A Poisson formula and exponential sums¹⁾

By Jun-ichi IGUSA

Introduction. We shall first recall our Poisson formula in [4] with precise definitions: let k denote a global field; we shall denote by the subscripts A and k the adelization relative to k and the taking of k-rational points, respectively. We shall denote by k_A and k_A^{\times} the adele and idele groups of k; we shall fix a non-trivial character ϕ of k_A/k . Let X denote an affine n-space over k with x_1, x_2, \dots, x_n as its affine coordinates; let dx denote the exterior product of their differentials and $|dx|_A$ the Haar measure on X_A such that X_A/X_k is of measure 1. We shall fix a form f(x) of degree $m \ge 2$ in x_1, x_2, \dots, x_n with coefficients in k; we shall assume that char (k) does not divide m, f(x) is "strongly non-degenerate", i.e., the projective hypersurface defined by f(x)=0 is non-singular, and n > 2m. Let U(i) denote the set of simple points of the hypersurface f(x)=i and $\theta_i(x)$ the residue of $(f(x)-i)^{-1}dx$ along U(i); then if i is in k, the gauge-form θ_i on U(i) gives rise to a measure $|\theta_i|_A$ on $U(i)_A$. Finally let $\mathcal{S}(X_A)$ denote the Schwartz-Bruhat space of X_A and take Φ from $\mathcal{S}(X_A)$. Then we have the following identity:

both sides have dominant series if Φ is restricted to a compact subset of $\mathcal{S}(X_A)$. We shall add the Dirac measure δ_0 to the so-defined tempered measure on X_A and denote the new measure by E; then $E(\Phi)-\Phi(0)$ is given by either side of the above identity.

On the other hand

$$E'(\Phi) = \sum_{\xi \in X_k} \Phi(\xi)$$

defines a tempered measure E' on X_A independently of f(x) for every n. We observe that Supp (E'), the support of E', is the discrete subset X_k of X_A while Supp (E) is in general the union of $f^{-1}(i)_A$ for all i in k; Supp (E) becomes the union of $\{0\}$ and $f^{-1}(i)_A = U(i)_A$ for all i in k^{\times} if $U(0)_A$ is empty. The main objective of this paper is to prove the following remarkable relation between E and E':

¹⁾ This work was partially supported by the National Science Foundation.

We convert $G_A = k_A \times k_A^{\times}$ into a (locally compact) group as

$$(u,t)\cdot(u',t')=(u+t^{m}u',tt')$$

and for every g=(u,t) in G_A we put

$$(U(g)\Phi)(x)=|t|_A^{(1/2)n}\phi(uf(x))\Phi(tx),$$

in which $|t|_A$ is the modulus of t. Then $(E'-E)(U(g)\Phi)$ becomes a G_k -invariant continuous function on G_A and it vanishes at every k-rational boundary point of G_A to the order s-1 where s=n/2m. This is a generalization of a classical theorem stating that the theta series defined by a quadratic form behaves up to lower order terms like the corresponding Eisenstein series at every cusp. We recall that if f(x) is a quadratic form, then the above G_A can be embedded in the "metaplectic group" which is at most a two-sheeted covering group of $(SL_2)_A$ and which contains $(SL_2)_k$ as a subgroup and that E'-E is $(SL_2)_k$ -invariant; in view of the reduction theory for $(SL_2)_A$ the above-recalled theorem then implies the boundedness of $(E'-E)(U(g)\Phi)$ on G_A . We refer to Weil [12], Chap. V for the details.

The theory of metaplectic groups for higher degree forms is not yet available. However our result seems to indicate that a boundedness as above holds in some form. We have included a remark that a weak form of the boundedness implies a generalization of the Hasse-Minkowski theorem. We have also included as an appendix an observation showing that a naive generalization of the metaplectic group might give something different from SL_2 . It is hoped that this paper serves as a guide to the future arithmetic theory of higher degree forms.

1. Reduction theory for G_A . We shall denote by p a (not necessarily non-archimedean) valuation on the global field k, by k_p the corresponding completion of k, and by $|\ |_p$ the usual absolute value on k_p . If t_p is an element of k_p^\times , then $|t_p|_p$ is the modulus of t_p , i.e., the rate of measure change in k_p under the multiplication by t_p . Moreover the modulus $|t|_A$ of an element $t=(t_p)_p$ of k_A^\times becomes the product of all $|t_p|_p$. We recall that $|t|_A=1$ if t is in t is in t is the improduct-formula" all the time.

Since $G_A = k_A \times k_A^{\times}$, every element g of G_A is a pair (u, t) of an element u of k_A and an element t of k_A^{\times} ; g is in G_k if u is in k and t in k^{\times} . We put

$$t(u) = U(u, 1)$$
, $d(t) = U(0, t)$;

then we get

$$(\boldsymbol{t}(u)\Phi)(x) = \psi(uf(x))\Phi(x)$$
, $(\boldsymbol{d}(t)\Phi)(x) = |t|_{A}^{(1/2)n}\Phi(tx)$

for every Φ in $\mathcal{S}(X_A)$ and

$$U(u,t)=t(u)d(t)=d(t)t(t^{-m}u)$$
.

We recall that the correspondence $(g, \Phi) \to U(g)\Phi$ does define a mapping $G_A \times \mathscr{S}(X_A) \to \mathscr{S}(X_A)$ and that it is continuous; such a continuity problem was examined quite generally by Levin [7]. Moreover $g \to U(g)$ uniquely extends to a unitary representation of G_A in $L^2(X_A)$. Since E, E' are tempered distributions on X_A , both $E(U(g)\Phi)$ and $E'(U(g)\Phi)$ become complex-valued continuous functions on $G_A \times \mathscr{S}(X_A)$. We observe that E, E' are G_k -invariant, i.e., $E(U(g)\Phi) = E(\Phi)$, $E'(U(g)\Phi) = E'(\Phi)$ for every g in G_k and Φ in $\mathscr{S}(X_A)$; the verification is straightforward.

We shall construct a convenient subset of G_A whose left translates by elements of G_k cover the whole G_A ; such a procedure is called a reduction theory for G_A . We shall first recall the reduction theories for k_A and k_A^{\times} : if k is a number field, we shall denote by S_{∞} the set of all archimedean valuations on k; then k_p is an \mathbf{R} -field, i.e., $k_p = \mathbf{R}$ or C, for every p in S_{∞} . We shall denote by p the ring of integers of p, i.e., the integral closure of p in p. If p is a function field, we shall denote by p the algebraic closure in p of the prime field; we then choose a valuation p such that the corresponding residue class field p is of degree at least twice the genus of p over p and we take p as p.

$$k_{p_{\infty}} = F_q((T^{-1}))$$
.

This time we shall denote by \mathfrak{o} the integral closure of $F_{\mathfrak{g}_n}[T]$ in k.

