A note on reduction of positive operators, 11

By Shizuo MIYAJIMA

(Communicated by S. Itd)

§1. Introduction and preliminaries

Extending the methods of I. Sawashima and F. Niiro [6], the author gave in
the preceding note [4] a reduction theory for positive ergodic operators in the
space of all continuous functions on a compact Hausdorff space. But the result
is somewhat incomplete in the sense that the irreducible component obtained by
the reduction is generally a positive operator in the space of continuous functions
vanishing at infinity on a locally compact Hausdorff space. In this note the in-
completeness is eliminated by giving the reduetion theory for positive ergodie
operators in an arbitrary (AM) space.

It seems to be useful to recall some basic facts about (AM) spaces before the
exposition of the results.

An (AM) space E is a Banach lattice having the following property ; [aVyl=
Max{|lz], ||} for z,y€ F, z,4y=0. By the well-known representation theory of
S. Kakutani [2], any (AM) space is Isometric and lattice isomorphic to a closed
sublattice of the space of all continuous functions on a compact Hausdorff space
with its usual order and norm. Precisely speaking, for any (AM) space E, there
exists a compact Hausdorff space X and a system of pairs of points 2z, 2%
(24, 2, € X, @€ A) and real numbers ¢, (0=c¢,=<1, @ € A) such that E is isometric and
lattice isomorphic to the space C(X;x,, 2%, ¢,; a€ A) of all bounded continuous
real-valued functions f(x) which are defined on X and satisfy the following
relations ;

Sfw)=c.flzl), acA,

where A is a set of indices a whose power may be arbitrarily large. Without
loss of generality, we may assume that the family {(x,, %}, ci)}ees 18 “saturated ”,
i.e., it covers all the triple (z, %, ¢) € XX XX [0, 1] which satisfies f{x)=c-f(z') for
any fe (X ; %, 2/, ca; a € A).

From now on we fix an (AM) space E and identify it with its representation
C(X ; %y, 3, o ;€ A), where the family (@, @', Co)leca is saturated. For con-
venience we make the following

DEFINITION. A closed set Y X is called an E-closed set if it satisfies the
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Jollowing two conditions.

(i) Ey={feCY); f=gly for some g<c E} is closed in C(Y).

(ii) For any ac A such that c,#0, 2.€Y if and only if 2,’€Y, and ¥
contains any %, 1f c.=0.

The following proposition shows that any closed order ideal of E is charac-
terized by an E-closed set. (A linear subspace I of E is called an ideal if z¢l,
lyl=le] imply yel.)

PROPOSITION 1. Let I be a closed order ideal of E. Then there exists an
E-closed set Y for which I={fcE; f=00n Y}. Moreover, E{I is isometrically
isomorphic to Ex={fcC(Y); f=gly for some gec E}.

PrOOF. Let Y={zec X ; fiz)=0 for any fel}, and L,={feE; f=0 on Y}.
We will show that I=I,. It is clear that ICIl,. To show the converse inclu-
sion it suffices to show that any felr, f=0 belongs to I since Iy is also a closed
order ideal of E. Let fely, f=0, and ¢ be an arbitrary positive number. Then
the set A,={xc X ; f(x)=¢} is a compact set disjoint from Y. Therefore for any
z € A, there exists an f,=0, f, €I, for which f<f, holds in a neighbourhood of .
By the compactness A., there exists a finite set of points of A,, {#;};=1,2,....s, a0d
positive elements of I, {f3}ie1,....xs for which f= Z_\z Sz, holds on A.. Let g=fA
(V f.). Then geT and |f—gl<e. This shows that feI, hence I=I. Next
we prove that E/I is isometrically isomorphic to Ey. To show this it is sufficient
to verify that for any positive f€ Er and any positive number ¢, there exists a
positive extension g€ E of f such that |g|<[f]+e. Let % be an arbitrary posi-
tive extension of f and B.={x <€ X ; mx)=|fl|+<}. Then B, is a compact set dis-
joint from Y. Therefore for any x € B, there exists f,€ I, f,=0 for which f,=h
holds in a neighbourhood of . By the same argument used in the former part
of the proof, we get an element k<€, k=0 such that k= on B.. Let g be the
positive part of A—k. Then ¢ is an extension of f since k=0 on Y, and [g[=
Ifll+e. Thus E/I is isometrically isomorphic to Ey, and hence Y is an E-closed
set.//

The set Y defined in the proof of the above proposition is called the support
of the closed order ideal I. The following proposition shows that such a set is
nothing but an F-closed set.

