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Introduction

In these notes we give some elementary results on hyperfunctions with analytie
parameters. Among them we diseuss the problem of unique continuation with
respect to the analytic parameters. Let f(2/,z,) be a2 hyperfunction which containg
x, as a real analytic parameter. Then we can take the countably many initial
data Dff(2’,0), k=1,2,.... M. Sato has shown by an example that these data
do not determine f{z’,z,), and at the same time conjectured that the continuously
many data J(D,)f{z’,0) would be sufficient to determine f, where J(D,) runs over
the local operstors with constant coefficients of the normal derivative D,. This
conjecture is affirmatively solved in §3, but to my regret in somewhat weakened
form.

Many elementary lemmas concerning hyperfunctions arise in the course of the
proof, whose provision is also a purpose of this paper. Especially, in §2 we
introduce some concept of limit in the theory of hyperfunctions by way of the
general theory of boundary value problem for linear partial differential equations.
This concept of limit, suggesting further possibility of applications, proves to be
a very useful tool for our present purpose.

A part of these results was announced in [2] with a brief sketch of the proof.
Some of these results will be applied in future to the theory of eontinuation of
real analytic solutions of linear partial differential equations. (See [3].)
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§1. Provision on Fourier hyperfunctions and real analytic parameters

We shortly review here the definitions and the properties used in the sequel
on these materials. For the details see the indicated references. First we review
on Fourier hyperfunctions. These concepts were first introduced by Sato [10 bis]
with the proof only for n=1. Later Kawai [4] has given detailed proofs for most
part of Sato’'s assertion.

D" denotes the directional compactification of R": D*=R"USL . @ denotes
the sheaf on D*XiR" defined in the following way: For an open set UcCD"XiR™,
5(U ) consists of funetions holomorphic on UNC™ and satisfying
(1.1) sup | flz)le*l<o0,

scKnCn

for any ¢>0 and for any KcU. Q denotes the sheaf on D*XiR" defined in the
following way: For an open set UcD*XiR*, (J{U) consists of functions holomor-

phie on UNC™ such that for any Ke U, there exists some ex>0 satisfying

(1.2) sup | flz)|ex* <oo

s€Knen

Further, for a fixed ¢>0 we define (9-¢ by replacing in (1.2) ex by ¢’ which runs
independently of K satisfying ¢ <e.

For a real open set Uc D", we employ the notation (P(U )=@(U) and P (U)=
O(U). Note that the elements of P(D") or (P.(D") are holomorphic on a strip
with a fixed breadth around the real axis and satisfy (1.1) or (1.2) there. In the
sequel we call the elements (P(D") or §P.(D") the slowly increasing real analytic
functions or the rapidly decreasing real analytic functions respectively. It is
evident that by the natural inductive limit topology P.(D") is a (DFS) space, i.e.,
the inductive limit of a compact sequence. As for P(D"), it is the inductive
limit of the sequence of (FS) spaces @({llm z|<1/k}). But this sequence is not
compact. Hence (P(D") is not (DFS) and its topological property is not studied
well. Since we need not much knowledge on the topology of this space, we will
employ a less definitive expression on this point.

We define the sheaf of Fourier hyperfunctions J on D* by OJ=9( ,’,'.,((5).
Roughly speaking, an element f(x) of Q(Un b is given as the boundary value of
a function F{2) in @(U#D") to UND* in the way f(m)z};) sgn o F{xz+100), where

g=(ay,...,0,), 0;=%1, sgno=0,...0,, and

UsD*=3 € U; Ime;#0, j=1,...,n}.
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Fl(z) is called a defining function of f{z}. We further define the sheaf of rapidly
decreasing Fourier hyperfunctions (J, on D" by

Oe=lim 9 2a(O9) .
I

Though the latter concept is not discussed in [4], it is easily accepted because the
eohomological property of @“9 is connected with that of (5 by means of multiplica-
tion by exp (—eVzi+ --- +22+1) on & neighborhood of D*. In fact we can consider
that

Q*=lir}n exp (—eVait - - +22+1)0.