In either case if k_p is a p-field, i.e., if k_p is not an R-field, we shall denote by X_p^0 the compact open subgroup $(k_p^0)^n$ of $X_p = k_p^n$, in which k_p^0 is the maximal compact subring of k_p , and by X_0 the restricted product of X_p relative to X_p^0 for all p not in S_∞ ; then

$$X_{\scriptscriptstyle 0}^{\scriptscriptstyle 0} = \prod_{\scriptscriptstyle p \in S_{\scriptscriptstyle -}} X_{\scriptscriptstyle p}^{\scriptscriptstyle 0}$$

becomes a compact open subgroup of X_0 . We shall denote by X_{∞} the product of X_p for all p in S_{∞} ; then we have

$$X_A = X_0 \times X_\infty$$
;

accordingly we shall express an element x of X_A as (x_0, x_∞) . We shall denote by X_0 the subgroup of X_k consisting of 0-rational points of X. If we diagonally embed X_k in X_A , then we have

$$X_A = X_k + (X_0^0 \times X_\infty)$$
, $X_0 = X_k \cap (X_0^0 \times X_\infty)$;

moreover the projection of X_0 to X_{∞} becomes a lattice in X_{∞} ; we shall denote X_0 , X_0^0 , X_{∞} for n=1 by k_0 , k_0^0 , k_{∞} . This is the reduction theory for X_A and in particular for k_A .

If k is a number field and τ is in \mathbf{R}_+^{\times} , the multiplicative group of positive real numbers, then we shall denote by a_{τ} the element of k_A^{\times} defined by $a_{\tau}=(1,\tau)$, i.e., by the condition that non-archimedean components are 1 and archimedean components are τ . If k is a function field, we replace \mathbf{R}_+^{\times} by the cyclic subgroup of $(k_{p_{\infty}})^{\times}$ generated by T and define a_{τ} similarly as above. Then in either case we have

$$k_A^{\times} = k^{\times} \cdot \{a_{\tau}\}_{\tau} \cdot \text{compact}$$
;

this is the reduction theory for k_A^{\times} and it implies the finiteness of the ideal class group and the theorem of units of \mathfrak{o} . All these are well known as the Iwasawa-Tate theory; we refer to [11], [13] for the details.

The reduction theory for G_A follows from what we have recalled; we have

$$G_A = G_k \cdot \{(u, \alpha_\tau) ; u_0 = 0, u_\infty \in \text{compact}\} \cdot \text{compact}$$
.

The proof is as follows: let (u, t) denote an arbitrary element of G_A ; then we can write

$$t=ia_{\tau}c$$
, $i^{-m}u=i^{-m}i^*+(v_0,c^*)$

with i in k^{\times} , c in a fixed compact subset of k_{A}^{\times} , i^{*} in k, v_{0} in k_{0}^{0} , and c^{*} in a fixed compact subset of k_{∞} ; and we get

$$(u, t) = (i^*, i)((0, c^*), \alpha_\tau)((v_0, 0), c)$$
.

This proves the assertion.

We observe that the middle space can be injectively mapped to $k_{\infty} \times R_{+}^{\times}$. We take the one point compactification of $k_{\infty} \times (R_{+}^{\times} \cup \{0\})$ and regard the boundary of $k_{\infty} \times R_{+}^{\times}$ as the boundary of G_{A} . In particular points of $k_{\infty} \times \{0\}$ and the point at infinity will be considered as k-rational boundary points of G_{A} . We shall examine the behavior of $(E'-E)(U(g)\Phi)$ as g approaches such boundary points; for the exact statement of our results we refer to § 4, Th. 3 and Th. 4.

2. A dominant series. If f(x) is a quadratic form and k is a number field, the series

$$E(\Phi) = \Phi(0) + \sum_{i^* \in k} \int_{X_A} \phi(i^*f(x))\Phi(x) |dx|_A$$

appeared (as a special case) in Weil [12], Chap. IV; he called it the Eisenstein-Siegel series. We recall that if k=Q and $f(x_{\infty})$ is a positive-definite quadratic form, then $E(U(g)\Phi)$ becomes the classical holomorphic Eisenstein series for a suitable Φ . We shall show in the general case where f(x) is a higher degree form that $E(U(g)\Phi)$ has a certain Eisenstein series as a dominant series; we shall first construct an equivalent dominant series.

If g=(u,t) is in G_A , we get

hence its absolute value is at most equal to

$$c(\Phi)|t|_A^{(1/2)n} \cdot \prod_p \max(|u_p + i^*|_p, |t_p|_p^m)^{-n/m}$$
,

in which $c(\Phi)$ is independent of i^* , t, and u; cf. [4]. Actually if we restrict Φ to a compact subset of $\mathcal{S}(X_A)$, then we can replace $c(\Phi)$ by a constant independent of Φ ; cf. 2 bis. We shall show that $E(U(g)\Phi)$ has

const.
$$|t|_A^{(1/2)n}(1+\sum\limits_{i^*\in k}\prod\limits_p\max{(|u_p+i^*|_p,|t_p|_p^m)^{-n/m}})$$

as a dominant series; we have only to show that this series is convergent.

For the sake of simplicity we shall write $|u|_p$, etc. instead of $|u_p|_p$, etc. We shall also use the following notation: if ϕ and ϕ' are complex-valued functions on a set X such that

$$|\phi(x)| \leq c \cdot \phi'(x)$$

for every x in X, in which c is a constant, we write $\phi(x) < \phi'(x)$ or $\phi'(x) > \phi(x)$ on X; if we have both $\phi(x) < \phi'(x)$ and $\phi(x) > \phi'(x)$ on X, we write $\phi(x) > < \phi'(x)$ on X. If there is no ambiguity about the set X, we sometimes omit it. Finally we shall use this notation to define a family of subsets of a given set. The following lemma will settle the convergence problem:

LEMMA 1. Suppose that s>1 and (u,v) is in $k_A \times k_A^{\times}$; then we have

$$\sum_{i^* \in k} \prod_{p} \max(|u+i^*|_p, |v|_p)^{-2s} < |v|_A^{1-2s}$$

on the subset of $k_A \times k_A^{\times}$ defined by $|v|_A > 1$.

PROOF. By the reduction theory for k_A^{\times} we can write v as $ia_{\tau}c$, in which i is in k^{\times} and c is in a fixed compact subset of k_A^{\times} ; then we get $|v|_A > < |a_{\tau}|_A$ and

$$\begin{split} &\prod_{p} \max{(|u+i^*|_p,|ia_{\tau}c|_p)} \\ &> < \prod_{p} \max{(|(i^{-1}u)+(i^{-1}i^*)|_p,|a_{\tau}|_p)} \;. \end{split}$$

Therefore for our purpose we may assume that $v=a_{\tau}$ and $|v|_{A}>1$; this implies $|v|_{p}>1$ for every p in S_{∞} and $|v|_{p}=1$ for every other p. By the reduction theory for k_{A} we may assume that $|u|_{p}<1$ for every p in S_{∞} and $|u|_{p}\leq 1$ for every other p. Then we get

$$\max(|u+i^*|_p, |v|_p) > < \max(|i^*|_p, |v|_p)$$

for every p in S_{∞} and

$$\max(|u+i^*|_p, |v|_p) = \max(|i^*|_p, |v|_p)$$

for every other p. Therefore we get

the rest of the proof is as follows:

Since the class number of k or rather of $\mathfrak o$ is finite, we can express i^* as ab^{-1} with a, b in $\mathfrak o$, $b\neq 0$ such that

$$\prod_{p \notin S_{\infty}} \max(|a|_p, |b|_p) > < 1.$$

Furthermore, in view of the theorem of units, we may assume that b is among a fixed set, say R, of representatives of orbits in $\mathfrak{o}-\{0\}$ by the group of units of \mathfrak{o} with the property that $|b|_p > 1$ for every p in S_{∞} . Then we get

$$\begin{split} &\sum_{i^* \in k} \prod_{p} \max{(|i^*|_p, |v|_p)^{-2s}} \\ &< \sum_{b \in R} \sum_{a \in v} \prod_{p \in S_{\infty}} \max{(|a|_p, |bv|_p)^{-2s}} \ ; \end{split}$$

and we have

$$\sum_{a \in \mathfrak{s}} \prod_{p \in S_{\infty}} \max \left(|a|_{\mathfrak{p}}, |bv|_{\mathfrak{p}} \right)^{-2s} < \prod_{\mathfrak{p} \in S_{\infty}} |bv|_{\mathfrak{p}}^{1-2s} \text{ .}$$

This is the crucial point of our proof: if k is a number field, it follows from Lemma 12 in [3]; and if k is a function field, it follows from a counterpart of "Lemma 12" proved in [4], p. 227; cf. also Mars [8], pp. 133-136. At any rate, since $|v|_p=1$ for every p not in S_∞ , we get

$$\prod_{p \in S_{\bullet\bullet}} |v|_p = |v|_A.$$

Moreover we have

$$\sum_{b \in R} (\prod_{p \in S_m} |b|_p)^{1-2s} < \infty$$

because this series is a partial sum of the Dedekind zeta series of $\mathfrak o$ evaluated at 2s-1>1.

