Hf'=—g*—iKg*. These facts imply that fe®(B)
and Bf=g. This proves the closedness of B. The symmetric property of B is
the consequence of an easy calculation and we omit the proof. Then, to con-
clude the proof, we have only to show that the ranges of B+4% are dense in De.
If R(B+1) is not dense, there is a non-zero element g such that, for all FedD(B),

0=((B-+0)f, @)s=1i(~ H(f—f?), vV Hg")+(GHf H-(K+9) 12, g9 .
We first use this equation for f with f*e T(H) and f?=0. Then
(Hf g*+-gh)=0,
which implies that g*=-—g% Next we put f=0 and fi=g*c€D(h,). Then we
have
WV He?, v Hg)+(Kg?, g°)+i(g% g%)=0 .
Taking the imaginary part of this equation, we have that 9*=0 and consequently
g'=0. The case of B—¢ is treated in the same way. q.e.d.

PROOF OF THEOREM 3.2. Let e(1) be the spectral family associated with
H: Hzg Ade(d), and let |H| IZX [2lde(?). Then the operator B* which is defined as

D(B+)=D(B) and B*f= _Ié)f, feDBY,

( 0
(| H|+1)

is closed and generates a C°group V*() in ¥, (by Lemma 3.3). On the other
hand, B is represented as B=B*+C~ where
0 0
C = o
z<2§ xde(z)—1> 0
which is a bounded operator since H is bounded from below. This shows that
B is closed and generates a C’-group V() in 9, (see Kato [11]; IX §2).
By the unitary operator T in §2, the operator B is transformed into the
operator A which is given in X, as
D(A)=D(4,) and Af=TBT 'f=A,f+Gf, fFeD(A)

where
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1/ 1 1\, 1 1 -1)
G 2Vh° (—1 —1>+2 (-1 1/°

Then we obtain the next theorem which corresponds to Theorem 3.2.

THEOREM 3.4. The operator A is closed in X, and generates a C°-group
U(t), —oco<i< 0.

3.2. Indefinite inner products

We shall now introduce “inner products” for which the operator B or A is
“symmetric”. The Hermitian symmetric forms (f,9)s in %o and (f,¢)z in Zo,
which we call (indefinite) inner products, are defined as follows. Let A[f, g] be
a Hermitian symmetric form on XXX defined as

DIh]=D(ho) X D(ho)® ,
hLfY 9l=(VH+rf* VHFrg)—r(f, g, Frxgte DR,

where —7 is a lower bound of H, Hz—y. Then the desired form (f,¢)y is
defined as

(fy g)Z):h[fly gl]+(f29 g2) ’ fr ge?)o .
We also define the form (f, g): in %, as
(f, 9):=(Tf, T7'g)s=(f, Qe+ VIS, 01, frg€%,

where

3.1) VIs, g]=%{h-ho}[hal<fl+fﬁ), hiX(gi+g)]

with holf*, g1 1= (ko f*, hog?).
PROPOSITION 3.5. The forms (f,q)y and (f,9): are bounded in U, and %,

respectively.
PROOF. These facts are the direct consequences of the fact D(ho)=D(VH+7)
and the closed graph theorem. q.e.d.

Furthermore, we have the following proposition, which shows that B is
symmetric with respect to the form (f,¢); and so is A with respect to the
form (f, 9)z.

PROPOSITION 3.6. For f,g<dD(B), we have

(Bf, 9)9=(f, Bg)y
3 We denote the domain of a sesqui-linear form hlf, g1 by D[hl.
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and for f,geD(A4)
(Af, 9:=(f, Ag): .

PrROOF. The proof for B is an easy calculation:

(B, 9)o=hl—1if* ¢'l+GHf '+ Kf?, g*)
=(f* iHg" )+ LS, —ig®]+(f*, Kg®)
=hlf*, —ig"1+(f*, iHg'-+ Kg)=(f, Bg), .

The proof for A is the direct consequence of this faet. q.e.d.

§4. Structure of the perturbed operator

4.1. Discrete spectrum

First we state a basic condition which we shall always assume from now on.

ASSUMPTION 4.1. The operators V and K are compact from D(H,) to X and
from D(he) to X respectively, where D(H,;) and D(h,) are equipped with the
corresponding graph norms.

From this assumption, using the interpolation theorem (see Hayakawsa [7]),
we obtain the following lemma.