It is known that (J(D") becomes an (FS) space as the dual of P.(D"). As for
(.(D" we endow with the topology induced by the induective limit.

As usual, _A(R") denotes the space of real analytic funetions on R". Note
that as the spaces of global sections we have _A(R")=P(R")=.(R"). Hence
elements of this space are not necessarily holomorphic on any strip. B«(R") denotes
the space of hyperfunctions with compaet support in R®. For a fixed compact set
KcR", PBIK] denotes the space of hyperfunetions with support in K. GB(R")
denotes the space of hyperfunctions on R*. Then we have B(R")=Q(R")=0.(R").
The restriction Q(D")—B(R*) or O,(D")— PB(R") is defined by forgetting the growth
eondition in the defining functions.

We employ as the Fourier transform 9'[u](5)=a(§)=jme"fu(a:)dx, and as its
inverse Ef“[v](x)=(21r)"‘5me“=fv($)d§, where z€=1x,6,4 --- +z,6.. As for the de-

rivatives, we employ the notation D=(D,, ---, D,) with D,=t3/dx;, and D*=D;... Dg»
for the multi-index a={(ay, * - -, ).

LEMMA 1.1. 1) The rows of the diagram

Bu(R) QoD QDY)

AR DP(D") DP.(D")

consist of continuous inclusions with dense range. Between the corresponding
terms in each column, there is a separately continuous inner product which is the
estension of [ flgl@)ds for f@)€ CX(RY) and glzx)€ PulD").

2) Let K be a compact subset of D*. Let (JIK] be the space of Fourier
hyper functions with support in K. Let (P,(K) be the space of rapidly decreasing
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real analytic functions defined on a neighborhood of K. Then (J[K] is (FS),
PuK) is (DFS) and these are dual to each other. The inner product is the
natural extension of the one given in 1). If KCR®, this relation reduces to the
usual one between PBIKI and _A(K).

8) The Fourier transform maps Pu(D"), O.(D" and Q(D“) 1somorphically
onto P.(D"), P(D") and Q(D*) respectively. The Parseval formula holds for
FEPD") and geQ(D™), or for FEQLD") and g€ P(D?).

4) The convolution f*g is defined as the inverse Fourier image of the product.
It is a separately continuous bilinear mapping from P.(D")x (D) to P(D"), from
QuD )X PDY) to P(D) or from QD) xQD™) to QD™. In the former two
cases, the result is pointwise determined by {flxz—1t), g(t)>, or by {f(t), glx—1)>..

5) The sheaves (J, O, are Sabby. For any open set Uc D", we have H<U, (P)=
HHU, P,)=0 for k=1.

The proofs of these assertions are either contained in [4} or easily derived from
the results there.

REMARK 1.2, The dual of Q*(D”) is not CP(D") but a little larger space

13

The latter agrees with the Fourier image of His(D*XiR", (), which is a little
larger than (J,(D"). As the rapidly decreasing Fourier hyperfunctions we preferred
Q,.,(D") because of many profits. For example, in calculating the Fourier transform
of f(z) as the Laplace transform by dividing the support of f(x) to cones, we can
employ a more elementary partition (e.z., flx)=3 @a)(T1) - - - 9o (@) f(), where
¢+(m)=e*/{e+1) and ¢_{x)=1/(e*+1)) permitting the e;cudation of support in Q,.,(D").
The ambiguity is transformed into zero cohomology class by the Fourier transform.

We will employ many other properties on Fourier hyperfunctions. We will
also employ the local operators with constant coefficients, a class of differential
operators of infinite order. These are briefly listed up at §1 in [1], so that we
will not repeat them here.