2 bis. We shall outline a method to obtain a dominant series for any series such as $E(\Phi)$; we shall first make some of our notations precise: k is a global field, ϕ is a non-trivial character of k_A/k , and ϕ_p is the product of the canonical injection $k_p \to k_A$ and ϕ ; X is an affine n-space over k, [x,y] is a symmetric non-degenerate bilinear form on $X \times X$ defined over k, and $|dx|_p$ is the Haar measure on X_p which is autodual relative to the bicharacter $\phi_p([x,y])$ of $X_p \times X_p$; the restricted product measure $|dx|_A$ of all $|dx|_p$ then becomes the Haar measure on X_A such that X_A/X_k is of measure 1.

Let f(x) denote, for a moment, an arbitrary polynomial in the affine coordinates x_1, x_2, \dots, x_n of X with coefficients in k and suppose that

$$\left|\int_{X_p} \phi_p(i^*f(x)) \Phi(x) |dx|_p \right| \leq c(\Phi) \cdot \max(|i^*|_p, 1)^{-\sigma}$$

for every i^* in k_p and Φ in $\mathcal{S}(X_p)$, the Schwartz-Bruhat space of X_p ; it is understood that $c(\Phi)$ is independent of i^* and σ is independent of i^* and Φ . Then for any compact subset C of $\mathcal{S}(X_p)$ we can replace $c(\Phi)$ by a constant which works for all Φ in C. The proof depends on the following fact: "Let B denote a subset of the space $\mathcal{S}(X_p)'$ of tempered distributions on X_p which is bounded in the sense that

$$\sup_{T\in B}|T(\Phi)|<\infty$$

for each Φ in $\mathcal{S}(X_p)$; then we have

$$\sup_{T \in R, \Phi \in G} |T(\Phi)| < \infty ."$$

(If k_p is a p-field, this follows from the fact that C is contained in a finite dimensional subspace of $\mathscr{S}(X_p)$. If k_p is an R-field, then $\mathscr{S}(X_p)$ is a complete metric space; and we have only to apply the Baire category theorem.) If we put

$$T_{i^*}\!(\!\varPhi)\!=\!\max{(|i^*|_p,1)^\sigma\!\cdot\!\int_{\mathcal{X}_p}\! \psi_p\!(i^*\!f(x))\!\varPhi(x)|dx|_p}$$

for every Φ in $\mathscr{S}(X_p)$, we get a subset $\{T_{i^*}\}_{i^*}$ of $\mathscr{S}(X_p)'$ parametrized by k_p .

The assumption (*) shows that this subset is bounded; the rest follows from the fact that we have recalled.

We can go one step further: "Let B, B' denote bounded subsets of $\mathscr{S}(X_p)'$, $\mathscr{S}(X_{p'})'$, respectively; then the set of $T \otimes T'$ for all T in B and T' in B' is bounded in $\mathscr{S}(X_p \times X_{p'})'$." (This becomes trivial if either k_p or $k_{p'}$ is a p-field; and if both k_p and $k_{p'}$ are R-fields, then it can be proved by applying twice the above-recalled fact.) Therefore if we have (*) for every p, we can take a finite product. More precisely suppose that S is a finite set of valuations on k and let K_p , K_p denote the products of K_p , K_p for all K_p in K_p ; then we have

$$\left| \int_{X_A} (\prod_{p \in S} \psi_p(i_p^* f(x_p))) \mathcal{P}(x) (\bigotimes_{p \in S} |dx_p|_p) \right|$$

$$\leq c \cdot \prod_{p \in S} \max (|i^*|_p, 1)^{-\sigma_p}$$

for every $i^*=(i^*_p)_p$ in k_s and Φ in a compact subset of $\mathscr{S}(X_s)$.

Finally for any non-archimedean valuation p let k_p^0 denote the maximal compact subring of k_p and Φ_p the characteristic function of $X_p^0 = (k_p^0)^n$; suppose that we can choose $c(\Phi_p)$'s so that their product is convergent; then we have

$$\left| \int_{\mathcal{X}_A} \psi(i^*f(x)) \Phi(x) |dx|_A \right| \leq c' \cdot \prod_p \max \left(|i^*|_p, 1 \right)^{-\sigma_p}$$

for every i^* in k_A and Φ in a compact subset of $\mathcal{S}(X_A)$. Therefore if the series

$$\sum_{i^* \in k} \prod_p \max(|i^*|_p, 1)^{-\sigma_p}$$

is convergent, by adding 1 and multiplying a suitable constant we will get a dominant series for $E(\Phi)$. We have shown in [4] that this is the case with $\sigma_p = n/m$ if f(x) is a form of degree $m \ge 2$ such that char (k) does not divide m, the projective hypersurface defined by f(x)=0 is non-singular, and n>2m.

3. Eisenstein series. We shall introduce an Eisenstein series which will serve as a dominant series for $E(U(g)\Phi)$ and examine some of its properties; we shall first make preliminary observations.

Let K denote a local field; K is either an R-field or a p-field. We embed K in a division ring L=K+Kw as follows: if K is an R-field, we have a unique choice for L; it is C or H, the Hamilton quaternion algebra, according as K is R or C. We shall normalize w as $w^2=-1$. If K is a p-field, we shall take as L an unramified quadratic extension of K; it exists and is unique. Let K^0 , L^0 denote the maximal compact subrings of K, L, respectively; then we shall take as W an element of L such that $L^0=K^0+K^0w$. In either case we shall denote

by Nz the norm of an element z of L; N gives rise to a continuous homomorphism of L^{\times} to K^{\times} .

Let

$$\sigma \! = \! \left(egin{matrix} lpha & eta \ \gamma & \delta \end{matrix}
ight)$$
 , $z \! = \! u \! + \! vw$

denote arbitrary elements of $GL_2(K)$, $Z=K+K^{\times}w$, respectively; then we have $\gamma z + \delta \neq 0$. Therefore

$$\sigma \cdot z = (\alpha z + \beta)(\gamma z + \delta)^{-1} = u' + v'w$$

is defined and we get

$$v'=v(\sigma\cdot z)=\det(\sigma)v\cdot N(\gamma z+\delta)^{-1}\neq 0$$
:

hence $\sigma \cdot z$ is also in Z. Moreover the mapping $GL_2(K) \times Z \to Z$ defined by $(\sigma \cdot z) \to \sigma \cdot z$ is continuous and it gives a group action of $GL_2(K)$ on Z; the action is transitive because

$$\begin{pmatrix} v & u \\ 0 & 1 \end{pmatrix} \cdot w = u + vw$$

for every z=u+vw in Z.

