A Poisson formula and exponential sums”

By Jun-ichi Icusa

Introduction. We shall first recall our Poisson formula in {4] with precise
definitions : let k denote a global field ; we shall denote by the subseripts A and
k the adelization relative to %k and the taking of k-rational points, respectively.
We shall denote by k, and k% the adele and idele groups of k; we shall fix a
non-trivial character ¢ of k,/k. Let X denote an affine n-space over k with z,,
Xgy v, %, as its affine coordinates; let dax denote the exterior product of their
differentials and |d#!, the Haar measure on X, such that X,/X, is of measure 1.
We shall fix a form f(@) of degree m=2 in z;, %, - -+, %, with coefficients in k;
we shall assume that char (k) does not divide m, f(z) is “strongly non-degen-
erate”, i.e., the projective hypersurface defined by f(x)=0 is non-singular, and
n>2m. Let U() denote the set of simple points of the hypersurface f(z)=1
and 6,(x) the residue of (flx)—14) dzx along U(:); then if ¢ is in k, the gauge-
form 6, on U(?) gives rise to a measure 0,1, on U(4),. Finally let (X)) denote
the Schwartz-Bruhat space of X, and take @ from $(X,). Then we have the
following identity :
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both sides have dominant series if @ is restricted to a compact subset of S(X,).
We shall add the Dirac measure d, to the so-defined tempered measure on X,
and denote the new measure by E; then E(®)—®(0) is given by either side of
the above identity.

On the other hand

E(@)y= 2, 0)
feXy

defines a tempered measure E’ on X, independently of f(x) for every m. We
observe that Supp (F’), the support of E’, is the discrete subset X, of X, while
Supp (E) is in general the union of f~'(4), for all ¢ in k; Supp (&) becomes the
union of {0} and f(@),=U(i)s for all ¢ in k= if U(0), is empty. The main
objective of this paper is to prove the following remarkable relation between E
and E’:

1y This work was partially supported by the National Science Foundation.
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We convert G,=k,xk% into a (locally compact) group as
(u, t)-(u/, ty=(u+t"u, tt")
and for every g=—(u,t) in G, we put
(U(g)0) ()= ¢4 P pluf(2)P(tw) ,

in which [tl, is the modulus of t. Then (E'—EXU(g)D) becomes a G-invariant
continuous function on G, and it vanishes ot every k-rational boundary point
of G, to the order s—1 where s=n/2m. This is a generalization of a classical
theorem stating that the theta series defined by a quadratic form behaves up to
lower order terms like the corresponding Eisenstein series at every cusp. We
recall that if f(x) is a quadratic form, then the above G, can be embedded in
the “metaplectic group” which is at most a two-sheeted covering group of (SL,),
and which contains (SL,); as a subgroup and that E'—F is (SL,),-invariant; in
view of the reduction theory for (SL,), the above-recalled theorem then implies
the boundedness of (E'—EXU(g)?) on G,. We refer to Weil [12], Chap.V for
the details.

The theory of metaplectic groups for higher degree forms is not yet available.
However our result seems to indicate that a boundedness as above holds in some
form. We have included a remark that a weak form of the boundedness implies
a generalization of the Hasse-Minkowski theorem. We have also included as an
appendix an observation showing that a naive generalization of the metaplectic
group might give something different from SL,. It is hoped that this paper
serves as a guide to the future arithmetic theory of higher degree forms.

1. Reduction theory for G,. We shall denote by p a (not necessarily non-
archimedean) valuation on the global field k, by k&, the corresponding completion
of k, and by | |, the usual absolute value on k,. If ¢, is an element of &k, then
lt,1, is the modulus of ¢,, i.e., the rate of measure change in k, under the mul-
tiplication by t,. Moreover the modulus [t|, of an element t=(t,), of kX becomes
the product of all |£,/,. We recall that [tl,=1 if ¢ is in k*; we shall use this
“product-formula” all the time.

Since G,=k, Xk, every element g of G, is a pair (u,%) of an element u of
k. and an element ¢ of k}; g is in G, if w is in k and ¢ in k*. We put

tHw)=Uw,1), dE)=U0,1);
then we get

Eu)2) @)= uf@)P(x) ,  (dE)O)x)=1¢1"O(tw)
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for every @ in SAX,) and
Ulu, )= w)d@)=dt)t™u) .

We recall that the correspondence (g,®)— U(g)® does define a mapping G, X
AX)— X, and that it is continuous; such a continuity problem was ex-
amined quite generally by Levin [7]. Moreover g— U(g) uniquely extends to a
unitary representation of G, in L¥X,). Since E, E’ are tempered distributions
on X,, both E(U(g)®) and E’(U(g)P) become complex-valued continuous functions
on G,xAX,). We observe that E, E’ are Gy-invariant, i.e., E(U(9)0)=E(®),
E'(U(g)P)y=E"(®) for every g in G, and @ in SX,); the verification is straight-
forward.