LEMMA 4.2. The operators HyVH;49, 0<s<1, have bounded extensions
(Hy*VH; e, 0<s<1, which are compact.

PrRooF. The assumption implies that VH;! is compact in X. Since V is
symmetric, taking the adjoint of VH;!, we have that (H7'V)e=(VH;H* is also
compact. Hence, V has a compact extension from X to D(Hy)*, the dual space
of ©(H,) which is identified with the completion of X with respect to the norm
IH5'fl. Therefore, by the interpolation theorem, V has a compact extension
from D(HE) to D(H)* which is identified with the completion of X with
respect to the norm [|H;*fll. This implies that H;*VH;¢" hag a compact ex-
tension in X. g.e.d.

REMARK. From this lemma, putting $=1/2, we have that
1
VIS, g]=?((h51Vhal)“(f1—l—f2), g+g% .
Now we shall proceed to the investigation of the discrete spectrum of B.

If we denote by R(z; B) the resolvent of B: R(z; B)=(B—2)", we have for
non-real z that
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B—2=(1-+C R(z; B))(B+t—z).

This implies that R(z; B) exists for z with a sufficiently large imaginary part.
On the other hand, R(z; B) is rewritten as

R(z; B)=R(z; B)(1+WER(z; B)))™

with W=B—B,, and WR(z; B,), z€ C\R, is the analytic family of compact
operators. Then, if we denote by ¢(B) the spectrum of B and p(B,) the resolvent
set of B,, we have the next theorem.

THEOREM 4.3. The intersection of o(B) and o(B,) is a discrete set and
B—z is a Fredholm operator with an index 0 at such a point. Furthermore,
the non-real points of the spectrum of B are finite and appear symmetrically
with respect to the real axis R and are included in the circle {z; 12]1<v 7}

ProoF. Since WR(z; B,) is compact and analytic, 1+ WR(z; B,) is either
nowhere invertible or invertible except at a discrete set (see Steinberg [25]).
Furthermore, since R(z; B) exists for z with a sufficiently large imaginary part,
the second alternative is realized. The properties of B—z are derived from the
theory of the relatively compact perturbation (see Kato [11]). The finiteness of
the non-real eigenvalues of B is established as follows (see Bognar [4]; IX,
Theorem 4.6). Since H, is positive definite and V is H,-compact, the negative
part of H, ¢(0)X, is finite dimensional. Let {4}, j=1,-.-,7, be the non-real
eigenvalues of B with positive (or negative) imaginary parts, and {f}}, 7=1,---,
r, be the corresponding eigenvectors. We define M as the finite dimensional
subspace which is spanned by {f;}, /=1, :--,r, and let II be the operator from M
to ¥, which is defined as

1 1
Hf:(e(%)f ) f:<§2>eM.
Since (f, f)3=0 for fe M, IIf=0 implies f=0. Hence, we have that dim M=
dim e(0)X <o, The symmetric location of the non-real spectrum is proved as
follows. Let Bg-2g—=0 with some non-real z and non-zero g, then

(B—2)g, =0, fe®A(B) .
Hence
(9,(B—2)f)y=0.
If R(B—2) is dense in ¥,, we have
(9, /=0, f€9s,
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and ¢ takes the form g:<%1>, where g'e(H)=the null space of H. This

implies that Bg=0, g+0. Accordingly z belongs to the residual spectrum of B
and also belongs to the point spectrum since the index of B—Z is zero. The
boundedness of the absolute values of the non-real spectrum of B is proved as
follows. Let z belong to the non-real spectrum of B with an eigenvector f#0.
Then

(B, )o=2(F,F)s -
Taking the imaginary part of this equation, we have
(f, Pa=HS FH+( =0
On the other hand, as Bf=zf, we have f*=1izf'. Therefore
TP = (S, f=12P000
Since f=£0, this implies that [2]<Vv7. q.e.d.
In the case of A, we have the next theorem in %,.

THEOREM 4.4. If B, is replaced by A, and B by A in Theorem 4.2, all
the statements in the theorem are still valid.

4.2, Construction of the perturbed spectral measure

In the following part of this paper we use the X,-representation almost
exclusively and use the notations: R(2)=R(z; 4,), R#)=R(z; A) and r(z)=
R(z; ho). In order to investigate the continuous spectrum, we state here

another basic assumption.