PROPOSITION 2. A closed set Y of X is the support of a closed order ideal
of and only if it is an E-closed set.

Proor. It suffices to show that an FE-closed set is the support of a closed
order ideal, since the converse is proved in Proposition 1. Let Y be an E-closed
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set and L,={fcE; f=0 on Y}, and Z be the support of I,. Then obviously
Y<cZ. On the other hand any point z of Z defines a lattice homomorphic fune-
tional on Ery={feC(Y); f=gly for some g< E}. Namely, the mapping

Jf=glr € Ey — g(x)

is well defined and lattice homomorphic by the definition of Z, and we denote it
by e, Since Ey is closed in C(Y), ¢, is a bounded linear functional on Ey. If
&,=0, f(x)=0 for any fe E, hence z€ Y. So we may assume that ¢, is not zero.
In this case, for a suitable positive constant ¢, ¢-¢, is a nonzero extreme point
of the positive portion of the unit ball in E% (cf. [7] Chap. 5, 1.7). Next we
show that there exists a point y of Y for which ¢,=¢-s, holds. If not, there
exists an element f¢E, which satisfies

c-e,(f)> sggf(y)

(ef. [1] Chap. 2, §7 n°1, Proposition 2). If the positive part f. of f is nonzero,

we have

coe( fa)> Etelgf+(y)=l]f+ﬂ )

which contradicts [le-e,[=1. On the other hand, if the positive part of f is zero,

0=c-c,(f-)< inf f-(y), where f- is the negative part of f. Then for any g€ Ky,
yexy

9=0,

lgll

< .
I="nt f- )
yeX

This implies c~ez(g)§mng{], which means Jle-gl|<1l since c-e(h)l=
;{_}f, )
Max {¢-&,(hs), ¢-¢,(h_)} holds for any k< Ey. Thus there exists a point y€ Y for
which f(y)=c-f(x) holds for any fe E. Since Y is an E-closed set, this implies
zeY, and hence ZCY. Thus we have Z=Y.//
The following is an easy corollary of Proposition 1.

COROLLARY. Let E be an (AM) space and I be an closed order ideal of E.
Then E/I is also an {AM) space.

§2. Reduction theory

Let E be as in §1 and T be a bounded operator in E satisfying the follow-

ing conditions :
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I T=o,

i M, E%(I—k T+ --- +T™1) converges strongly as n — co,
(These conditions imply that the spectral radius of T is less than or equal to 1.)

Let P denote the limit operator of {M,}. Then P is a positive projection
whose range PE is the eigenspace of T for the eigenvalue 1, since PT=TP=P.
A funection p, which is important for the investigation of the structure of PE,
is defined as follows.

DEFINITION. p denotes the function on X whose value at x € X is sup{Pf(z);
fe8,}, where S, is the positive portion of the unit ball in E.

It is clear that p is a positive lower semi-continuous function satisfying
P(x) =c.p(xh) for any ac A and p@)=<|P| for any x€ X. Moreover p has the
following property.

LEMMA. Let feE and f<p. Then Pf=p.

PrOOF. Let ¢ be an arbitrary positive number. Then for every z ¢ X there
exists a funection f,€ S, for which f=<Pf,+¢ holds in a neighbourhood U, of =.
Since X is compact, it is covered by finite union of such U,’s, say X= U U.,.
Then g= fo belongs to S, and f=<Pg+e¢ holds on X. This shows [l(f—Pg)+]1<e
Since fng—r(f—Pg)+, Pf<Pg+P(f—Pg).<p-+¢||P|. By the arbitrariness of e,
this proves the lemma.//

A new norm on PFE can be defined through the function ». That is, if we
denote the number inf{c; —c-p=f=c-p} by |flls, it is easy to see that |fl,
really defines a norm on PE which is equivalent to the original norm induced
by that on E. Hereafter whenever the space PE is concerned, its norm should
be considered to be |-[,. The following proposition is easily proved by the

lemma.

PROPOSITION 3. FEquipped with norm |-|, and the order induced by that
wn E, PE ¢s an (AM) space.
(The supremum of f,g9¢ PE in PE is P(fVg) which will be denoted by f\g as
in [4].)