We shall construct a convenient subset of G, whose left translates by ele-
ments of G, cover the whole G, ; such a procedure is called a reduction theory
for G,. We shall first recall the reduction theories for k, and k% : if k is a number
field, we shall denote by S.. the set of all archimedean valuations on k; then k,
is an R-field, ie., k,=R or C, for every p in S.. We shall denote by o the
ring of integers of k, i.e., the integral closure of Z in k. If k is a function
field, we shall denote by qu the algebraic closure in k of the prime field; we
then choose a valuation p. such that the corresponding residue class field F, is
of degree at least twice the genus of k over qu, and we take {p.} as S.. Ac-
cording to the Riemann-Roch theorem there exists an element T of & with p.
as its polar divisor, and we have

ko= F,(T7) .

Thig time we shall denote by o the integral closure of 'FQO[T] in k.

In either case if k, is a p-field, i.e., if &k, is not an R-field, we shall denote
by X, the compact open subgroup (k%) of X,=k7, in which k% is the maximal
compact subring of k,, and by X, the restricted product of X, relative to XJ
for all p not in S..; then

Xi= 11 Xz?

PESe
becomes a compact open subgroup of X,. We shall denote by X. the product of
X, for all p in S.; then we have

X=X xX.;
accordingly we shall express an element x of X, as (%, %..). We shall denote by

X, the subgroup of X, consisting of s-rational points of X. If we diagonally
embed X, in X,, then we have
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X=X (XX X)), X=X MXIXXJ);

moreover the projection of X, to X. becomes a lattice in X.; we shall denote
X,, X¢, X.. for n=1 by ko, &}, k.. This is the reduction theory for X, and in
particular for k.

If & is a number field and = is in RY, the multiplicative group of positive
real numbers, then we shall denote by a. the element of k¥ defined by a.=(1, ),
i.e., by the condition that non-archimedean components are 1 and archimedean
components are r. If k is a function field, we replace RY by the cyclic subgroup
of (k,,.)* generated by T and define a. similarly as above. Then in either case
we have

ki=k*-{a.}. compact ;

this is the reduction theory for kX and it implies the finiteness of the ideal class
group and the theorem of units of o. All these are well known as the Iwasawa-
Tate theory; we refer to [11], [13] for the details.

The reduction theory for G, follows from what we have recalled; we have

G,=G{(u, a.); u,=0, ., € compact}-compact .

The proof is as follows: let (u,t) denote an arbitrary element of G,; then we
can write

t=1a.¢, PUu=1""7%+ (v, ¢*)

with ¢ in k%, ¢ in a fixed compact subset of k%, % in %k, v, in %5, and ¢* in a
fixed compact subset of k..; and we get

(u, )=(3%, 1)(0, ¢*), a)(v,, 0), €) .

This proves the assertion.

We observe that the middle space can be injectively mapped to k. X RY. We
take the one point compactification of k. xX(RXU{0}) and regard the boundary of
k.X R} as the boundary of G,. In particular points of kx{0} and the point at
infinity will be considered as k-rational boundary points of G,. We shall examine
the behavior of (E'—E)U(g)?) as g approaches such boundary points; for the
exact statement of our results we refer to §4, Th.3 and Th. 4.

2. A dominant series. If f(x) is a quadratic form and % is a number field,
the series

BO=00)+ 5 | ot fe)ow)da.
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appeared (as a special case) in Weil [12], Chap.IV; he called it the Eisenstein-
Siegel series. We recall that if k=@ and f(z.) is a positive-definite quadratie
form, then E(U(g)®) becomes the classical holomorphic Eisenstein series for a
suitable @. We shall show in the general case where f(x) is a higher degree
form that E(U(g)P) has a certain Eisenstein series as a dominant series; we shall
first construct an equivalent dominant series.

If g=(u,t) is in G4, we get

SX PR U0V @) de)
A
el N G O T
X4
hence its absolute value is at most equal to

dAD)NEGP" - TT max (fu,+1%,, [E5)7™,

in which ¢(®) is independent of i¥*, £, and wu; cf. [4]. Actually if we restrict @
to a compact subset of $(X,), then we can replace ¢(?) by 2 constant independ-
ent of @; c¢f. 2 bis. We shall show that E(U(g)?) has

const. [#132"(1+ XTI max ([ +i%l, [£513)7/=)
i*e P

as a dominant series; we have only to show that this series is convergent.

For the sake of simplicity we shall write |ul,, etc. instead of {u,l,, etc. We
shall also use the following notation: if ¢ and ¢’ are complex-valued functions
on a set X such that

(@) =c-¢'(x)

for every # in X, in which ¢ is a constant, we write ¢(x)<¢'(x) or ¢'{z)>d(x)
on X; if we have both ¢(x)<¢’(x) and J(x)>~¢'(x) on X, we write ¢(x)><d/(z) on
X. If there is no ambiguity about the set X, we sometimes omit it. Finally
we shall use this notation to define a family of subsets of a given set. The fol-

lowing lemma will settle the convergence problem :
LEMMA 1. Suppose that s>1 and (u,v) is in kX ki ; then we have
ZkH max (Ju-+1*], [v],) <ol
i*e P
on the subset of kyxki defined by v, >1.

PROOF. By the reduction theory for k% we can write v as ia.c, in which ¢
is in k* and ¢ is in a fixed compact subset of k%; then we get v, ><la.l, and
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T max (fu+1i*|,, [ta.cl,)

>< T max (|(5 7 u)+ @9, la.l,) .