We shall go back to the global field k and take k_p as K; and we shall denote the above w by w_p . For the sake of completeness (and clarity) we shall prove the following lemma:

LEMMA 2. Let u_p , v_p denote arbitrary elements of k_p ; then we have

$$|N(u_p+v_pw_p)|_p > < \max(|u_p|_p, |v_p|_p)^2$$

if k, is an R-field and

$$|N(u_p+v_pw_p)|_p=\max(|u_p|_p,|v_p|_p)^2$$

if k_p is a p-field.

PROOF. If a, b are non-negative real numbers, we certainly have

$$\max(a, b) \leq a + b \leq 2 \cdot \max(a, b)$$
;

this takes care of the R-field case. In the p-field case, if a, b are elements of $k_p(w_p)$ satisfying $|a|_p \neq |b|_p$, we have

$$|a+b|_{p} = \max(|a|_{p}, |b|_{p})$$
.

Therefore if $|u_p|_p \neq |v_p|_p$, we have the equality in question. We shall assume

that $|u_p|_p = |v_p|_p$; then by homogeneity we may further assume that $|u_p|_p = |v_p|_p = 1$. And we have only to show that $|N(u_p + v_p w_p)|_p = 1$. By our choice of w_p the residue classes of 1, w_p are linearly independent over the residue class field of k_p . Since u_p , v_p are units, the residue class of $u_p + v_p w_p$ is different from 0; hence $u_p + v_p w_p$ is a unit, and hence $|N(u_p + v_p w_p)|_p = 1$. q.e.d.

We choose w_p for each p and put

$$w=(w_p)_p$$
, $\mathscr{Z}=k_A+k_A^{\times}w$;

with the obvious topology $\mathscr E$ become a locally compact space. We shall denote an element of $\mathscr E$ by $z=u+vw=(u_p+v_pw_p)_p$ and define Nz componentwise, i.e., as $(Nz)_p=Nz_p$ for every p; then we see by Lemma 2 that N gives a continuous mapping of $\mathscr E$ to k_A^* . Furthermore we have

$$|N(z+i^*)|_A > < \max(|u+i^*|_v, |v|_v)^2$$

on $\mathscr{Z} \times k$. Therefore if s is any complex number satisfying Re(s)>1, we see by Lemma 1 that the series

$$E(z,s) = |v|_A^s (1 + \sum_{i^* \in k} |N(z+i^*)|_A^{-s})$$

is absolutely convergent; this is the Eisenstein series useful for our purpose. The following theorem follows from what we have observed:

THEOREM 1. Consider the mapping $G_A \to \mathcal{Z}$ defined by $g=(u,t) \to z=u+vw$ where $v=t^m$; then we have

$$\int_{X_A} \phi(i^*f(x))(U(g)\Phi)(x)|dx|_A < (|v|_A|N(z+i^*)|_A^{-1})^{n/2m}$$

on $G_A \times k$ if Φ is restricted to a compact subset of $\mathscr{S}(X_A)$. Therefore a constant multiple of $E(u+t^m w, n/2m)$ serves as a dominant series for $E(U(g)\Phi)$ on G_A if Φ is restricted as above. Moreover for any s>1 we have

$$E(z,s)-|v|_{A}^{s} < |v|_{A}^{1-s}$$

on the subset of \mathcal{Z} defined by $|v|_A > 1$.

We shall examine the invariance property of E(z,s) under the action of $GL_2(k)=(GL_2)_k$ on \mathscr{X} ; we shall first define the action of $(GL_2)_A$ on \mathscr{X} : let $\sigma=(\sigma_p)_p$, z=u+vw denote arbitrary elements of $(GL_2)_A$, \mathscr{X} , respectively; we define $\sigma\cdot z=u'+v'w$ componentwise, i.e., as

$$(\sigma \cdot z)_p = u'_p + v'_p w_p = \sigma_p \cdot z_p$$

for every p. We shall show that $\sigma \cdot z$ is also in \mathcal{Z} : we have only to show that

if k_p is a p-field, σ_p is in $GL_2(k_p^0)$, and $|u|_p \le 1$, $|v|_p = 1$, then $|u'|_p \le 1$, $|v'|_p = 1$. Let $(\gamma \ \delta)$ denote the second row of σ ; then $(\sigma_p \cdot z_p)N(\gamma_p z_p + \delta_p)$ is certainly in $k_p^0 + k_p^0 w_p$. Moreover, since either γ_p or δ_p is a unit of k_p^0 , we get

$$|N(\gamma_p z_p + \delta_p)|_p = \max(|\gamma u + \delta|_p, |\gamma v|_p)^2 = 1;$$

this implies $|u'|_p \leq 1$ and

$$|v'|_p = |\det(\sigma)|_p |v|_p |N(\gamma z + \delta)|_p^{-1} = 1$$
 .

We observe that the action of $(GL_2)_A$ on ${\mathscr Z}$ thus defined is continuous and transitive.

THEOREM 2. The Eisenstein series E(z,s) is $GL_2(k)$ -invariant, i.e., $E(\sigma \cdot z,s) = E(z,s)$ for every σ in $GL_2(k)$.

PROOF. We let GL_2 act on the projective line P_1 as

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \cdot i^* = (\alpha i^* + \beta)(\gamma i^* + \delta)^{-1}$$

with the obvious understanding in the case where $i^*=\infty$; then we get a transitive action of $GL_2(k)$ on $P_1(k)=k\cup\{\infty\}$. Let σ denote an arbitrary element of $GL_2(k)$ with coefficients α , β , γ , δ and z an element of $\mathscr X$; then for every i^* in k such that $-\gamma i^*+\alpha\neq 0$, i.e., $\sigma^{-1}\cdot i^*\neq \infty$, we get

$$\sigma \cdot z - i^* = (-\gamma i^* + \alpha)(z - \sigma^{-1} \cdot i^*)(\gamma z + \delta)^{-1}$$
.

Moreover if $-\gamma i^*+\alpha=0$, then $\gamma\neq 0$ and we get

$$\sigma \cdot z - i^* = -\det(\sigma) \gamma^{-1} (\gamma z + \delta)^{-1}$$
.

Therefore we get

$$\begin{split} E(\sigma \cdot z, s) &= |v(\sigma \cdot z)|_A^s (1 + \sum\limits_{i^* \in k} |N(\sigma \cdot z - i^*)|_A^{-s}) \\ &= |v|_A^s (|N(\gamma z + \delta)|_A^{-s} + \sum\limits_{i^* \neq \infty, \sigma \cdot \infty} |N(z - \sigma^{-1} \cdot i^*)|_A^{-s} + 1) \\ &= |v|_A^s (1 + \sum\limits_{j^* \in k} |N(z - j^*)|_A^{-s}) \end{split}$$

if $\sigma \cdot \infty \neq \infty$; and similarly $E(\sigma \cdot z, s) = E(z, s)$ if $\sigma \cdot \infty = \infty$. q.e.d.

COROLLARY. For any given i* in k we have

$$E(z,s)-|v|_A^s|N(z+i^*)|_A^{-s}<|v|_A^{s-1}$$

on the subset of Z defined by

$$(*)$$
 $|N(z+i^*)|_A < |v|_A^2 < 1;$

we also have

$$E(z,s)-|v|_{A}^{s}|N(z+i^{*})|_{A}^{-s}<1$$

on the subset of Z defined by

$$(**)$$
 $|N(z+i^*)|_A < |v|_A$

The proof is quite simple: choose an element σ of $GL_2(k)$ satisfying $\sigma^{-1} \cdot \infty = -i^*$; then by Th.2 we get

$$E(z,s)-|v|_A^s|N(z+i^*)|_A^{-s}=E(\sigma\cdot z,s)-|v(\sigma\cdot z)|_A^s$$
.