PROPOSITION 4. (PE) 1s isometrically isomorphic to P'E’ as a Banach
lattice. In more detail, the mapping
¥ e(PE)Y - ¢=y-Pec P'E'

18 an order preserving isometric linear mapping of (PE)Y onto P'E’, and the
inverse mapping is the restriction of ¢ on the subspace PE.
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ProoF. Since P is positive, the two mappings in the proposition are both
positive, and are inverse to each other. By Proposition 3, [[|¥]|=]¥| for y ¢
(PEY. Therefore if we prove that [¢ll=|v] holds for positive ¥, the proposi-
tion is completely proved. If v e(PE) is positive, [[¢|=sup{¥(f); fe PE, f=0,
IFle=l}z=sup {¥(Pf); feS.t=l4l, since [Pflly=1 for f&S.. On the other hand,
for any fe PE and arbitrary positive number ¢ such that f=0 and [ fll,=1, there
exists an element g €S, which satisfies [|[(f/—Pg).[<e as was shown in the proof
of the lemma. Since ¥ is the restriction of ¢, this implies

V(=P +9(f—Pa))=(1+e)-l¢ll . Hence [¥li=[gl.//

Let @ be the set {¢; € E’, =0, |8[|=<1, T"¢6=4¢}, and let 4 be the set of all
nonzero extreme points of @. Then @ is identified with the positive portion of
the unit ball in (PE) by Proposition 4, since T'¢=¢ is equivalent to P'¢=9.
So an element ¢ <@ belongs to A4 if and only if [[¢]=1 and ¢ is lattice homomor-
phic on PE, i.e., ¢(fvg)=Max {$(f), #(g)} for any f, g€ PE (cf. {7] Chap. 5, 1.7).
For any 21¢4, let L={fcE;(|f)=0} and S;={xecX; f(x)=0 for any fel}
(=the support of I;), and let S be the closure of ;9 S;. Then we have

PROPOSITION 5. Ple,=p(x)-2 holds for any 2€ 4 and z€S;.

PROOF. First we remark that f\vg—fVgel,since f\Vg=fVygand A fVg)=
AfVg). Therefore fi\vg=sfVg on S;, hence P’e, is lattice homomorphic on PE
and |[P’e,]|=p(x) for z€S;. This implies the existence of g€/ for which Ple,=
p(@)-p¢. If we show that p(x)==0 implies p=1, the proposition is proved. Sup-
pose that p(x)#0 and #+2. Then there exists a function f€ PE such that 4(f)=0
and p(f)=0, since if 2(f)=0 implies x(f)=0 for any f<€ PE, ¢ is proportional to
A. As was remarked before the proposition, 1 and # are lattice homomorphic on
PE. Hence replacing f by fV(—f), we have an element f&PE such that
=0, 2(f)=0 and p(f)>0. Then

S@)=Pe,(f)=p@)(f)>0 .
This contradicts A(f)=0.//
For any i€4, let
Xi={geX; Pe=p@) 4},
and let
Xo={we X; fVg@)= Max {f(®), g®)} for any f,g€PE},
N={re X; p(x)=0}.

Then we have the following



250 Shizuo MIvAJiMA

THEOREM 1. i) For any A€ A4, S; is a compact set and S;NSNN=@ if
ped and p£2. i) For any 1€4, X; is a compact set and X;N X NN=@ if
ped and p£i. iil) X, i1s compact and X,= XEJA X;. iv) For any A€ 4, the
following closed order ideals are all T-invariant.

a) {fek; f=0 on Si}

b) {feE; f=0 on S}

¢) {fek; f=0 on X3}

d) {fek; f=0 on X;}

e) {feE; f=0o0on N}

Proor. We prove only ii) and iv) ¢); the proof of the remaining part is not
too difficult.