Therefore for our purpose we may assume that v=qa, and |v],>-1; this implies
wl,>1 for every p in S. and {v|,=1 for every other p. By the reduction theory
for k&, we may assume that |u],<1 for every p in S. and |4|,<1 for every other
p. Then we get

max (|u+4*|,, |v],)>< max (|i*],, [v],)
for every p in S. and

max (|u+1*|,, [vl,)=max (|7*],, {v],)
for every other p. Therefore we get

3 ];)I max (Ju+4¥|, [v],) ™

i*ek

>< igkl;lmax (1e¥1,, 101)7% 5

the rest of the proof is as follows:
Since the class number of & or rather of o is finite, we can express ¥ as
ab™* with a, b in 9o, b0 such that

e];[ max (lal, [bl,)><1.

Furthermore, in view of the theorem of units, we may assume that b is among
a fixed set, say R, of representatives of orbits in 0—{0} by the group of units
of o with the property that [b],>1 for every p in S.. Then we get

igklmeax (I2¥,, vl

< 2 2 11 max(lal, [bvi)™™;

beR aco peSes

and we have

T max(aly, ibol) < TT fboly™.

a€9 PeESey P

This is the crucial point of our proof: if & is a number field, it follows from
Lemma 12 in [3]; and if & is a function field, it follows from a counterpart of
“Lemma 12” proved in [4], p.227; cf. also Mars [8], pp. 133-136. At any rate,
since |v],=1 for every p not in S., we get

peI;I ol,=lvls .
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Moreover we have

2 (T bl <oo
beR peSy

because this series is a partial sum of the Dedekind zeta series of v evaluated at
2s—1>1. qg.e.d.

2 bis. We shall outline a method to obtain a dominant series for any series
such as E(D); we shall first make some of cur notations precise: % is a global
field, ¢ is a non-trivial character of k,/k, and ¢, is the product of the canonical
injection k,—k, and ¢; X is an affine n-space over k, [z, y] is a symmetric non-
degenerate bilinear form on XX X defined over %k, and |d%|, is the Haar measure
on X, which is autodual relative to the bicharacter ¢,([z,%]) of X,XX,; the
restricted product measure |dxl, of all |dx|, then becomes the Haar measure on
X, such that X,/X, is of measure 1.

Let f(x) denote, for a moment, an arbitrary polynomial in the affine coordi-
nates %, %, -+, %, of X with coefficients in % and suppose that

(%) [ SX G F)O@)|dal, | <e(@)-max (1§%],, 1)

for every 4* in k, and @ in 54X,), the Schwartz-Bruhat space of X,; it is un-
derstood that ¢(®) is independent of 4* and ¢ is independent of 4* and @. Then
for any compact subset C of SX,) we can replace ¢(@) by a constant which
works for all @ in C. The proof depends on the following fact: “Let B denote
a subset of the space S X,) of tempered distributions on X, which is bounded
in the sense that

sup | T(D)]| < oo
TeB
for each @ in $(X,); then we have

sup [T(@)j<oo
TeB,0eC

(If k, is a p-field, this follows from the fact that C is contained in a finite
dimensional subspace of SX,). If k, is an R-field, then SAX,) is a complete
metric space; and we have only to apply the Baire category theorem.) If we
put

T(@)=max (11¥],, 1)°- S & (V4 @) P(x)ldxl,
Xp

for every @ in SAX,), we get a subset {T;:};» of SAX,) parametrized by k,.



230 Jun-ichi Igusa

The assumption (¥) shows that this subset is bounded; the rest follows from the
fact that we have recalled.

We can go one step further: “Let B, B’ denote bounded subsets of SAX,Y,
AX,Y, respectively; then the set of TR T for all T in B and T’ in B’ is bounded
in AX,XX,)Y.” (This becomes trivial if either k, or k, is a p-field ; and if both
k, and k, are R-fields, then it can be proved by applying twice the above-recall-
ed fact.) Therefore if we have (%) for every p, we can take a finite product.
More precisely suppose that S is a finite set of valuations on k and let Xj, kg
denote the products of X,, &, for all p in S; then we have

[ X (T S A O @ da,l,)
x4 PES pes

=c- IT max ([¢%],, 1)7°»
pes

for every 4*=(:¥), in ks and @ in a compact subset of S(Xj).

Finally for any non-archimedean valuation p let %) denote the maximal com--
pact subring of k, and @, the characteristic function of X{=(k%)*; suppose that
we can choose ¢(@,)’s so that their product is convergent; then we have

X S Fa)P@)ldel, | ¢TI max (164, 1)
X4 »

for every +* in &k, and @ in a compact subset of $(X,). Therefore if the series

ng I;[ max {|1*],, 1)7»

is convergent, by adding 1 and multiplying a suitable constant we will get a
dominant series for E(?). We have shown in [4] that this is the case with o=
nim if flz) is a form of degree m=2 such that char (k) does not divide m, the
i projective hypersurface defined by f(x)=0 is non-singular, and #>>2m.