ASSUMPTION 4.5. There is a bounded selfadjoint operator d in X which has
the following properties: (1) d is one to one and has the dense range; (2) R(V),
REK)cR(A)y=D(d"Y); (8) the operators dr(itie)d, dr(0)ro(A+ied, d 1 Kr(i+ic)d
and d™1Vr,(0)ro(Ax=1e)d with real 2 and ¢ are compact, and have boundary values
in the operator norm topology as e} 0, where the convergence is uniform for 2
which belongs to any fixed compact interval of the real axis B; (4) the operators
d, d7*K and d 1Vr,(0) are h,-smooth in the sense that

XB Vro(2-Hiefda<clfI? ,

where d stands for any one of d, d"*K and d~*Vr,(0), and ¢ does not depend on e.
Then we define the operator D in ¥, as
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(¢ Q) ses

The following lemma’ is a consequence of Assumption 4.5 and the definition of D.

LeMMA 4.6. Under Assumption 4.5, we have: (1) R(GR,(2))cR(D); (2) the
operator Q(z), which is defined as Q(z)=D'GRy2)D, is bounded for non-real
z and has a boundary value

Q(Zii0)=lilm QA+1e)

el0

in the operator morm topology and Q(1+10) is continuous in 1; (3) there
exists o closed set ' R with Lebesgue measure zero such that 1-+Q(i+1e) is
invertible and continuous on the closure of I {(4; ), here II.(4; ) is defined

for a compact set 4 which does mot intersect with I’ and for sufficiently
small §>0, as

II(4; 8)={z=2+1e; 1€4, ¢€(0,8)}.

Proor. The statements (1) and (2) are the direct consequences of Assump-
tion 4.5. The invertibility of 14-@Q(1+4s) on II.(d; d) is the consequence of the
finiteness of the non-real spectrum of B and the resolvent equation

(4.1 R()D(1+Q(z)=E(2)D .

We obtain the existence of I’ from the results of Kato-Kuroda (see [14],
Lemma 4.20). q.e.d.

REMARK. The concrete expression of I’ is
I'={; 1¢eR, 1+Q(A+10) or 1+@Q(1—0) is not invertible} .

After these preparatory works we can define the sesqui-linear form €(4; ¢)[f, g1
on ¥,xX¥%, for a compact 4 with ANI'=@ as

6(4; ILF, g1= 217 X (RO +ie)—RRA— i)}, 9)z,d2
S g (Ro(At-i6)— RoA— o)} f, 922
272?, 4
- S (R(2+i8)GRy(A-+19)f, 9z, d2
277."& 4
P S (R(—i8)GRy(A—ie)f, 9)s,dA .
27'5'7/ 4

The first term of these integrals is bounded and has a limit as ¢} 0, which
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equals to (Eo(4)f, 9)z, with E\(d) a spectral measure of the selfadjoint operator
A4,. We remark here that A, is absolutely continuous by Assumption 4.5, (8).
The second and the third integrals are estimated in the following manner by
the smoothness condition (see Kato [10] and Mochizuki [20], [21], [22]). From the
resolvent equation (4.1), the integrand in the second integral is written as

(R(2+1e)GR(A+12)f, 9)z,
=((1+Q(+1e))*D'GR\(2+1¢)f, DRy(2—1i¢)g)z, .

Hence, the integral is estimated as

1
2rn7

4.2)

S (RA+ie)GRA-+i0)f, 9)s,di

il

L 1 |, (@) DGR+ i2)f, DR, (G~
27 | s
<elllsligls, -

Here we used the concrete expression of DGR, (z);

prer@=(7" LfGvee 1 1)

FR Y L),

the Schwarz inequality and the smoothness condition. Summarizing these facts,
we obtain the following theorem.

THEOREM 4.7. The sesqui-linear forms {€(4; ¢)[f, g1; ¢ €(0, 8)} are uniformly
bounded in ¢ for a fized compact 4 which does not intersect with I' and have
a limit €IS, g] when ¢ 0, which is also bounded.

Proor. The existence of the limit is proved for f,geR(D) by Assumption
4.5 together with Proposition 4.6. In the general case we use the estimate (4.2)
and obtain the desired result. q.e.d.

REMARK. The compactness of 4 is assumed in Theorem 4.7. But if
(1+Q(2%£10))"* are uniformly bounded in 4, we can drop this condition.

This theorem shows that €(4)[f, g] defines a bounded operator E(4) which is
given as

(EDS, Dz=EDLS, 9] .