Let {xs}s.z be a net of points of X; converging to #,. Then the net {P’s%}‘ge 3
converges weakly* to P’e,o. This implies that P’e,, is proportional to 2, since
P’ezﬁ:p(xp)l. Considering the norm of P’e,, we have P’e, ==p(x,)2, hence w, € X.
This proves the first half of ii). The second half of ii) is clear from the defini-
tion of X,;. To prove iv) ¢), it is sufficient to show that if fe€ K, f=0 and f=0
on X;, then Tf=0 on X, is implied. Let f be such an element and ¢ be an
arbitrary positive number. Since Nc X, the set A.={xeX; f(&)=¢} is a com-
pact set disjoint from N, and the mapping ©:2 — P’e,/p(x) is defined on A..
(A, is contained in @ and its closure does not contain A. This is proved as
follows. If 2 belongs to the closure of z(A,), there exists a net {xs}s.5 of points
of A, for which the net {z(xp)}s-5 converges weakly* to 2. Since p(x) is uniformly
bounded, this implies that {P’sxp—p(x;)l}ﬁes converges weakly* to 0. On the
other hand, there exists a subnet {¥r};ec of {¥g}ser converging to some point
z € A, by the compactness of 4.. Then {P,EIT}Tec converges to P’e,, hence {p(x))}rco
also converges. These imply that P’e, is proportional to A, and considering the
norm of P’e,, we have P’c,—p(x)2, which implies z€ X; and contradicts x ¢ A4..
Therefore there exists a g € PE such that A(g)=0 and inf{g(g9); ¢ <(4)}>0 (ef.
[1] Chap. 2, §7 n°l, Proposition 2). We may assume ¢g=0 since i is lattice
homomorphic on PE. On the other hand, p has positive minimum on A, because
it is lower semi-continuous. Consequently ¢ has a positive minimum ¢ on A4..
Let h:ifcﬂg and k=(f—h),. Then [k|<s and f<h+k. Hence

0=Tf=Th+Tk=h+Tk .

Therefore 0=Tf(x)=<¢||T| on X, since Th=h=0 on X,, this implies ¢).//
By the above theorem, I,={fe€ E; f=0 on S;} (cf. Proposition 1) is a T-invari-
ant closed order ideal, hence it is also P-invariant. Consequently, T and P
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naturally induce operators U; and @, in E/I, respectively. Namely U, (resp. @)
is defined as follows: Uia(fN==(T(f)) (resp. Q:z(fN==(P(f))) where fek
and 7z is the natural mapping of E onto E/I;. Then U, is a positive operator in
E/IL, and it is clear that U, is also strongly ergodic with limit operator @,.
The eigenspace for the eigenvalue 1 of U, (resp. @;) is 1 dimensional with the
base p(ac)lsx by Proposition 5. By Proposition 1, E/I; is identified with ES/I:
{feC(Sy); f= g]sz for some g€ E}. Under this identification we can easily prove
the following

PRrOPOSITION 6. Let Ky={fe E/L,; f=0 on S;NN}. Then K, is the smallest
nonzero Urinvariont closed order ideal in E[I.

Proposition 6 shows that we have operators in K; restricting U; and @, to
K;. We denote the restriction of U; and Q; by T; and P, respectively. Then
we have

THEOREM 2. T, s an irreducible (i.e., having no nonzero proper closed
invariant ideal), positive, strongly ergodic operator with limit operator P;.

The following proposition will be useful in the next section.

PROPOSITION 7. Let I,={f; Plfl=0} and S, be the support of I,. Then
ScS,c X,.

Proor. If Plfl=0, AP f)=2(f)=0 for any 1€ 4, hence f=0 on S. This
shows ScS,. On the other hand, for any f, g€ PE, f\Vg—fVgel, since fVg—
fVg=0 and P(fVVg—fVg=0. This implies Soc X,.//

COROLLARY. If P is strictly positive (i.e., fe K, P|fl=0 imply f=0), then
X,=X.

ProoF. The strict positivity of P implies I,={0} hence S,=X, thus we get
X=X.//

REMARK. Contrary to the case of E=C(X), the striet positivity of P is not
equivalent to S=X as the following example shows. (This example is due to
Professor F. Niiro.)

ExAMPLE. Let X be the compact subset of RXR defined as [0,1]%[0,1]U
{(—1,0)}, and E={feC(X); f(—1,0=(1/2)-f(0,0)}. We define a positive projec-
tion operator P in E by the following formula;

Pfiz, )= S a9z, ) Wiz 9, (@5 elo, 11x10,1] ,
0
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where
0=r=1/2

81l—y)(@—1/2)+y  12=2=1

g, y)=

and h(z,y)=1 identically (or we may choose any continuous positive function
such that Sl 9@, h(x, y)de=1 for any y<[0,1]). Then P satisfies the condition
I) and II) i(n the first paragraph of this section. And the set A is identified
with the set [0,1] by the correspondence y<[0, 1] — 4,, where 2, is the functional
feE’—»Slg(x,y)f(x,y)dx. Then S;,={(x,y); 0=x=1} for y<(0,1], and Sp,=
{{z, 0); 1(}2§x§1}, hence S:(;_LGJASZ)_:[O’ 11%[0,1]#X although P is strictly

positive.