3. Eisenstein series. We shall introduce an FEisenstein series which will
serve as a dominant series for E(U(g)®) and examine some of its properties; we
shall first make preliminary observations.

Let K denote a local field; K is either an R-field or a p-field. We embed
K in a division ring L=K+ Kw as follows: if K is an R-field, we have a unique
choice for L; it is C or H, the Hamilton quaternion algebra, according as K is
R or C. We shall normalize w as w*=-—1. If K is a p-field, we shall take as
L an unramified quadratic extension of K; it exists and is unique. Let K°, L°
denote the maximal compact subrings of K, L, respectively; then we shall take
as w an element of L such that L°=K°+K%. In either case we shall denote
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by Nz the norm of an element z of L; N gives rise to 2 continuous homomor-
phism of L* to K*.

Let

_<a ﬁ) |
o= , 2=u+ovw
r 0

denote arbitrary elements of GLJ(K), Z=K-+ K*w, respectively; then we have
y2+06+#0. Therefore

0'z:(az+,8)(rz+5)_1:u,+v’w
is defined and we get
v =1(¢-2)=det (6)v- N(yz--0)"10 ;

hence ¢-z is also in Z. Moreover the mapping GLy(K)X Z — Z defined by (¢-2) —
-z is continuous and it gives a group action of GL,(K) on Z; the action is

<'v u) W=UT VW
M T

0 1

for every z=u-+vw in Z.

We shall go back to the global field & and take k, as K; and we shall denote
the above w by w,. For the sake of completeness (and clarity) we shall prove
the following lemma :

transitive because

LEMMA 2. Let w4, v, denote arbitrary elements of k,; then we have
I N(up+v,w5) p>< max (14,5, [9,15)°
if k, is an R-field and
I N(tptv,w5) p=max (Ul 0,],)°
iof k, is a p-field.
Proor. If a, b are non-negative real numbers, we certainly have
max (¢, 0)=a+b=2-max (a, b) ;

this takes care of the R-field case. In the p-field case, if a, b are elements of
k(w,) satisfying lal,#1bl,, we have

la+bl,=max (lal, 1bl,) .

Therefore if |u,l,#|v,l,, we have the equality in question. We shall assume
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that |u,],=|v,],; then by homogeneity we may further assume that |u,l,=|v,|,=
1. And we have only to show that |NM(u,+v,w,)l,=1. By our choice of w, the
residue classes of 1, w, are linearly independent over the residue class field of k,.
Since u%,, v, are units, the residue class of #,+v,w, is different from 0; hence
Up+ VW, is & unit, and hence | N(u,+v,w,),=1. q.e.d.

We choose w, for each p and put
w=(wy)y, E=k,+tkiw;

with the obvious topology % become a locally compact space. We shall denote
“an element of %2 by z=utovw=(u,+v,w,), and define Nz componentwise, i.e.,
as (Nz),= Nz, for every p; then we see by Lemma 2 that N gives a continuous
mapping of & to ki. Furthermore we have

IN(z+3%) >< max (Ju+1i*, |v],)?

on &Xk. Therefore if s is any complex number satisfying Re(s)>1, we see by
Lemma 1 that the series

E(z, s)=Iv]3(1+ ng IN(z+1%)|1%)
is absolutely convergent; this is the Eisenstein series useful for our purpose.
The following theorem follows from what we have observed:
THEOREM 1. Consider the mapping G,— 2 defined by g=(u,t) — z=u--vw
where v=t™; then we have

S PO f U@ dal < (1v]al N(z+15%)[31)~/ ™
X4

on GyxXk of @ is restricted to a compact subset of A(X,). Therefore a con-
stant multiple of E(u-+t™w, n/2m) serves as a dominant series for E(U(g)d) on
Gy tf @ is restricted as above. Moreover for any s>1 we have

Elz, s)—{vly <ol

on the subset of % defined by |v],>1.

We shall examine the invariance property of E(z,s) under the action of
GLy(k)=(GL,), on % ; we shall first define the action of (GL,), on % let o=
(05)py 2=u+vw denote arbitrary elements of (GL.),, %, respectively; we define
g-z=u'+v'w componentwise, i.e., as

(6-2)p=up+viw,=a,2,

for every p. We shall show that o-z is also in 2: we have only to show that
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if k, is a pfield, o, is in GLy(k}), and lul,=1, vl,=1, then |w/|,=1, [v'[,=1.
Let (r ) denote the second row of o; then (0,7 2,) N(rp2,+8,) i certainly in K5+
kw, Moreover, since either 7, or d, is a unit of k), we get

ING 52,18, p=max (Iru+3lp [rvl,)*=1;
this implies |#’|,=1 and
|0/ |,=1 det ()], 19l | N(rz+0)i'=1 .
We observe that the action of (GL,), on % thus defined is continuous and tran-
gitive.
THEOREM 2. The Fisenstein series K(z,s) is GLJ(k)invariant, i.e.,

E(o-2,8)=E(z,8) for every o in GLy(k).
PROOF. We let GL, act on the projective line P; as

C P it B+ O

with the obvious understanding in the case where i*=co; then we get a transi-
tive action of GLyk) on Pyk)=kU{co}. Let o denote an arbitrary element of
GL,(k) with coefficients «, 8, 7, 0 and z an element of %; then for every 4* in