And (*) implies

$$|v(\sigma \cdot z)|_A = |v|_A |N(z+i^*)|_A^{-1} > |v|_A^{-1} > 1$$

while (**) implies $|v(\sigma \cdot z)|_A > 1$. The rest follows from Th. 1.

One way to construct a subset of \mathcal{Z} satisfying (*) is as follows: we restrict v as $|v|_A < 1$ and u by the condition that $(u+i^*)v^{-1}$ remains in a compact subset of k_A , i.e., as $|u+i^*|_p < |v|_p$ for every p in a fixed finite set and $|u+i^*|_p \le |v|_p$ for every other p. In fact by Lemma 2 we then get

$$|N(z+i^*)|_A > < \prod_p \max (|u+i^*|_p, |v|_p)^2$$

 $> < \prod_p |v|_p^2 = |v|_A^2 < 1$.

We shall examine our definitions and results in the special case where k=Q. In order to make the objects visible, we shall assume that $u_0=0$ and $v_0=1$ in $z=u+vw=(z_0,z_\infty)$; then we get

$$E(z,s)=|\mathrm{Im}\,(z_\infty)|^s(1+\sum\limits_{\gamma,\delta}|\gamma z_\infty+\delta|^{-2s})$$
 ,

in which γ , δ are relatively prime integers with $\gamma \ge 1$. This is a classical Eisenstein series; cf., e.g., Kubota [5]. Moreover the condition (*) and the more restrictive condition explained after the corollary both become

$$|z_{\infty}+i^*|<|\operatorname{Im}(z_{\infty})|<1$$
;

if we restrict z_{∞} to the upper-half plane, this defines a ∇ -shaped region which touches the real axis at $-i^*$. On the other hand the condition (**) becomes

$$|z_{\infty}+i^*|^2 < |\text{Im}(z_{\infty})|$$
;

this defines a closed circle which is tangent to the real axis at $-i^*$. In the first case the height and the angle between the two lines through $-i^*$ are arbitrary and in the second case the radius is arbitrary. We have thus shown that

the second part of Th. 1 and the corollary become the well-known theorem describing the behavior of the classical Eisenstein series at cusps; cf. Kubota, op. cit.

4. Main results. We shall go back to our $(E'-E)(U(g)\Phi)$: in view of Th. 1 we put

$$|q|_A = |(u,t)|_A = |t|_A^m$$
, $s = n/2m$;

then s>1 and $g\to |g|_A$ gives a continuous homomorphism of G_A to R_+^{\times} .

THEOREM 3. We restrict g as $|g|_A > 1$ and Φ to a compact subset of $\mathcal{S}(X_A)$; then we have

$$(E'-E)(U(g)\Phi) < |g|_{A}^{1-s}$$
.

The proof of this theorem does not depend on the degree m of f(x); it can be extracted from the proof of Prop. 7 in Weil [12], Chap. V. Since we have included the function field case, we shall give an outline:

LEMMA 3. Let F denote a closed subset of $X_A = X_0 \times X_\infty$ such that $F \cap (X_0 \times \{0\}) = \emptyset$; then for any $N \ge 0$ and any compact subset C of $\mathscr{S}(S_A)$ there exists an element ϕ of $\mathscr{S}(X_A)$ satisfying

$$|a_{\tau}|^{N} |\Phi(a_{\tau}x)| \leq \phi(x)$$

for every x in F, every a_{τ} with $|a_{\tau}|_{A} \ge 1$, and every Φ in C.

PROOF. This lemma is known if k is a number field; cf. Weil [12], Chap. I, Lemma 6 and also Mars [8], Lemma 7. The proof in the function field case is simpler: by using coordinates of x_{∞} we define $|x_{\infty}|_{\infty}$ as

$$|x_{\infty}|_{\infty} = \max_{1 \leq i \leq n} \{|x_{\infty,i}|_{p_{\infty}}\}$$
.

Since C is compact, there exist compact open subgroups L_0 , L_{∞} of X_0 , X_{∞} , respectively, such that Supp (Φ) is contained in $L_0 \times L_{\infty}$ for every Φ in C; we may assume that L_{∞} is defined by $|x_{\infty}|_{\infty} \le c$ for some c > 0. Let ϕ_0 denote a constant multiple of the characteristic function of L_0 and ϕ_{∞} the characteristic function of L_{∞} ; then if we take the constant large enough, we will have

$$|\Phi(x)| \leq \phi_0(x_0)\phi_\infty(x_\infty)$$

for every $x=(x_0,x_\infty)$ in X_A and Φ in C. Since $F\cap (L_0\times L_\infty)$ is compact and has an empty intersection with $X_0\times\{0\}$, we have $|x_\infty|_\infty\geq d$ for some d>0 and for every x in $F\cap (L_0\times L_\infty)$. We shall show that

$$\phi = (cd^{-1})^N(\phi_0 \otimes \phi_{-1})$$

has the required property.

If $\Phi(a_{\tau}x)\neq 0$ for some x in X_A and Φ in C, we get $\phi_0(x_0)\phi_{\infty}(\tau x_{\infty})\neq 0$; hence x_0 is in L_0 and τx_{∞} is in L_{∞} . If $|a_{\tau}|_A=|\tau|_{\infty}\geq 1$, then x_{∞} itself is in L_{∞} . And if x is also in F, then $|\tau|_{\infty}\leq c|x_{\infty}|_{\infty}^{-1}\leq cd^{-1}$; hence

$$egin{align} |a_{ au}|_A^N |arPhi(a_{ au}x)| &\leq (cd^{-1})^N \phi_0(x_0) \phi_\infty(au x_\infty) \ &= (cd^{-1})^N \phi_0(x_0) \phi_\infty(x_\infty) \; . \end{split}$$
 q.e.d.

The proof of Th. 3 is as follows: we have shown in §1 that

$$G_A = G_k \cdot \{(u, a_r); u_0 = 0, u_\infty \in \text{compact}\} \cdot \text{compact}$$
.

If we express an element g of G_A as the product of an element of G_k , (u, a_r) , and an element of the compact set, then we have $|g|_A > (|a_r|_A^m)$. Therefore we may assume that $g=(u,a_r)$, in which $u_0=0$, u_∞ is in a fixed compact subset of k_∞ , and $|a_r|_A > 1$; then $(a_r^{-m}u,1)$ in

$$(u, a_{\tau}) = (0, a_{\tau})(a_{\tau}^{-m}u, 1)$$

remains in a compact subset of G_A . Therefore we may assume that $g=(0, a_{\tau})$ where $|a_{\tau}|_A \ge 1$. We recall that for g=(0,t) we have

$$(E'-E)(U(g)\varPhi) = |t|_A^{(1/2)n} (\sum_{\xi \in X_k - \{0\}} \varPhi(t\xi) - \sum_{i \in k} \int_{U(i)_A} \varPhi(tx) |\theta_i(x)|_A) \ .$$

We shall take $t=a_{\tau}$ where $|a_{\tau}|_{A} \ge 1$. Then by applying Lemma 3 to $F=X_{k}-\{0\}$ we get

$$|t|_A^{(1/2)n} \cdot \sum_{\xi \in X_L = \{0\}} \varPhi(t\xi) < |g|_A^{-N}$$

for any $N \ge 0$; by applying Lemma 3 to $F = f^{-1}(k^{\times})$ we get

$$|t|_A^{(1/2)n} \cdot \sum_{i \in k} \int_{U(i)_A} \Phi(tx) |\theta_i(x)|_A < |g|_A^{-N}$$

for any $N \ge 0$; and finally we have

$$|t|_A^{(1/2)n} \cdot \int_{U(0),A} \Phi(tx) |\theta_0(x)|_A = |g|_A^{1-s} \cdot \int_{U(0),A} \Phi|\theta_0|_A$$
.