Next we recall the concept of the real analytic parameters. For the general
references see [11], [12] or [13]. We say that a hyperfunction u(x) of n-variables
x=(xy, -+, Tu_1, To) contains z, as a real analytic parameter at the origin if the
singular spectrum S.8.% of % does not contain the two points (0, +idxz,0) € iS¥R"=
R*XiS%"1, namely, if on a neighborhood U of the origin, u(z) can be written as
the sum of the boundary values
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M=

?1((1?)': F,(.’B—F’if’,()),

i=1

where each I";C Ry is a convex open cone with the vertex at the origin and with
a non-void intersection with the plane {y,=0}; F;(z) is the defining function holo-
morphic in UX#{I";N{lyl<e}} for some ¢>0. In terms of the standard covering,
u(z) contains z, as a real analytic parameter at the origin if for some complex
neighborhood V of the origin there exists a defining function F(z) of » on ViR"
such that each component F,(z) on V, ean be holomorphically extended over the
side {Imz,=0} to another wedge. Here

VER"={z€V; Imz;#0, j=1,---,n},
and
Vo={z€V,; ¢,Imz;>0, 5=1,-.- u},

with a multi-signature ¢={(0,, --+,0,); o;==%1. Hence F,(z) is extended to an open
set of the following type: with some 1>0,

(1.4) {2e€V; 0;Imz;>0, o,Imz,>—20;Imz;, j=1,---,n-1}.

Let UcR" be open. We say that a hyperfunction u€ GB{U) contains 2, as a real
analytic parameter if it satisfies the above condition at every point of U,

If u(x) contains x, as a real analytic parameter, then for any partial differential
operator p{z, D} with real analytic coefficients, also p(z, D)u(z) contains x, as a
real analytic parameter, as is easily shown by defining functions. Moreover we
can apply a local operator J(D) instead of plzx, D). Sato’s fundamental theorem
{e.g., [18] Chapter III, Corollary 2.1.2) asserts that if +didx,co is a non-characteristic
direction with respect to a partial differential operator p(z, D), then every hyper-
funetion solution u(x) of p(z, D)u(x)=0 contains z, as a real analytic parameter.

If u{2’, x,) is a hyperfunction on a cylindrical domain UX{|z.] <3} and contains
2, as a real analytic parameter, then we can take the specialization (restriction)
u(z’, 0)€’ B(U) to the hyperplane {z,=0}, where ' B(U) denotes the hyperfunctions
of the first (n—1)-variables a'=(z,, ---, 2,-,) on the open set Uc R™!. By what is
mentioned above, we can also take the higher order specializations (3/0,)*u(x)l,, =0,
or more generally J(Dju(z)l,,-,. The specialization is given by way of the
defining function which is obtained by restricting to 2z,=0 the components of
the original defining function F{(2) after extending them to the open sets of
the form (1.4). By the localized version of Bochner’s tube theorem, we can
show that various defining functions give the same result. Hence the special-
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jzation is a locally determined sheaf homomorphism B, ~.—'3B.

LEMMA 1.8. Let u{x) be a hyperfunction on R*X{|z,|<8} containing z. as
a real analytic parameter. Suppose that supp uC K x{|2,| <8}, where KC R is
compact. Let U be a relatively compact open mneighborhood of K in R™'. Let
0<3'<38. Then we can find >0 and open convex cones I';C Ry, j=1,..., N, with
vertex at the origin, each having a mon-void intersection with {y.=0}, and func-
tions F;(z) each holomorphic on UX{|z.| <&} XU ;N {lyl<el} and real analytic up
to (U\K)x{|z,] <&’} such that

(1.5) wlw)= 3 Fyia+il,0).