L such that —pi*¥+a#0, i.e., o71-i%£00, we get
g g—i¥=(—pi*+a)z—o - i) (rz+8)" .
Moreover if —pi*+a=0, then y#0 and we get
o-z—i¥=—det (o) Hyz+0)" .
Therefore we get
Elo-2,8)= IU(U'z)li(1+i§k [N(o-z—3%)13%)
:lvli(lN(TZ+5)lZs+i*¢§,a.w!N(z~a‘1-i*)lf—%l)
=lvl§(1+j§klN(2—j*)lr)
if g.oooco; and similarly E(s-2,s)=E(z, s) if g-c0=00. q.e.d.
COROLLARY. For any given t* in k we have
E(z, 8)—vla| Nz+iM)Iz <l
on the subset of % defined by

(%) [N(z+1%)] <Ivii<1;
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we also have

E(z, s)— vl N(z+1%)]3° <1
on the subset of 2 defined by
() [INGz+1%)] < |vls -

The proof is quite simple: choose an element ¢ of GL,(k) satisfying ¢~t-co=
—¢*; then by Th.2 we get
E(z, s)— w4 | Nz +i") = Eo -2, s)—|v(o-2)]% .

And () implies
[W(o-2) = 0| NE+HIM| > ] >1

while (x*) implies [v(e-2){,>1. The rest follows from Th. 1.

One way to construct a subset of % satisfying (*) is as follows: we restriet
v a8 |v]4,<1 and % by the condition that (w+4*)v~* remains in a compact subset
of k4 i.e., as luti¥|,<|v], for every p in a fixed finite set and |u-+i*,=|v],
for every other p. In fact by Lemma 2 we then get

IN(z+4%)4>< TT max (Ju+-i*],, {o],)?
¥4
< TIvli=lvla<1.
V4
We shall examine our definitions and results in the special case where k=@Q.

In order to make the objects visible, we shall assume that #,=0 and v,=1 in
2=U+vw=(%, 2.) ; then we get

E(z, 8)=Im (2)*(1+ Zirz.—+di"%),
7,0
in which 7, ¢ are relatively prime integers with y=1. This is a classical Eisen-

stein series; cf., e.g., Kubota [5]. Moreover the condition (*) and the more re-
strictive condition explained after the corollary both become

(2o F ¥ <{Im (2.)| <1;

if we restriet 2. to the upper-half plane, this defines a V-shaped region which
touches the real axis at —i*. On the other hand the condition (xx) becomes

2ot t*2<|Im (2)] ;

this defines a closed circle which is tangent to the real axis at —¢*. In the
first case the height and the angle between the two lines through —¢* are arbi-
trary and in the second case the radius is arbitrary. We have thus shown that
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the second part of Th.1 and the corollary become the well-known theorem de-
seribing the behavior of the classical Eisenstein series at cusps; cf. Kubota, op.
cit.

4. Main results. We shall go back to our (E'—E)U(9)P): in view of Th.
1 we put

lgla=lu, D=1tz , s=n/2m;
then s>1 and g — gl gives a continuous homomorphism of G, to R3.

THEOREM 3. We restrict g as |gl.>~1 and @ to a compact subset of (X ,);
then we have

(B —EXU(g)D)<Igli .

The proof of this theorem does not depend on the degree m of f(x); it can
be extracted from the proof of Prop. 7 in Weil [12], Chap. V. Since we have in-
cluded the function field case, we shall give an outline:

LEMMA 8. Let F denote a closed subset of X,=X,xX. such that
FN(X,X0)=0 ; then for any N=0 and any compact subset C of F(S,)
there exists an element ¢ of SA(X,) satisfying

la 1T | P(a.x) | =¢(x)

for every x in F, every a. with la.14=1, and every @ in C.
ProoF. This lemma is known if k is a number field; cf. Weil [12], Chap.
I, Lemma 6 and also Mars [8], Lemma 7. The proof in the function field case

is simpler: by using coordinates of z, we define |zl as

[, o= max {[@y,:lp.} -
1=

Since C is compact, there exist compaect open subgroups L, L, of X, X, re-
spectively, such that Supp (@) is contained in L,X L, for every @ in C; we may
assume that L_ is defined by lz.l.=c¢ for some ¢>0. Let ¢, denote a constant
multiple of the characteristic function of L, and ¢, the characteristic function
of L_; then if we take the constant large enough, we will have

[P()| = Po(20)Poc(.)

for every x={x%,, x.) in X, and @ in C. Since FN(L X L,) is compact and has an
empty intersection with X,x{0}, we have |z_l.=d for some d>0 and for every z
in FO(LyxXL,). We shall show that
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=(cd ") ($sXP..)

has the required property.

If @(a.x)+#0 for some = in X, and @ in C, we get @y(wo)d.(cx.)7#0; hence x,
is in L, and r2, is in L,. If la.],=lrl,=1, then «_ itself is in L.. And if z
is also in F, then |z|_ =<e¢lz_ | '=cd *; hence

la| T 10(a.2)| < (ed ) do(0)P.(72,,)
=(ed Y do(X0)Pu(.,) - g.e.d.
The proof of Th. 3 is as follows: we have shown in §1 that
G=Gy{(u, a,); %o=0, U, € compact} compact .