We have only to put the above three relations together.

THEOREM 4. Let i^* denote any given element of k; we restrict g=(u,t) by $|t|_A < 1$ and by the additional condition that $(u+i^*)t^{-m}$ remains in a compact

subset of k_A ; we also restrict Φ to a compact subset of $\mathscr{S}(X_A)$. Then we have

$$(E'-E)(U(g)\Phi) < |g|_A^{s-1}$$
.

PROOF. We define the singular term at $-i^*$ as

s.t. at
$$-i^* = |t|_A^{(1/2)n} \cdot \int_{X_A} \Phi((u+i^*)f(x))\Phi(tx)|dx|_A;$$

then by Th. 1, its corollary, and a remark after the corollary we get

$$E(U(g)\Phi)$$
—s.t. at $-i*<|g|_A^{s-1}$

on the subset under consideration. Therefore we have only to show that

$$E'(U(g)\Phi)$$
—s.t. at $-i^* < |g|_A^N$

for any $N \ge 0$. Since $\phi(uf(\xi)) = \phi((u+i^*)f(\xi))$ for every ξ in X_k , by applying the usual Poisson formula we get

$$\begin{split} E'(U(g)\varPhi) &= |t|_A^{(1/2)n} \cdot \sum_{\xi \in X_k} \phi((u+i^*)f(\xi))\varPhi(t\xi) \\ &= |t|_A^{(1/2)n} \cdot \sum_{\xi \in X_k} \int_{X_A} \phi([\xi,y] + (u+i^*)f(y))\varPhi(ty)|dy|_A \;. \end{split}$$

Therefore if we put

$$\Psi(x) = \phi((u+i*)t^{-m}f(x))\Phi(x)$$

and denote its Fourier transform by $\Psi^*(x)$, we get

$$E'(U(g)\varPhi)- ext{s.t.}$$
 at $-i^*=|t|_A^{-(1/2)n}\cdot\sum\limits_{\xi\in X_k-\{0\}}\varPsi^*(t^{-1}\xi)$.

We recall that the mapping $G_A \times \mathscr{S}(X_A) \to \mathscr{S}(X_A)$ defined by $(g, \Phi) \to U(g)\Phi$ is continuous. Since $(u+i^*)t^{-m}$ remains in a compact subset of k_A , therefore, the set $\{\Psi\}$ is relatively compact in $\mathscr{S}(X_A)$. Since the Fourier transformation is bicontinuous, the set $\{\Psi^*\}$ is also relatively compact in $\mathscr{S}(X_A)$. The remaining part of the proof is as follows:

We write $t=ia_{\tau}c$ with i in k^{\times} and c in a fixed compact subset of k_{A}^{\times} ; then by assumption we have $|t|_{A}><|a_{\tau}|_{A}<1$ and

Since the set $\{\Psi^*(c^{-1}x)\}$ with c in the compact subset is still relatively compact and $|a_{\tau}^{-1}|_A > 1$, we can apply Lemma 3 to $F = X_{\kappa} - \{0\}$. In this way we get

$$|a_{\tau}^{-1}|_{A}^{(1/2)n} \cdot \sum_{\xi \in X_{k} - (0)} \varPsi *(c^{-1}a_{\tau}^{-1}\xi) < |a_{\tau}^{-1}|_{A}^{-mN} > |g|_{A}^{N}$$

for any $N \ge 0$. q.e.d.

We shall examine Th. 4 in the special case where k=Q; for the sake of simplicity we shall assume that f(x) has integer coefficients: we shall use the particular ϕ defined by the condition that $\phi_{\infty}(u_{\infty})=e(u_{\infty})$ for every u_{∞} in $Q_{\infty}=R$ and $\phi_p(u_p)=\phi_{\infty}(-\langle u_p\rangle)$ for every u_p in the Hensel p-adic field Q_p , where $\langle u_p\rangle$ is the fractional part of u_p . We shall use as Φ a function of the form $\Phi_0\otimes\Phi_\infty$, in which Φ_∞ is a Schwartz function on $X_\infty=R^n$; for the sake of simplicity we shall assume that Φ_0 is the characteristic function of X_0^0 . And we shall take as g a special pair (u, a_r) where $u_0=0$. Then we get

$$(U(g)\Phi)(x) = \tau^{(1/2)n} e(u_{\infty}f(x_{\infty}))\Phi_{\infty}(\tau x_{\infty})$$

if x_0 is in X_0 and $(U(g)\Phi)(x)=0$ otherwise; hence

(1)
$$\tau^{-(1/2)n}E'(U(g)\Phi) = \sum_{\xi \in \mathbb{Z}^n} e(u_\infty f(\xi))\Phi_\infty(\tau\xi).$$

One way to visualize this series is to consider the limit case where Φ_{∞} becomes the characteristic function of a relatively compact, say open, subset J of \mathbb{R}^n ; then we get the following finite sum:

$$\sum_{\xi \in \mathbf{Z}^n \cap \tau^{-1}J} \mathbf{e}(u_{\infty}f(\xi))$$
 .

This is classically known as an exponential sum; it behaves quite delicately as a function of u_{∞} and τ ; cf., e.g., Birch [2].

We shall also make the two series for $E(U(g)\Phi)$ explicit: suppose that $i^*=\gamma^{-1}\delta$, where γ , δ are relatively prime integers with $\gamma \ge 1$, and put

$$G(i^*) = \gamma^{-n} \cdot \sum_{\xi \bmod r} e(-i^*f(\xi));$$

then one expression for $\tau^{-(1/2)n}E(U(g)\Phi)$ is

$$1 + \sum_{i^* \in Q} G(i^*) \cdot \int_{\mathbb{R}^n} e((u_\infty + i^*) f(x_\infty)) \Phi_\infty(\tau x_\infty) dx_\infty ,$$

in which dx_{∞} is the usual measure on \mathbb{R}^n . On the other hand, for every integer i and a positive integer Q let $N_Q(i)$ denote the number of $\xi \mod Q$ satisfying $f(\xi) \equiv i \mod Q$; we let Q tend to ∞ so that Q becomes divisible by any positive integer; then the following limit:

$$S(i) = \lim_{Q o \infty} Q^{-(n-1)} N_Q(i)$$

exists. In fact the condition of convergence is $n \ge 4$ if $i \ne 0$ and $n > \max(m+1, 4)$ if i=0; and this is weaker than our assumption that n > 2m (and $m \ge 2$). We might also mention that in the fourth and fifth lines of [4], p. 224 the condition

 $n>\max(m+1,4)$ was incorrectly stated as $n>\max(m,4)$. At any rate another expression for $\tau^{-(1/2)n}E(U(g)\Phi)$ is

$$(3) 1 + \sum_{i \in \mathbf{Z}} S(i) \cdot \int_{f^{-1}(i)} \Phi_{\infty}(\tau x_{\infty}) |\theta_{i}(x_{\infty})|_{\infty} \cdot e(iu_{\infty}).$$

And Th. 4 shows that as the point

$$z_{\infty} = u_{\infty} + (-1)^{1/2} \tau^m$$

approaches any rational number $-i^*$ in the ∇ -shaped region explained in the previous section, (1) is given by (2) and (3) with a remainder term of order τ^{-m} ; we observe that (1) itself can be of order τ^{-n} .