i=1

PROOF. We can divide the compact set S=S.S.(u(2)|g"~1x{z,1501) into the
union of 2" subsets S,=SN(R*X{iédzoo; ¢;£,>0}), where ¢=(0,,...,0,) runs the
2" sets of multi-signature. Each S, has the convex hull S; which does not contain
R™1X{|2,) <8’} X {£idz,0}. Let sp(u) be the image of wu(x) by the canonical
mapping of B to 7., where  denotes the sheaf of microfunctions on R™XiS&*!
and = denotes the projection of the latter space to R". By the flabbiness of C
(see [18] Chapter I1I, Corollary 2.1.5), sp(u) is decomposed into the sum

sp(u)=§ Vo,

where ¥, is a mierofunction on R* !X {|z,]| <8’} XiS&*! satisfying supp v,cS;. By
[9], Théoréme (6.1), we can find hyperfunctions %, on U X {|,|< 4’} satisfying sp(u.)=
v, such that u.(z)=F,(x+I",0), where each I';C Ry is an open convex cone con-
tained in the cone {y€ R*; (&, y><0 for any i€dxco € S}, but still having a non-void
intersection with {y,=0}, and F,(z) is holomorphic in U X{lz,|<8'} XN {lyl<el}
with some e>0. Since u.(z) are real analytic on (U\K)x{|z,|<8'}, F.(2) must
obviously be real analytic up to there. The difference u(x)— X u.(x) is real analytic
on Ux{|z,|<d’}. Thus modifying, e.g. u, by this difference, we have given the
required decomposition. q.e.d.

LEMMA 1.4. Let u(x) be a hyperfunction on UX{lz,|<s}, where UCR"™ is
open. Assume that u(x) contains =, as a real analytic parameter and suppuC
K x{|z,|<3}, where KU is compact. Let f(z,y) be a real analytic function of
(,9) E UX{|z.| <8} XV, where V i3 an open set in the parameter space of .
Then

1) Culz’,t), fle', b, ¥)>s 18 a real analytic function of (t,y)E{[t|<8} XV, where
'{,> denotes the duality between ' PK] and 'A(K).
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2) %’(’u(x” i), fle’, ¢, y)>2,='<_éa?u(x/, 1), fle', ¢, ?/)> ’+,<u(x,’ n, gt-f(x’, t)>

z*

or more generally, for a local operator J(D,), we have

JID) Cula’, 1), @, 9o ="<I(DIu(a’, 1), fla', y)ds .

3) Let ¢ be a constant satisfying 0<e<s. Then the product Y{c®—a2)u(z) is a
well-defined element of PIK X {|z.|<e}] and

(L.6) Ylet—ahuta), fla)y=[" "ula’,t), £, thadt,

Jor every flz)€ A(K X{|z,|<d}), where Y(e*—z2) denctes the characteristic June-
tion of the interval [—e, €].

PROOF. Let LC U be a compact set which is the closure of an open neighbor-
hood of K in R™*. Take a decomposition of the form (1.5) in Lemma 1.8. Near
the boundary 8L of the chain L, each u,(z’,t) is real analytic in 2’. Hence the
integral

(1.7) j sl 2) fla, 8, y)da

is well defined. For ¢ fixed, we have obviously u(z/, t)= ile(:n’)uj(x’, t) where %,
<
is the characteristic function of L. Thus we have obviously

ulz’, t), fla!, 8, y)>,'=5,zli‘1 j'Luj(x’, i f(a, t,y)da’ .

On the other hand, each integral (1.7) is caleulated by changing the chain L by
L, with the boundary 6L=aL fixed, into the complex region Uxil"}, where I}=
r;n{y.=0):
(1.8) [ F 00, tyde .
L

The latter is a usual integration of a holomorphic function. By the assumption
Fi(z’,1) is real analytic in ¢t when 2’€L;, hence we can let ¢ (and of course )
run on a complex neighborhood. Thus (1.8), hence the original expression is real
analytic in ¢ and y. The formula for the derivative is directly obtained from
(1.8) by taking the derivative under the integral sign.