If we express an element g of G. as the product of an element of G, (u,a.),
and an element of the compact set, then we have |g|,><la.|%. Therefore we may
assume that g=(u,a.), in which %,=0, %, is in a fixed compact subset of &k,
and la.l,>1; then (a;™u,1) in

(%, a.)=(0, a-{a:™u,1)

remains in a compact subset of G,. Therefore we may assume that g=(0,a,)
where |a.l,=1. We recall that for g—(0,¢) we have

i€k

(B'—EXU(@)0)=1t14""( X O(te)—~ ZS D(tx)0x)]a) .
e Xp—1{0} Tii) 4

We shall take ¢=—a. where |a.,=1. Then by applying Lemma 3 to F=X,—{0}

we get

e 3 o) <lgli”
§eXp—{0}

for any N=0; by applying Lemma 3 to F=f"1(k*) we get

iek

e
Ul) 4
for any N=0; and finally we have

1o K O(t2)104(0)] 1= g1 g D10, .

U, U0 4

We have only to put the above three relations together.

THEOREM 4. Let i* denote any given element of k; we restrict g=(u,t) by
[tl4<1 and by the additional condition that (w+i¥)}t™™ remains in a compact
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subset of ku; we also restrict @ to a compact subset of F(X,). Then we have
(E"—E)Ulgd)<iglit .

PrOOF, We define the singular term at —4* as

st at —i*=[t§/on SX D+ %) flo) D) der] o5
4
then by Th. 1, its corollary, and a remark after the corollary we get
E(U(g)yD)—s.t. at —i*<|gli™
on the subset under consideration. Therefore we have only to show that
E'(U(g)P)—s.t. at —i*<|gl¥
for any N=0. Since ¢(ufi&)=¢((u-+i* f(&)) for every £ in X, by applying the

usual Poisson formula we get

E(Ug)0)=1tla- L P(u+1*)f(END(EE)

=t 3] g (L&, Y+ (u-+ iR L )DL
fdeXy Jx,
Therefore if we put
() =P((u+1¥) " fx))P(x)
and denote its Fourier transform by ¥*x), we get

ENU(@)D)—s.t. at —i*=[t]z¢/2" X THt'e).
£e X —{0}

We recall that the mapping G, X F(X,) — SA(X,) defined by (g,?) — U(g)? is con-
tinuous. Since (u-+i¥)t"™ remains in a compact subset of k,, therefore, the set
{7} is relatively compact in S(X,). Since the Fourier transformation is bicon-
tinuous, the set {T'* is also relatively compact in S(X,). The remaining part of
the proof is as follows:

We write t=1a.¢ with ¢ in £* and ¢ in a fixed compact subset of kJ; then
by assumption we have |#|,><la.l,<1 and

lelaemn. X }W*(t‘lé)xla;ll%/”"- 2 )@’*(0‘111215)-

telp—10 e Xp—io
Since the set {¥'*(¢ 'x)} with ¢ in the compact subset is still relatively compact

and la7'>-1, we can apply Lemma 3 to F=X,—{0}. In this way we get

lazt§2m. ¥ TR ta ) <a i < gld
§eX;—1{0}

for any N=0. q.e.d.
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We shall examine Th. 4 in the special case where k=Q; for the sake of
Psimplicity we shall assume that f(z) has integer coefficients: we shall use the
particular ¢ defined by the condition that ¢.(u.)=e(u.) for every u. in Q.=R
and ¢p(u,)=9¢.(—<u,) for every u, in the Hensel p-adic field @,, where <u,> is
the fractional part of u,. We shall use as @ a function of the form ,K0P,, in
which @, is a Schwartz function on X_ =R"; for the sake of simplicity we shall
agsume that @, is the characteristic function of X¢. And we shall take as g a
special pair (u,a.) where u,=0. Then we get

(U(g)0)(z)="""e(u,, flx. )0 (c2,)
if @, is in X¢ and (U(g)®)(z)=0 otherwise; hence

(1) A A U(g)@)ze %, e(u fEN0(<5) .

One way to visualize this series is to consider the limit case where @_ becomes
the characteristic function of a relatively compact, say open, subset J of R";
then we get the following finite sum:

D, e(uafle) .
J

feZnnc

This is classically known as an exponential sum; it behaves quite delicately as
a function of u, and z; cf., e.g., Birch [2].