We shall also explain the classical case where f(x) is a quadratic form: after Hermite and Siegel we choose a "majorant" $h(x_{\infty})$ of $f(x_{\infty})$ and put

$$\Phi_{\infty}(x_{\infty}) = \exp\left(-2\pi h(x_{\infty})\right)$$
;

we can define $h(x_{\infty})$ as a positive-definite quadratic form (with real coefficients) such that the above Φ_{∞} is equal to its Fourier transform relative to the bicharacter $\psi_{\infty}(f(x_{\infty}, y_{\infty}))$ of $X_{\infty} \times X_{\infty}$, in which

$$f(x, y) = f(x+y) - f(x) - f(y)$$
.

If $f(x_{\infty})$ is positive-definite, then $h(x_{\infty})=f(x_{\infty})$ is the only choice. At any rate under the above specialization (1) becomes the following theta series:

$$\sum_{\xi \in \mathbb{Z}^n} e(\operatorname{Re}(z_{\infty}) f(\xi) + (-1)^{1/2} \operatorname{Im}(z_{\infty}) h(\xi))$$

and (2) becomes the following Eisenstein series:

$$1 + e((1/8)(p-q))|d|^{-\langle 1/2\rangle} \cdot \sum_{i^* \in \mathcal{O}} G(i^*)(z_\infty + i^*)^{-\langle 1/2\rangle \, p} (\bar{z}_\infty + i^*)^{-\langle 1/2\rangle \, q} \; ,$$

in which p, q are the numbers of positive and negative eigenvalues of the coefficient matrix of f(x, y) and d is its determinant. Furthermore in the special case where q=0 (3) becomes

$$1 + (2\pi)^{(1/2)\,n} \varGamma \bigg(\frac{1}{2}n\bigg)^{-1} d^{-(1/2)} \cdot {\textstyle\sum\limits_{i=1}^{\infty}} \, S(i) i^{(1/2)\,n-1} e(iz_{\infty}) \; .$$

We recall that such series and their generalizations appeared in many works of Siegel.

5. A conjecture. In the special case where f(x) is a quadratic form we know that $(E'-E)(U(g)\Phi)$ is bounded on G_A if Φ is restricted to a compact subset of $\mathcal{S}(X_A)$. We refer to Weil [12], Prop. 7 for the proof; we also refer to Siegel

[9] and Ariturk [1]. We have shown in the general case that $(E'-E)(U(g)\Phi)$ vanishes to the order s-1 at every k-rational boundary point of G_A and hence is bounded around every such point. Therefore it is reasonable to think that the boundedness is not restricted to the case of a quadratic form. We in fact propose the following weaker statement as a conjecture:

CONJECTURE. For any given Φ in $\mathcal{S}(X_4)$ there exists a positive real number ε such that

$$(E'-E)(U(g)\Phi) < |g|_A^{1-s+\varepsilon}$$

or at least

$$\int_{k_A/k} (E'-E)(U(g)\varPhi)|du|_A \! < \! |g|_A^{\scriptscriptstyle 1-s+\varepsilon}$$

on the subset of G_A defined by $|g|_A \leq 1$.

We observe that $(E'-E)(U(u,t)\Phi)$ is a continuous function on $(k_A/k) \times k_A^{\times}$ and that the first hypothesis implies the second. We can prove this conjecture if n is sufficiently large compared to m. The point is that it may be true under the assumption n>2m and it is very likely to be true if $n>m^2$ and that it implies the following generalization of the Hasse-Minkowski theorem:

"If the non-singular projective hypersurface defined by f(x)=0 has a k_r -rational point for every p, then it has a k-rational point".

(In this way we can reproduce Birch's result in [2] at least for a non-singular projective hypersurface.) The above implication can be proved as follows: we have

$$(E'-E)(t(u)\Phi) = \sum_{i \in k} c_i(\Phi)\psi(iu)$$
,

in which

$$c_i(\varPhi) = \sum\limits_{\xi \in U(i)_k} \varPhi(\xi) - \int_{U(i)_A} \varPhi|\theta_i|_A$$

for every i in k. Since we also have

$$c_i(\Phi) = \int_{k_A/k} (E' - E)(\boldsymbol{t}(u)\Phi) \phi(-iu) |du|_A ,$$

if the conjecture is true, we will have

$$c_0(\mathbf{d}(t)\Phi) < |t|_A^{m(1-s+\varepsilon)}$$

on the subset of k_A^{\times} defined by $|t|_A \leq 1$. By using the O-symbol as $|t|_A \to 0$, this can be rewritten as

$$\sum\limits_{\xi \in U(0)_k} \varPhi(t\xi) {=} \Bigl(\int_{U(0)_A} \varPhi(\theta_0|_A {+} O(|t|_A^{m\varepsilon}) \Bigr) |t|_A^{m-n}$$
 .

We recall that for every i in k the support of the measure $|\theta_i|_A$ is the whole space $U(i)_A$. Therefore if $U(0)_A$ is not empty, for any $\Phi \ge 0$ which is not the constant 0 on $U(0)_A$ its integral over $U(0)_A$ is positive; then the right hand side, hence also the left hand side, is positive for all small $|t|_A$. Therefore $U(0)_k$ can not possibly be empty; this completes the proof.

Appendix

One of the points we have made in this paper is that we can do something significant by using only such a small group as G_A . However the last section clearly indicates that a good generalization of the metaplectic group will be extremely useful. For that purpose we must start examining, as in Kubota [6], possible generalizations of the metaplectic group over a local field. Since the problem is still quite difficult, it was suggested to us by Shalika to examine the same problem over a finite field. In this appendix we shall explain our fragmental results in this simplest case.

We shall introduce a naive generalization of the metaplectic group over $K = \mathbf{F}_q$: let X denote an n-dimensional vector space over K and L(X) the Hilbert space of (complex-valued) functions on X with the following norm:

$$\|\Phi\|^2 = \operatorname{card}(X)^{-(1/2)} \cdot \sum_{x \in V} |\Phi(x)|^2$$
;

then for every t in K^{\times} the scalar multiplication by t in X defines a unitary operator in L(X). Let ψ denote a non-trivial character of K and f(x) a form of degree m on X, i.e., a homogeneous element of degree m of the symmetric algebra of the dual of X; then for every u in K the multiplication by $\psi(uf(x))$ in L(X) also defines a unitary operator in L(X). Finally let [x, y] denote a symmetric non-degenerate K-bilinear form on $X \times X$; then

$$\Phi^*(x) = \operatorname{card}(X)^{-(1/2)} \cdot \sum_{x \in X} \phi([x, y]) \Phi(y)$$

defines a unitary operator in L(X). We shall assume that f(x) is non-degenerate, i.e., f(x) is not a form on the quotient of X by a proper subspace; and we shall denote by Mp the subgroup of the full unitary group $\operatorname{Aut}(L(X))$ generated by the above three types of unitary operators.