The products Y{(e*—z2)u(z) and Y(e?—x3)u,(z) are well-defined due to the gen-
eral rule (see [13], Chapter I, Corollary 2.4.2). In this case, they are explicitly
given by way of the defining functions ({(—1/271) log ((z.+¢)/(z,—¢)))F;(z). We have
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(1.9) (Y2 —aiulz), flz))= f Yie2—xiu(x) flz)dz

U {iz,1<8}
N

Y(et—xh)u,lx) flz)dz

] Sanz,,mn

- 1 Znte (o , /
=5 L(— 5 log )dz,.jﬁ Fy(2', z,) fi2/, z,)dz’,

i=1 Rp=€ i

where 7 is a complex eontour surrounding the interval [—e¢,¢]. By the assumption,
F;(z',z,) is analytic up to rea! z, when z’€L;. Thus by the absolute convergence
we can change theNpath 7 to the interval [—e, ¢] itself. Then the last side of
(1.9) eonverges to j};lj;déj.ﬁF,(z',t)f(z’, t)dz’. 'This is just the right hand side of
(1.6). ’ q.e.d.

The following theorem has long be known though unpublished. The method of
proof here is due to [13] (cf. Chapter 111, Proposition 2.1.8).

THEOREM 1.5. Let u(x) be a hyperfunction on R™'X{|x,]<8} containing Ty
as a real analytic parameter. Suppose that supp uC KX {jz,|<s}, where KC R™!
18 compact. Assume that for every k=0,1,2,..., @fox. ) uls,=0=0. Then u(z)=0.

Proor. Take e satisfying 0<e<d. Take a test function f(x) € AKX {|z.]|<e}).
Then, in the formula (1.6) in Lemma 1.4, the function ’Cu(x’,?), Sfla’, 1>, is real
analytic. We see that it has zero of infinite order at t=0 by the repeated use of
the formula for the derivative given in Lemma 1.4 and the assumption. Thus it
vanishes identiecally. Hence the integral on the right hand side of (1.6) has the
value zero. Since f(2) is arbitrary, this implies that Y(e?—zl)u(z)=0. This
means that u(x)=0 in |z,|<e. Since ¢ is arbitrary, we conclude that u(x)=0. g.e.d.

We remark that the assumption that suppuc KX {jz,|<3} is essential. See
Example 4.10. A generalization of this unique continuation property is the main
subject of the present article.

Finally we give two more elementary lemmas for later use.

LEMMA 1.6. Let u(x,t) be a hyperfunction on R*X U such that supp ucC KX U,
where KCR" ts a compact set of the product type KiX --+ XK,. Let flz, s) be
a real analytic function on UxV. Here, UCR™, VCR' are the open sets in the
corresponding spaces of parameters. Then the integral j Ku(:z:, 1) flz, s)dx is well
defind. It can be caleulated, e.g., employing o defining function Fle, 7} holomor-
phic in z in (C\K)X(C\K;)X --+ X(C\K,) wher Imc,+0, k=1,...,m, in the
Jollowing way:
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(1.10) (_1),,§7 . 3(7 Fla, o) flz 8)dz, - - dz, ,

where y; denotes a path surrounding K;. If S.S.u does not contain any point with
the direction which is a linear combination of +idt,co, k=1,...,m, then we can
take the specialization of wu(x,t) with respect to the set of variables t. The above
integral then agrees with the function calculated pointwise by the integral of the
hyperfunction wlx, t)|,= fiz, s%) with compact support. The result is rel analytic
in (t,s). We can therefore transfer the action of a local operator J(D,) under
the integral sign to u.

The line of the proof is the same as that of Lemma 1.4, a lemma analogous to
Lemma 1.3 employed. Note that K need not be of the product type. For general
K, only the integral representation becomes complicated.

LEMMA 1.7. Let u(z) be an infinitely differentiable function on R"'X {|x,|<d}
such that supp uC Kx{|z,| <8}, where KC R™! 13 compact. Assume that u contains
z. as a reql analytic parameter as a hyperfunction. Then the restriction u(x) lzp=0
in the sense of real analytic parameter agrees with the classical restriction u(z’,0).