We call this family of operators F(4) the perturbed spectral measure and shall
investigate its properties in the next subsection.
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4.3. Properties of the perturbed spectral measure

We shall in this subsection show that the family of operators E(4) has most
of the properties of a usual spectral measure. Namely we can prove the next
theorem. We owe the proof of (5) of the theorem to Lax-Phillips [17].

THEOREM 4.8. Let 4 and 4; (§=1,2) be bounded open sets whose closures
do mot intersect with I' in Proposition 4.6. Then we have: (1) E(4,)E(d,)=
E4.04,) 5 (2) (B, 9)==(f, E(d)g):; 8) (BS, /)220, and if 430, (B, =
0=EMNf=0; (4) if 4 contains a point of the spectrum of A,, R(E(4)) is non-
trivial ; (B) 1if 420,

CNEDS = NEDS o=l EDSf NIz, €1,6:>0.

PrOOF OF (1). We need only to show the equality in the weak form for the
elements in R(D). Now, we have that

(E(4,)E(4,)Df, Dg)z,

=lim

L S {R(+ie)— RQ—ie) E(ds) DF, Dg)z,da
21 4

=lim -
clo 2m

X {ﬁm 2—; S ({R(2-+ie)— R(a—ie)}

Ty 0

X {R(p+i7)— Rip—io)} DY, Dg);odr;}d,l .

Then, using the resolvent equations for R(z) and the fact that DR(y=4z)D have
boundary values, we have

(E(4)E(4.)Df, Dg)s,
T € 1 . .
‘lif’o‘ghdlhd” () o RO+ 0~ RO—i01%, 0, |

1

== S (D{R(7+10)—R(n—10)}Df, 9)z,dn=(E(4: N 4,)Df, Dg)z, ,
2z 404y

here we used the notations DR(y+10)D to denote the limits of DR(»+iz)D when
7 tends to zero, which do exist by Theorem 4.7.
Proor OF (2). Since the form (f, g): is bounded, it has the representation

(/s g)fz(fr Pg)io:(Pf, g)io

with some bounded selfadjoint operator P. Thus we have
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(EA)f, 9):=(E(A)f, Pg)s,

—hm—l—g (R(+is)— RO—ie)} f, Pg)e,da
2

elo

—hm——l—g (R(+ie)—RA—1e)} f, 9)edA
27

ﬁhlm—z—;— & (f, {IR(A—1is)—R(2+1ie)}g)zd2 (by Proposition 3.6)

=tim 51 | (P, (RU—i0) RO+ io)lg)edi=(PS, EWB)y=(f; Ebo)s

Proor oF (3). To prove the nonnegativity, we first observe that
4.3)  (E(4Df, Df):

~lim zi X ({R(A+ie)— R(A—ie)Df, Df)sdA

—lim = g (RG-+1)Df, R(2= i) Df)sda

eld T
—hm{ & HR(2+za)Dfl]£0d2+——S V[R(Xiie)Df,R(Zi—is)Df]dl}.
Now, using the concrete expression of V[f,g], the formula (8.1) and the fact
that R(A+ie)Df=Ry(A+1e)D(1+Q(A+1e)) ' f, we have that
VIR(A+1e)Df, R(A+1e)Df 1= %(d“1 Vro(0Mr(A+ie)d f(z) —ro( —A—1e)d f(2)2),
dry(0){rA-+ie)d flz) —r—21—ie)d f(2)*}) ,
[ f(z)>
with f2)=(1+QU-+ie)f= ( e
which is uniformly bounded in ¢ by Assumption 4.5 together with Proposition
4.6. Therefore, the second term of (4.3) tends to zero as ¢ | 0. This proves the

nonnegativity. Furthermore, if (E(4)f, f)z=0, then (E(4)f, g):=(E(4)f, E(4)g)z=
0 for all g%, by (1) and (2) and the Schwarz inequality. This implies that

T—iE(A)f~( ) ke R(H) .
Thus AE(4)f=0 and

(E(DS, );O—hm—l—g ({R(A+1e)—R(QA—1ie)} E(A) f, g)z,d2

— 1 1
Isllo 2mi Xd{z*’bs A1 }(E(A)f,g);od,l 0.