The structure of Mp is known for $m \le 2$: if m=1, we necessarily get n=1; and Mp becomes a semidirect product of a Heisenberg group of order q^3 by a

generalized quaternion group of order 2(q-1). If m=2, q is odd, and [x,y]=f(x,y), then Mp becomes a semidirect product of a cyclic group of order 2 or 4 (according as $q\equiv\pm 1 \mod 4$) by $SL_2(K)$. In the general case we have the following theorem:

THEOREM 5. Suppose that n=1 and let e denote the G.C.D. of m and q-1. Then if e is even, Mp decomposes into $\frac{1}{2}e+1$ inequivalent irreducible representations of degrees

$$rac{q-1}{e}+1, \; rac{q-1}{e}, \; rac{2(q-1)}{e} \; , \; \; \cdots, \; \; rac{2(q-1)}{e} \; ;$$

and if e is odd, Mp decomposes into $\frac{1}{2}(e+1)$ inequivalent irreducible representations of degrees

$$\frac{q-1}{e}+1, \ \frac{2(q-1)}{e}, \ \cdots, \ \frac{2(q-1)}{e}.$$

PROOF. For a moment we shall drop the assumption that n=1; let T denote an element of End (L(X)), i.e., a K-linear transformation of L(X) to itself; let δ_y denote the Dirac function on X satisfying $\delta_y(y)=1$ and put $k(x,y)=(T\delta_y)(x)$; then we get

$$(T\Phi)(x) = \sum_{y \in X} k(x, y)\Phi(y)$$

for every Φ in L(X). The set A of all T's which elementwise commute with Mp forms a subalgebra of $\operatorname{End}(L(X))$. Let k(x,y) denote the kernel of T defined as above; then T is in A if and only if

- (k1) k(tx, ty) = k(x, y) for every t in K^{\times} ;
- (k2) $k(x, y) \neq 0$ only if f(x) = f(y);
- (k3) $\sum_{z \in X} k(x, z) \phi([z, y]) = \sum_{z \in X} \phi([x, z]) k(z, y).$

We shall closely examine these conditions resuming the assumption that n=1: if we identify X with K, we get $f(x)=cx^m$, [x,y]=dxy for some c, d in K^\times . We define a function ϕ on K^\times as $\phi(t)=k(1,t)$; then we get

- $(\phi 1)$ Supp $(\phi) \subset (K^{\times})_{\epsilon}$, i.e., $\phi(t) \neq 0$ only if $t^{\epsilon} = 1$;
- $(\phi 2)$ $\phi(t) = \phi(t^{-1}).$

Conversely for every such ϕ if we define k(x, y) as

$$k(x, y) = egin{cases} \phi(x^{-1}y) & xy
eq 0 \ 0 & xy = 0 \ \sum \phi(t) & (x, y) = (0, 0) \end{cases},$$

then k satisfies (k1)-(k3). And the correspondence $k \rightarrow \phi$ gives rise to a C-linear bijection.

Consider the group ring $C(K^{\times})$ of K^{\times} ; then the correspondence

$$T \rightarrow k \rightarrow a = \sum_{t} \phi(t)t$$

gives rise to an injective algebra homomorphism of A to $C(K^{\times})$. In particular A is commutative. Since Mp is completely reducible, therefore, every irreducible subrepresentation of Mp has multiplicity one. As for its degree, it can be determined as follows:

We observe that the C-linear extension, say ω , of a character χ of K^{\times} is an algebra homomorphism $C(K^{\times}) \to C$ mapping 1 to 1 and the correspondence $\chi \to \omega$ gives rise to a bijection. In particular there are q-1 such algebra homomorphisms. If we arrange them in some order, we get a representation of $C(K^{\times})$ as the algebra of all diagonal matrices of degree q-1; and by restricting this representation to A we get a diagonalization of A.

After this remark suppose that ω , ω' correspond to χ , χ' , respectively; then we get $\omega' = \omega$ on A if and only if $\chi' = \chi^{\pm 1}$ on $(K^{\times})_{\epsilon}$. Therefore the restriction of ω to A has multiplicity (q-1)/e or 2(q-1)/e according as $\chi^2 = 1$ or $\chi^2 \neq 1$ on $(K^{\times})_{\epsilon}$. Moreover if ω_0 corresponds to the character 1 of K^{\times} , then we get

$$k(0,0) = \sum_{t} \phi(t) = \omega_0(a)$$
.

We have thus obtained a diagonalization of A as an algebra of q-by-q matrices from which we can read off the degrees of irreducible subrepresentations of Mp.

COROLLARY. If q is odd, $e \ge 3$, and $(e,q) \ne (3,7)$, (4,5), then Mp is not a central extension of $SL_2(K)$; if q is odd and $e \ge 5$, then every homomorphism of $SL_2(K)$ to Mp is trivial.

The proof is as follows: we recall that the degrees of irreducible representations of $SL_2(K)$ are

$$1$$
 , $\qquad \frac{1}{2}(q\pm 1)$, $\qquad q\pm 1$, $\qquad q$;

cf. Tanaka [10]. And we have

$$\frac{1}{2}(q-1) > 2(q-1)/e$$

if (and only if) $e \ge 5$. Therefore if $e \ge 5$, the degree of any non-trivial irreducible

representation of $SL_2(K)$ is larger than the degrees of irreducible subrepresentations of Mp. After this observation suppose that π is a homomorphism of $SL_2(K)$ to Mp; then π followed by any irreducible subrepresentation of Mp is necessarily a sum of the trivial representation of $SL_2(K)$. Therefore π is trivial; this proves the second part and also the first part for $e \ge 5$ (because any central extension of $SL_2(K)$ splits). The proof of the remaining cases is similar.

References

- [1] Ariturk, H.: The Siegel-Weil formula for orthogonal groups, Thesis, Johns Hopkins University, 1975.
- [2] Birch, B. J.: Forms in many variables, Proc. Royal Soc. A, 265 (1962), 245-263.
- [3] Igusa, J.: On the arithmetic of Pfaffians, Nagoya Math. J. 47 (1972), 169-198.
- [4] Igusa, J.: On a certain Poisson formula, Nagoya Math. J. 53 (1974), 211-233.
- [5] Kubota, T.: Elementary theory of Eisenstein series, Kodansha, Tokyo, 1973.
- [6] Kubota, T.: A generalized Weil tpye representation, TR 73-7, University of Maryland, 1973.
- [7] Levin, M.: A continuity problem in the Siegel-Weil formula, TR 74-10, University of Maryland, 1974.
- [8] Mars, J. G. M.: Les nombres de Tamagawa de certains groupes exceptionnels, Bull. Soc. Math. France, 94 (1966), 97-140.
- [9] Siegel, C. L.: Gesammelte Abhandlungen, I-III, Springer, 1966; in particular, Indefinite quadratische Formen und Funktionentheorie I, Math. Ann. 124 (1951), 17-54; III, 105-142.
- [10] Tanaka, S.: Construction and classification of irreducible representations of special linear group of the second order over a finite field, Osaka J. Math. 4 (1967), 65-84.
- [11] Tate, J.: Fourier analysis in number fields and Hecke's zeta-functions, Thesis, Princeton University, 1950; Algebraic number theory, Thompson Book Co., 1967, 305-347.
- [12] Weil, A.: Sur la formule de Siegel dans la théorie des groupes classiques, Acta Math. 113 (1965), 1-87.
- [13] Weil, A.: Basic number theory, Grundl. Math. Wiss. 144, Springer, 1967.

(Received September 5, 1975)

Department of Mathematics The Johns Hopkins University Baltimore, Md. 21218 U.S.A.