PrOOF. Take a positive constant <4, and consider u:(z)= Y{e?—aZ)u(x). The
standard defining function F.(2) for u.{z) is given by

— E(Z)Z( 1 >"Ss - J'X (2—2) e

2ri) S22, o Ty —2yeg)

where the integral is the one in the classical sense. Without loss of generality
we can assume that K=K;X --- XK,.;. The assumption and Lemma 1.6 shows
that the integral

, _ _}“ n=1 Ue() 4
G, x")—<27t7:> jx (@y—21) -+ (Bao1—20-1) o

taken in the sense of hyperfunction is holomorphic on a neighborhood of (C\K) X
o+ X(C\K,-)) X {lz.|<e}. The integral can be caleculated employing the defining
function (1.11) in the following way

_1 Mf F.(, z,)at
2rt ryxeexty_y (§i—21) + v (Lpmr—Zami)

=< 1 )2”—1(—1)”“r _dz, u(z)

57;'2 ~e Ly2Zp jxjﬁx“‘xfnq (@ —Ly) +o» (:c,_l-—C,,_l)
dcldml
{li—21) o (a1 2nmy)

(1.12) H(z’,z,,)z(
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where 7; is a path surrounding K; and G/, 2,)=H(z, 2,+i0)—-H{z',z,—10) as a
hyperfunction. By the Cauchy integral formula we see that (1.12) reduces to {1.11).
Thus we conclude that Fi(z) is holomorphically continued to a neighborhood of
(CAK) X -+ X(C\K,y) X{|z,}<e} from the both sides xImz,>0. Now G(z’,0)
gives the standard defining function of the restriction wu.(2)|,,-o in the sense of
real analytic parameter. On the other hand, the same funetion F.(z/, 10)— F.(z’, —10)
gives a defining function of u.(z’,0). In fact, we have the local uniform conver-
gence

AN [ __1‘__ ﬂ_l_z_]“ & ___dxn u(w)d:c’
F(z * T/) F(Z ’ W) (227?:) T j—t :‘cﬁ+;72 fx (xl—zl) e (x%—l_zn—1>
W,(““l‘“ " u(z/, 0)dz’
2xi)  Jx (xy-2) o (Taer—20m1)

when »—0. The result is just the standard defining function of w.(2’,0). Thus
we have shown u(z)|,, —o=%:(2)]:,=o=u:{z’, 0) = u(z’, 0). g.e.d.

The assertion of Lemma 1.7 will hold without any condition on the support of
#{z). To prove this one must establish for a function of class C® the accordance of
the usual singular spectrum with its analogue in the sense C* mod _4.

§2. Boundary value problem and the concept of limit in the theory of hyperfunctions

One way of introducing generalized functions is to take the limit of a weakly
converging sequence of regular functions. For a hyperfunction f(x), as is remarked
in Sato’s original paper [10], it is also obtained as an ideal “limit” of a harmonic
function u(x,y) in the upper half space {z=zx+1y; ¥>0}, when y tends to zero.
Strictly speaking, this is the correspondence between the solutions of the Laplacian
and their boundary values. Komatsu and Kawai [7] has generalized this in the
following way. Let p(z, D) be a linear partial differential operator with real
analytie coeflicients. Assume that the hyperplane S={z,=0} is non-characteristic
with respect to the operator p. Then we can construet the operator bl of taking
the boundary value: It atfaches for every solution u of the equation p(x, Dyu=0
in the upper half space {x,>0}, its boundary value b% ().

Now assume that for every ¢>0, the hyperplane S.={x,=¢} is non-characteristic
with respect to p. Then, by Sato’s fundamental theorem the solution u(z’, x,)
contains z, as & real analytic parameter. Hence we can take the restriction
u(z’,¢). We intend to consider that the following is a limit process in the theory
of hyperfunctions: wu(a’, €)—b%(u), when s} 0. In the sequel we construct lemmas
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which support this intention.