We shall also make the two series for E(U(g)P) explicit: suppose that
1*=7"13, where 7, & are relatively prime integers with r=1, and put

G@¥)=y™ X e(—i*f(e);
& mod y
then one expression for =~ V2*E(U(g)P) is
(2) 1+ G(i*)-g (4t f (@)D (cw )z, |
i*e R7™

in which dz,, is the usual measure on R*. On the other hand, for every integer
¢ and a positive integer Q let Ny(i) denote the number of ¢ mod Q satisfying
f&)=i mod @; we let @ tend to oo so that @ becomes divisible by any positive
integer; then the following limit:

S(i):éim Q"D No(4)
exists. In fact the condition of convergence is n=>4 if {20 and »>max (m-+1,4)

if 4=0; and this is weaker than our assumption that »>2m (and m=2). We
might also mention that in the fourth and fifth lines of [4], p. 224 the condition
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n>max (m+1,4) was incorrectly stated as n>max (m,4). At any rate another
expression for r~/PE(U(g)P) is

(3) 1+ S(i)~g 0. (z2..)10(2 )] e(i2s,) -
teZ 1)
And Th. 4 shows that as the point
2= U {(—1) ™

approaches any rational number —i* in the V-shaped region explained in the
previous section, (1) is given by (2) and (8) with a remainder term of order «™™;
we observe that (1) itself can be of order ™"

We shall also explain the classical case where f(z) is a quadratic form: after
Hermite and Siegel we choose a “majorant” h{z.) of f(x,) and put

@ (x.)—=exp (—2rxh(x,.)) ;

we can define h(x.) as a positive-definite quadratic form (with real coeflicients)
such that the above @, is equal to its Fourier transform relative to the bichar-
acter ¢ (flz.., %)) of X XX.,, in which

S, p)=fx+y)—Ax)—fy) .

If f(z.) is positive-definite, then A(x.)=f(z.) is the only choice. At any rate
under the above specialization (1) becomes the following theta series:

Eezzjn e(Re (2..)/(8)+(—1)"2 Im (2.)h(£))

and (2) becomes the following Eisengtein series:
L4-e(UB)p—aNIAI=V2 % Gl (e 2040,
in which p, ¢ are the numbers of positive and negative eigenvalues of the coeffi-

cient matrix of f(z,¥) and d is its determinant. Furthermore in the special case
where ¢=0 (3) becomes

-1 o
1+(2ﬂ)(1/2)nr<%n> d—(1/2) . Z S(i)i(l/@n—le(izw) .
i=1
We recall that such series and their generalizations appeared in many works of
Siegel.

5. A conjecture. In the special case where f(#) is a quadratic form we know
that (B’ —EXU(g)®) is bounded on G, if @ is restricted to a compact subset of
SAX,). We refer to Weil [12], Prop. 7 for the proof; we also refer to Siegel
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[9] and Ariturk [1]. We have shown in the general case that (E'—EXU(g)D)
vanishes to the order s—1 at every k-rational boundary point of G, and hence is
bounded around every such point. Therefore it is reasonable to think that the
boundedness is not restricted to the case of a quadratic form. We in fact propose

the following weaker statement as a conjecture:

CONJECTURE. For any given @ in SAX,) there exists a positive real
number ¢ such that
(E'—EXU(g)D)<|gli=*
or at least

S (B — EXU(@)®)\dul, < gl
kqlk

on the subset of G, defined by lgl.=1.

We observe that (B —E)U(u, t)®) is a continuous function on (k,/k)<Xk§ and
that the first hypothesis implies the second. We can prove this conjecture if n
is sufficiently large compared to m. The point is that it may be true under the
assumption #>2m and it is very likely to be true if n>m?® and that it implies
the following generalization of the Hasse-Minkowski theorem:

“If the non-singular projective hypersurface defined by f(2)=0 has a k-
rational point for every v, then it has a k-rational point”.

(In this way we can reproduce Birch’s result in [2] at least for a non-singular
projective hypersurface.) The above implication can be proved as follows: we

have
(B'—E)tu)0)= 3, c/@(iu)
in which

0= ¥ <D(e>—§ 10,

feltlg Ui) 4

for every % in k. Since we also have

cz-@):S (E'—EYEw) D) —iw)idul, ,

kalk
if the conjecture is true, we will have
e (d()D) < [t]mt-s+

on the subset of k} defined by [¢],=<1. By using the O-symbol as [t|,—0, this

can be rewritten as
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5 @(ta:(SM QlﬁolAJrO(ltIT))ltl’Z‘“.

§e U0y

We recall that for every 4 in &k the support of the measure |6}, is the whole
space U(i),. Therefore if U(0), is not empty, for any @®>=0 which is not the
constant 0 on U(0), its integral over U(0), is positive; then the right hand side,
hence also the left hand side, is positive for all small [¢],. Therefore U(0), can
not possibly be empty; this completes the proof.

Appendix

One of the points we have made in this paper is that we can do something
significant by using only such a small group as G,. However the last section
clearly indicates that a good generalization of the metaplectic group will be ex-
tremely useful. For that purpose we must start examining, as in Kubota [6],
possible generalizations of the metaplectic group over a local field. Since the
problem is still quite difficult, it was suggested to us by Shalika to examine the
same problem over a finite fleld. In this appendix we shall explain our frag-
mental results in this simplest case.