§3. Spectral properties on the unit circle

In this section we consider the relation between the spectrum of T and those
of {Ti}zes or {Ujhics obtained in §2. To do this we introduce new operators
{Viliea and Ty which is induced by T in the same way as Uy’s. Precisely speak-
ing, V; is the operator in the space E/J, where J,={fcE; f=0 on X;} and
Vila(f)==(Tf) where fc E and = is the natural mapping of E onto ElJ; T,
is the operator in E/J, where Joy={fe K ; f=0 on X;} and 7, is defined in the
same way as V;. (These operators are defined unambiguously by the T-invariance
of J; and J,, which is proved in Theorem 1.) Then V; and T, satisfy the con-
ditions I) and II) in the first paragraph of §2, and the limit of -—(I+ Vit - +
V2 or —(I+ To+ -+ +Tr™) is induced by P in a similar way Let p.. denote

the unbounded connected component of the resolvent set. Then we have
PROPOSITION 8. i) For any 2€4, p(T)Dp.(U) DpV)DpT), and, if

a € p(T), then [|R(a, TH=Z[Rla, U)I<|R(a, V)[R D). i) If acp.(T) and
P is strictly positive, then sup | R, V)= | Rle, T)].

PRroOF. 1) is the direct consequence of Lemma 2 and Corollary 1 in [5].
Under the assumption of ii), X,=X by Proposition 7. Let c¢= sup R, VI
Then ¢=|R(a, T)|| by 1). Conversely for any fe K, I}f]x I=ell{a— T)f]x I holds
for any 1€ 4 by the definition of ¢. This implies [R(e, T)Héc 1

Using the above proposition, we can easily prove the following
PROPOSITION 9. Let I' denote the unit circle in C. Then

a(T)ﬂFD(xgl o(Vl))‘ﬂFD(_LeJla(Ui))‘ﬂFD()LEJ'a(T;))"ﬂF .
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In the rest of this section we show that the inclusion in Proposition 9 is
replaced by equality if we replace the condition II) for T by the following
stronger condition ;

IIyY T is uniformly ergodic, i.e.,%(l’%— T+ -+ T ) converges uniformly as

n—00,

This condition implies the following II)” under the condition I). (Cf. [3]
Theorem 4.)

11)” Rfa, T) has a pole of order at most 1 at a=1.

And the limit operator P of %(H— T+---+T71 is equal to the residual operator

of R{a, T), which is defined by ~2—17 g R(a, T)da where r is a positive number
T la—1]=1r

such that {a; 0<ja—1|=r}cp(T).

Hereafter we assume that the operator T satisfies the conditions I) and IIY.
Then we can apply the results in §2 for T, and we still use the same notations
defined in the various stage of reduction, such as 4, V3, T), Ts. Then combin-
ing Proposition 7 in §2 and Lemma 2 in [4], we can easily prove the following

PRrROPOSITION 10. Let T be a uniformly ergodic positive operator in an
(AM) space E. Then the following relations hold :

od(TYNT=e(T)NIT",
R (NI'=R(TynN I,
P(ynI'=PLT)NI",
CADINT=C(T)N T,

where T, 1s the operator defined in the first paragraph of this section.
We also have

PROPOSITION 11. Let a,€ 1’ satisfy the following condition;
a, € p(Vy) for any 2€ 4 and sup [Rla, Vi)l <oo.
Then a, € o(T). -

ProoF. By the assumption and Lemma 3 in [6], there exists a positive
number d such that sup IRz, VDI is bounded in the set {a; la—a,|<d}. Since
IR, TO)H:S;EI? IR, V)i, 1R, THll is bounded by the same upper bound in the
set {a; la—a,i<d, |a|>1}, hence a,€p(T,). Together with Proposition 10, this
implies «, € o(T).//
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Although the following proposition is the key to the main result of this
section, we give only the outline of the proof since it is almost parallel to that
of Theorem 8 in [4].