This shows that E(4)f=0, which concludes the proof.
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PROOF OF (4). Since (E(4)Df, Df): is expressed as
(BDS, Df )s=1im =~ S IR(A£iDF %A
elo 4

we have, using the resolvent equation,

(BE(A)DS, Df )=

= 5o | (DRG0 B—i0)DA+QUI0) S, (L+-QUA IO e
Now, let 2 belong to the spectrum of A,, then the integrand of the above
equation does not vanish identically in some neighbourhood of 2 for some element
f. This implies that E(4)Df+#0, because the form (f, g): does not degenerate on
R(E()) by (3) and (1).

ProoOF OF (5). We shall prove this fact by contradiction. Let {f.} be a
sequence of elements in R(F(4)) such that

”fn”fo:l and ”fn”f*"o as n—>co.,

Then, since R(E(4)) is closed, we can assume without loss of generality that
{f.} converges weakly to some element feR(E(4)). On the other hand, by the

assumption we have
Il nfnnzo+—§-((ha%al)ﬂ(ﬁ+ﬁ>, (FitFD)—0, n—oo .

Thus, since (h;*Vh;1)* is compact by Lemma 4.2, the second term of the above
formula converges to VI[f, f]. Therefore, since |[f.ll5,=1, we have that V[f, fl=
—1. Then, using the well-known fact that [[f[3,=lim [f.[3,=1, we obtain

n—Q

I E=1r1z+ VIS f1=0.

This implies that [[f]:=0 and consequently that f=0, which contradicts the
fact that VIf, fl=—1. q.e.d.

Next, we shall examine the relation between the inner product (f, g): and
A on R(E()).

THEOREM 4.9. Let 4 satisfy the same condition as in Theorem 4.7, then
we have: (1) E(J)AC AE(d); (2) A is bounded on R(E(4)).

PROOF. Let fe®(4) and geD(A*), where A* is the adjoint of 4 in X%,.
Then we have the following equality
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(E()AS, g)ey=lim 1 g (R(i+ie)— RG—ie)} AF, )sya
10 2m1 )4
=(E( S, A*g)s, .
This implies that E()fe®D(4) and also that AEU)f=FE(4)Af. Now, since
R(2)Af=ARR)f=(1+zR(z))f for feT(A4), we have for feD(4), that
(AEU)S, g)s,=lim {-1— S ARG+ ie)— RA— i)}, 9)z,d2
cio | 2m1 )4

= X (R(+ie)+RR—ie)f, g);odl}
271' 4

—lim {—1 S MR +i6)— Ry a—ie)}f, )z, d2
271"1/ 4

gl0
+ Ee“ g ({Ry(A+1e)+ Ry(A—1e)}S, g)z,dA+the remainder}
T Ja
=(A4A,Es(4)f, 9)z,+the remainder .

The remainder term is estimated in the same way as in the proof of Theorem
4.7 together with the fact that e||Ry(217¢e)llz,=<1, and we obtain the estimate

(AEUS, 9zl =clfllz,-llgllz, -

This shows that A is bounded on R(E(4)) since A is densely defined and closed.
g.e.d.
Now, we define the Hilbert space X(4) as ¥(4)=%(E(4)) with an inner product
(f,9): and the operator Alz. as the restriction of A onto ¥(4). Then we can
summarize the essential part of the foregoing results as follows.

THEOREM 4.10. Let 4 satisfy the same condition as in Theorem 4.7 and
0¢ 4, then the operator Alzs 18 bounded and selfadjoint. The family of
operators {E(A); AC 4} is a spectral measure of Alsw.

ProoF. We have only to prove the last statement. The equality

(B, g)ae:Iei{rol

: S {R(G-+ie)— R(—ie)}f, )
271 4

and the fact that R(2+1e)E(4)f=(Alzwn—(A+1e))*E(4)f imply the desired result.
q.e.d.

§5. Unitary equivalence and scattering theory
5.1. Construction of wave operators

We denote by X,(4) the Hilbert space FE (4)X,. Then we shall establish the
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unitary equivalence between the operators Az, the restriction of 4, onto
Xo(4d), and Alzsy. We prove this fact using the abstract stationary method of
the scattering theory (see Kato-Kuroda [13], [14]). We first prepare a representa-
tion space ¥*(4; %,) in which Aglzyn is diagonal. Namely, we introduce the
following space €(4; %,) for a bounded 4:

€45 X)={A; 2e 4, fA=MWM(DR(} ,

where M,(A)= \/ ﬁD{Ro(l—l—iO)~Ro(2—i0)}D and h(4) is any strongly continuous

function of 2 with its values in X,. Then €(4; X,) is a pre-Hilbert space with an
inner product

(), g(@)ﬁ(d:ng (SR, gD)sdl2 .
4
We complete this space and get a Hilbert space ¥¥(4; ¥%,). Now we have the

following proposition.