We shall introduce a naive generalization of the metaplectic group over K=
F,: let X denote an n-dimensional vector space over K and L(X) the Hilbert
space of (complex-valued) functions on X with the following norm:

[lF=card (X)~ - L&lO@)I* ;

then for every ¢ in K* the scalar multiplication by ¢ in X defines a unitary oper-
ator in L(X). Let ¢ denote a non-trivial character of K and f(x) a form of
degree m on X, i.e., a homogeneous element of degree m of the symmetric al-
gebra of the dual of X; then for every w in K the multiplication by ¢(uf(z)) in
L(X) also defines a unitary operator in L(X). Finally let [z, y] denote a sym-
metric non-degenerate K-bilinear form on XX X ; then

O¥(x)=card (X ) /» 'ysZX Dz, yDO(y)

defines a unitary operator in I(X). We shall assume that f{z) is non-degenerate,
i.e., flz) is not a form on the quotient of X by a proper subspace; and we
shall denote by Mp the subgroup of the full unitary group Aut(L(X)) generated
by the above three types of unitary operators.

The structure of Mp is known for m=2: if m=1, we necessarily get n=1;
and Mp becomes a semidirect product of a Heisenberg group of order ¢° by a
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generalized quaternion group of order 2(¢—1). If m=2, ¢ is odd, and [z, yl=
Sz, y), then Mp becomes a semidirect product of a cyclic group of order 2 or 4
(according as ¢=-+1 mod 4) by SL,K). In the general case we have the fol-
lowing theorem:

THEOREM 5. Suppose that n=1 and let e denote the G.C.D. of m and ¢—1.
Then vf e is even, Mp decomposes into %e—!—l wnequivalent irreductble repre-
sentations of degrees

g—1 1 g—1 2(g—1) 2(q—1) .
e ’ e ? e b bl e s’

and if e is odd, Mp decomposes into %(e—kl) inequivalent trreducible repre-

sentations of degrees

2(g—1)
=

g1,y 2D ,
e e
Proor. For a moment we shall drop the assumption that n=1; let T denote
an element of End (L(X)), i.e., a K-linear transformation of L{X) to itself; let
5, denote the Dirac function on X satisfying d,(y)=1 and put k(x, y)=(T48,)(x);
then we get
(TO)z)= EX k(z, y)0(y)

for every @ in L(X). The set A of all T”s which elementwise commute with Mp
forms a subalgebra of End (I(X)). Let k(z,y) denote the kernel of T defined as
above; then T is in A if and only if

(E) k(tz, ty)=k(z,y) for every ¢ in K*;

(k2) k(z, y)#0 only if flw)=r(y);

k3) 2 k@, )iz yD)= 2 M=, 2Dk(z, ).
We shall closely examine these conditions resuming the assumption that n=1: if
we identify X with K, we get flz)=cz™, [z, yj=dxy for some ¢, d in K*. We
define a function ¢ on K* as ¢(t)=k(1,t); then we get

(#1) Supp (P} (K™)., i.e., $(t)#0 only if t*=1;

(62) ()= (11).

Conversely for every such ¢ if we define k(z, ¥) as
play)  wy#0

k(z,y)={ O zy=0,  (,¥)¥(0,0)
§¢(t) (@, ¥)=(0,0),
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then k satisfies (k1)-(k3). And the correspondence k— ¢ gives rise to a C-linear
bijection.
Consider the group ring C(K*) of K*; then the correspondence

T—»k—>a=Zt} ¢4

gives rise to an injective algebra homomorphism of A to C(X*). In particular
A is commutative. Since Mp is completely reducible, therefore, every irreducible
subrepresentation of Mp has multiplicity one. As for its degree, it can be deter-
mined as follows:

We observe that the C-linear extension, say o, of a character y of K* is an
algebra homomorphism C(X*)— C mapping 1 to 1 and the correspondence y — o
gives rise to a bijection. In particular there are ¢—1 such algebra homomor-
phisms. If we arrange them in some order, we get a representation of C(X*) as
the algebra of all diagonal matrices of degree ¢—1; and by restricting this repre-
sentation to 4 we get a diagonalization of A.

’, respectively; then

After this remark suppose that @, o’ correspond to ¥, x
we get o' =w on A if and only if y’=x** on (K*),. Therefore the restriction of
o to A has multiplicity (g—1)/e or 2(¢—1)/e according as x>=1 or x*+1 on (K*)..

Moreover if w, corresponds to the character 1 of K*, then we get

k0, 0)=3 ()= wi(a) .

We have thus obtained a diagonalization of A as an algebra of ¢-by-¢ matrices
from which we can read off the degrees of irreducible subrepresentations of
Mp. q.e.d.

COROLLARY. If ¢ is odd, e=3, and (e, q)+(3,7), (4,5), then Mp is not a
central extension of SLy(K); if q 1s odd and e=5, then every homomorphism
of SLy(K) to Mp is trivial.

The proof is as follows: we recall that the degrees of irreducible represen-
tations of SL,(K) are

1, l(qil) ) g=+l, q;
2
ef. Tanaka [10]. And we have
1
E(q—1>>2(q—1)/e

if (and only if) e=5. Therefore if ¢=5, the degree of any non-trivial irreducible
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representation of SL,(K) is larger than the degrees of irreducible subrepresen-
tations of Mp. After this observation suppose that n is a homomorphism of
SLAK) to Mp; then = followed by any irreducible subrepresentation of Mp is

necessarily a sum of the trivial representation of SL,(K). Therefore r is trivial;

this proves the second part and also the first part for ¢=5 (because any central

extension of SL.(K) splits). The proof of the remaining cases is similar.
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