PROPOSITION 12. Let T be a wuniformly ergodic positive operator in an
(AM) space E. If 4 is the set of all nonzero extreme points of the set of
positive T'-invariant functionals in the unit ball of E’/, then

(T F:(xg/x g(Voy-nr

where V; is the operator defined in the first paragraph of this section.
ProOF. Since the inclusion

a(THn Z"’:)(XLGJA aVy)y-nr

is proved in Proposition 9, it suffices to show the inverse inclusion which is
equivalent to

PTYD(N o(V)°NT

Let a, be in (2011 oV)°NI. By Proposition 11 it is enough to show that
the assumption of unboundedness of the set {|R(x, V)| ; 1€ 4} yields a contradic-
tion. We shall show this in the following four steps.

The first step: Let » and b be positive numbers satisfying

{a; la—aol<”'}CXOAP(Vx) s as 0<la—1]<rico(T)

and

sup R, TYI—-P)||<b .

Let s be a positive number less than = and 1/2b. Then by the argument as in
the first step of the proof of Theorem 8 in [4], there exists an a; and a sequence
{4} of elements of A such that |a;—asl<s and [Rlas, Vi)|>n, |Rla,, Vall>n
hold for any =.

The second step: From the sequence {V3,} obtained in the first step, we
construct a new (AM) space £ and a positive operator T in E following the
method described before Lemma 4 in [4]. Let J denote the closed order ideal in
E generated by the eigenspace of T for the eigenvalue 1. Then J is the mini-
mal T-invariant closed order ideal, hence the restriction of 7 to J, which is
denoted by T3, is an irreducible positive operator having the following proper-
ties; Rla, T|;) has a simple pole at e=1, and {a; 0<la—1l<rico(T|). (To
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prove that J is the smallest nonzero closed invariant ideal we use the fact that
the eigenspace for the eigenvalue 1 of V; is 1-dimensional with the base p(x)] xp
where p(x) is the function defined in §2.)

The third step: @, and a; are shown to belong to P(T) by the same way as
in the third step of the proof of Theorem 8 in [4].

The fourth step: Applying Lemma 4 in [4] to the results of the third step,
we have a,,a; €6(T]3). This contradicts the fundamental property of irreducible
positive operators (cf. [6] Lemma 6) since p(le)D{a; 0<la—1{<r} and s<r.//

Using this proposition we have the following

THREOREM 8. Let T be a uniformly ergodic positive operator in an (AM)
space E, and let A be the set of all nmonzero extreme points of the set of all
positive T'-inveriant functionals in the unit ball of E’. Then for any 1€ 4,
there exists ¢ positive irreducible operator Ty which is induced by T in the
sense of the definition in §3 in [4], and the following relation holds;

a(THn I’=(XLSJA a(ToH)y- NI .

Proor. Let T; be the operator defined before Theorem 2 in §2, and r be a
positive number such that {o; 0<la—1lj<r}co(T). Then if we denote the set
{a: la|>1—7} by B, we have o(Vy)N B=¢(T:)N B. This is proved as follows. By
Proposition 8, R(e, V;) has a simple pole at a=1 and {a; 0<la—1{<r}Co(V)).
As described in the first paragraph of this section, V; is defined in the space
E,=E|J, where J;={fe E; f=0 on X;}, and the residual operator of V,, which
we denote by W,, is induced by P. Let L;={feE; W,;|fl=0}. Then using
Proposition 1 and the definition of X;, we can easily prove that K,/L, is isomet-
ric and lattice isomorphic to E'sl:{ feC(Sy; f:g(Sz for some g€ E}. Hence the
operator U, defined before Proposition 6 is identified with the operator in E,/L,
induced by V; Together with Lemma 2 in [4], this shows that o(UpNB=
o(V)NB. Since T, is the restriction of U, to the closed Uj-invariant order ideal
generated by the eigenspace of U; for the eigenvalue 1 (this is clear from the
definition of K; in Proposition 6), we may show o(T;) N B=0(U;) N B using Lemma
3 in [4]. Hence we have o(T)NB=d(V)NB; accordingly (zléJA a(T)"Nl=
(}EJAG(VZ))—QF:G(T)OF by Proposition 12.//

Using Theorem 3, we get the following theorem in a similar way as in the
case of Theorem 7 in [6].

THEOREM 4. Let T be a uniformly ergodic positive operator in an (AM)

space E. Then o(T)NT is a finite set. If axel is an isolated point of o(T),
a, 18 a pole Rle, T) of order 1.
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