PROPOSITION 5.1. There exists a unitary operator J(4) from X(d4) to
L4 Xy) such that . (1) JUDHELDDf=x DD f, where x42) i a characteristic
function of 4; (2) Jo(DAslzynSo(d)*=2, the multiplication operator by A.

This proposition is an easy consequence of the spectral representation of the
selfadjoint operator Aglz s, and we omit the proof. Then we shall proceed to
the investigation of the perturbed operator Alzs. Since we have the formula :

| B DS i=lim = X IR2-+i) DAL+ QUkie)) 2 f 2,04
= [ I quaion i,

we can define the unitary operator J.(4) from X(4) to &4 ; %) as
JADED)Df =y A MADNA+QQAE20)2S .

Here the fact that J.(4) are onto is derived from the facts that 1--Q(i4-143),
which depend continuously on 2, 1€ 4, are one-to-one and onto, and that J,(4) is
unitary. Now, we have the next theorem.

THEOREM 5.2. The operators J.(4) give two diagonal representations of
Alzy tn the sense that

JADAlz T AD)*=2.

The wave operators W.(4), which are defined as
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Wod)=J(4*To(4) ,
are unitary from X.(4) to X(4) and have the intertwining properiies:
W) Aolzyr=Alzcs W=(4) .

ProoF. The proof of the first part of this theorem is the same as that for
Jo(d), if we remember the proof of Theorem 4.8, (3) and Theorem 4.10. The
unitarity of W.(4) is a direct consequence of the properties of J,(4) and J.(4).
Furthermore, we have

W) Aotz Bo(A) DS
=T (DX o) A AV T D ESD DS
=J (AU (D) Ed) Df = I YT (D) AT YT (DHELD DS
=Als [€)] Wi(A)EO(A)Df .

This concludes the proof. q.e.d.

5.2. Time-dependent formulation

We shall give in this subsection another expression of W.(4), which repre-
sents the asymptotic behavior of U(t)lzw. Namely, we have the next theorem.

THEOREM 5.3. The wave operators W.(4) have the expression :

W.(4)f :tljinmU(—t)E'(A) U0, feX{d),
where the limits are taken with respect to |[fllz or [ fllz,. Furthermore, we

have the following asymptotic behavior for U(t):

Jin [UD WD) —UsO)f =0, FeXold) .

Proor. Let us define the following function
Z.(t; =W D) — U= EDUNE(DS} -
Since U(t) is unitary, using the intertwining properties of W.(d), we have
Z.@; N=I{W D —EDUDE(DS|z -

Now we fix ¢ and approximate U,(t)E.(4)f by a sequence of elements {Df;(¢)},
then
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Z.(t; =T —T (D) B} UL Eo( D) f Nz sz
=lim [/, (D) —T LD EDIDF )2 sz
—Jlgog lim [ —(1+ Qi) Y secaizg

=lim lim M1+ QA+ 1) D" *GRy(A£ 1) DI i) 32 cas2p> »

Foroo g

and we have the fact that M(A)(A+Q(A+1))™* is uniformly bounded in 2€4 and
e. Therefore, expressing the resolvent R (1xte) by U,(t) we obtain (see Kato
[10] Lemma 3.5) that

Z.(¢; HSelim lim S 1DG Ry <) Df ) 2,43
4

oo gl

joo 10

<eclim lim S | DG U ) DF B2 ds
+

—¢lim S 1D GULs)Df B2 ds .

j—ooo

Here, we remark that Uys)Dfi(t) e D(D*G) for almost every s by the smooth-
ness of D™'G with respect to A, (see Kato [10] Remark 3.8). On the other hand,
the last term equals to

¢ S tmi ID*GUs+E(D)fl3,ds

0

=c gi“iIID—IGUO<8>EO(A>fsl:Ods ,

which is finite by the smoothness condition, so that it tends to zero as t—d oo.
This concludes the first part of the theorem. Since, for fe %,(4),

NU@GW () f—Us@)f llz,
Sl U WADf—ED UGS =+ 1A—ED)YUst)S iz,
by Theorem 4.8, (5), we can prove the second part by showing that
tlilinw[l(l—*E(A))Uo(t)Eo(A)f”Io:O’ foo .

This is shown by the following calculation :
Jlim ([0~ E) U B S I,
= lim (- EA) U B D713
= lim U@ B — lim (BT B 1
=B DF 13— Jim [ U~ BA) U EoDF 3
=B 12, ~ 1 Wl Bl D) 20
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where we used the abbreviation (f, f):=|/f}lZ and the facts that (1) U, () E,(4) f
tends weakly to zero; (2) |fIli=Isl}+VL/, f1 and V[f,f]:%((halea Nef, £

where (h;*Vh;')* is compact, so that V[A®), fit)] tends to zero when J®)
(=U,) B4 f) tends weakly to zero. g.e.d.

§6. Applications to the Klein-Gordon equations
6.1. Applications

We shall now apply the preceding results to the Klein-Gordon equation
(1.1). We consider the equation in X=_L*R*) and define the operators Hy, H, V
and K as follows:

D(Ho)=DH)=DV)=H*(R;

Hof:__é;l aa;zf(w)+m2f(w), m>0;

Hf=— % (52ibia) ) Fla)m )+ (@) —bo@) @) ;

Vi=Hf—Hf=2i 2 b 5-10))

Zj

HE (5000 )+ 2 b+ @bt bt
DE) = DH )= HARY)

Kf=2b(x)f(x) ,
where H(R®) (s=1,2) are the Sobolev spaces of order s¥, and bi(xy (7=0,1,2,3)
and g(x) are bounded real functions with bounded derivatives %b,-(m) (1=1,2,3).
3

Now, we impose the following conditions on these functions.

ASSUMPTION 6.1. The functions b;(z) (§=90,1, 2, 3) and ¢(x) are all real bounded
measurable functions in R® which satisfy: (1) 1b;x)|<clz|™2 (§=0,1,2,3), ¢>0;
(2) bi(x) (7=1,2,8) are differentiable and 9 bj(x)lgclxl'z‘s; 3) lg@)=elz|2.

7

Then we have the next theorem.

THEOREM 6.2. Under Assumption 6.1 all the preceding results in the
sections 4 and § are valid.

ProoF. We may check Assumptions 3.1, 4.1 and 4.5. First, the compact-
ness of V' and K are derived directly from Assumption 6.1 and Rellich’s com-

# The Sobolev space H(R®) is the set of all square integrable functions in B°® which
have square integrable distributional derivatives up to the order s.
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pactness theorem. This implies Assumption 4.1 and also 3.1. Next, we put
d=(1+|2|>)~¢*2/2, Then d'V and d~*K are well defined operators from D(H)
to X and from D(r,) to X respectively, and the compactness of dr.(2)d,
dr,(0)ry(2)d, d-*Kry(z)d and d-tVr(0)r(2)d can be proved by Rellich’s theorem.
Now we shall proceed to the investigation of the behavior of these operators
near the real axis. For this purpose we introduce the following operators
T2, dy, 2>m?, from X to L¥(2), here 2 is the unit sphere in R® with its center
0. We define (see Kuroda [15] and [16))

1@ D=4 A BN I ), fe X,

where ¥ denotes the Fourier transformation and we use the spherical coordinates
(r,®), r€(0, ) and we 2, in the dual space. We denote one of d, dry(0), d*K

and d-1Vr,(0) by d. Then T(1; J) belongs to
L, o005 L@ =L s 1y e @), |7 1w <oo)

and

VAV g)fHLz((m2,oe)iL2(9)): H&f“ .
Furthermore, T(z;éi) gives a diagonal representation of H, and Jm(z)d is
represented as

dr@if=\" i T AT d)fie

mt €
Here T(&; ci) and 7T(¢;d) are Holder continuous (see Lions-Magenes [181), so that
for z=1-11is with 1=m?, the above integral converges to some bounded operator
as ¢} 0 in the operator norm topology (Privalov’s theorem; see Kato-Kuroda
{14]). The smoothness conditions are shown as follows. First, as is well-known,

d is H,-smooth, which is expressed as (see Kato [10])

sup  —L(d{R(+ie; Ho—RG—ie; H)d*f, f)<co .
lela?ﬁi(lo,oo) 271"1/

Furthermore, by Agmon’s weighted-L® estimate (see Agmon [1] Appendix A and
also Ginibre-Moulin [6]), we have

ARz ; Hydl|=ce(l+{2D* .

This shows that [|T(; D Se(1+1€)~14, since
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T(&; dy*Tie ; d)ziﬂz{mwo s H)—~R(E—i0; Hold .

Then, using the facts that
[ TE 5 (drOD, ITE; KM, [TE; @ Vr0)9=clTE; bl ,

we have, for d,

L (@roatia)—roa—ild S, £)
21

sup
2¢ Rl,e€(0,00)
1

fli=

« e . Tk 2
< sup_ X_m e TEs Bl

< ® € 1
=P Sm (@D tel (Lo
Sw € 2¢

m TL'{(S_Z)2+52} (1+$2)1/2

dé

=sup dé=e

s
This proves the smoothness of the operators d, dr,(0), d*K and d'V7r,0) with
respect to hg. q.e.d.

6.2. Nonexistence of an exceptional set

Under the same condition as Assumption 6.1, we can prove that the excep-
tional set I' is included in the union of the point spectrum of A4 and +m.
Therefore, if no point spectrum is included in the continuous spectrum of A,
there is no exceptional set in the continuous spectrum. We thus obtain the

next proposition.

PROPOSITION 6.3. If 2 belongs to the exceptional set I' and A#+m, there
exists a non-zero vector g<X, such that Ag=2ig.

Proor. Let 1 satisfy the condition, then there is a non-zero vector fcX,
such that

1+Q+10)f=0 or A1+QQ—10))f=0.

We can assume without loss of generality that the first equation holds. Then

we have
(6.1) A+ QUA+e)) =D 1+ GR{A+1)Df—0, as ¢ | 0.

On the other hand, since (f, g):==(f, g)z,+ V1/, gl, we have
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(Ry(a+ie)Df, DL+ QU+ie)f)z
—(DRy(a+ie)Df, (1+Qi+i) e,
+-§—(halVhalmwria)dfl—m(—z—is)dﬂ},f(e)) ,

where f(s) tends to zero as ¢ | 0. Thus, using Assumption 4.5 and (6.1), we have
(Ro(A+18)Df, DA+QU+ie)f):—0, as ¢} 0 .
This implies, since D(1+@Q(z))=(A—2)Ry(2)D, that
(Ro(a+1e) DS, (A—(2+1e) Ry(A+1ie)Df)e—0, as ¢ | 0.

Taking the imaginary part of the above formula, we have

(Ro(A-+16)Df, Ry(2+1)Df)z—0 as ¢ | 0.
Then, since V[Ry(i+18)Df, Ro(2+16)Df] is bounded (see the proof of Theorem 4.8,
(3)), we have

lim S (Ru(it-ie)— Rua— i) Df, D e

=lim f;—(RO(H i) Df, Ry(A-+1)Df )z,

=lim —%(RO(H—'is)Df, Ry(+18)Df):=0

We can apply Agmon’s trace lemma (see Agmon [1] Appendix B) and obtain
that hm R (i) Df=Ry(2+i0)Dfc X,. We set g=Ry(2+1i0)Df. Then, using (6. 1),
we have easily that 11m ARJa+14e)Df=2g and also that g+0. Since A is closed,
this implies that Ag lg, g=+0. q.e.d.

The equation Ag=21g implies that there exists a non-—zero vector k€9, such

that

B
2h= h(H K)hth

Thus k' satisfies the equation:

(H+2K)h*=2*h* .
Using the results of Ikebe-Uchiyama [8] for the non-existence of a positive
eigenvalue of the second-order elliptic operators, we have the following proposition.

PROPOSITION 6.4. Under Assumption 6.1 and the unigque continuation
property of the operators H+1K, 1€ (xm, o), there is no eigenvalue of A
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which is embedded in the continuous spectrum of A, and the continuous part
of the spectrum of A absolutely continuous.

Note added in proof; After this paper was accepted, K. Yajima and the
present author ([29]) extended the applications of the smooth perturbation to

include the so-called short-range perturbations. Using those results, we can relax

the conditions in Assumption 6.1 such that bix) (7=0,1,2,3), 5@—61«(50) (j=1,2,8)
Ty

and g(x) behave like 0(j2|™*"*) at infinity. In that case, we have to make some

slight modifications in Assumption 4.5, that is, the range of integration in 4
has to be replaced by some subset of R, and then we have also to make the
corresponding modifications in the subsequent lemmas and theorems. The details
will be published elsewhere.
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