First of all we shortly review the definition of the boundary value. Let « be
an open set in S={r,=0} which is isomorphic to R*!. Let W be an open set in
R* such that WNS=w. Let u be a solution of plz, Du=0 in Wnix,>0}. By
the flabbiness of 4§ we can take an extension %€ (W) of % which vanishes in
Wni{z,<0}. Then p(x, D)# is a well defined element of the quotient space
Bs(W)plz, D) Bs( W), where Ps(W) denotes the space of hyperfunctions in W
with support contained in S. Let '(w) be the hyperfunction of »n—1 variables
in w. Assume that p is of order m. Then we can construct a mapping (*p)™':
B W)iple, D) Bs(W)—' Plw)™ in the following way: Let KCo be compact.
Then the Cauchy-Kowalevsky theorem asserts that the mapping p: A, (K)—>'AK)™,
which assigns to every real analytic solution f of 'p(x, D) f=0 near K the initial
values C;(z, D) f(2)l.,=0, 7=0,1,..., m—1, isa continuous isomorphism, where Ci(x, D)
denote the dual system of the boundary condition D! with respect to the operator
p."  Hence the transposed mapping ‘p: ' Brlo)"— B (W)plx, D) Bx(W) is also an
isomorphism. Since it preserves the support it can be extended to a sheaf isomor-
phism tp: ' Plo)™ B(W)nlz, D) B,(W). The above quoted mapping is the inverse
of this isomorphism. Finally we define bi(u)={tp™);(p(x, D)@), 7=0,1,...,m—1,
where the suffix j signifies the j-th component in ' Blw)™ In the sequel we mainly
employ the 0-th component b% ().

bi(u) are characterized as the unique element of ‘PBlw)™ which satisfies

@1 Ple, DE="S, Coeros(3, DB WID3(z.)

with some (in fact unique) extension @€ GB(W) of u which vanishes on W N {x,<0}.
If % can be extended as a solution to a neighborhood of w in W, then the boundary
values b’ (u) agree with the restrictions Diu(z’,0). For in this case we can take
the product %= Y(z,)u with the Heaviside function Y(z,), because u contains =z,
as a real analytic parameter even at z,=0. Then we have

2.2) plx, D)(Y{z,)u)— Y(z,)p(x, Du= :gtcm-l—j(w, D)(Diu(z’, 0)R3(x.)) ,

by the definition of C,(z, D).

LEMMA 2.1. b’ have the local property. Namely, if w,Cw 18 another open
subset of S and W,CW 48 an open set in R" such that W,NS=w,, then the

1) We assume that C; is of order j, hence somewhat different of the notation in [7].
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boundary values bi(u}wl) of the solution ulw, of p in W, agree with the restric-
tions of bl () to w,.

Though this is clear from the construction of b%, we dare to list it up here
as a lemma, since this local property is the main motivation to employ b as a
limit process. As the explanation we give here an example which shows that the
topology of hyperfunctions introduced as that of analytie functionals does not have
any local property.

ExampLE 2.2. We construcet a sequence of hyperfunctions u, € {{0}] of one
variable with support at zero, which converges to zero in a larger space [0, 2]
but does not converge to zero in the original space. (Cf. Remark 1.10 in [1].)
Represent 310,2] by the space (9,(P'\[0,2]) of functions holomorphic outside [0, 2]
on the Riemann sphere and vanishing at infinity. Employ as the fundamental
seminorms of the latter space the following:

1 £(2) = sup {If(Z)!; dis (z, 10, 2) z-};} .

In the following we identify B0, 2] with (D,(P'\[0,2]) including the topology, which
is permissible by Polya’s theorem. Sinee B[{0}] is dense in P[0, 2] we can choose
u, € GL{0}] satisfying

1 H 1 .

e 2) — 0,21,

5@ —2)—ww ”k 2 in P[0,2]
for £=1,2,.... Since (1/2%d(x—2) converges to zero in 4H(0,2], we have u,—0 in
Pl0,2]. We claim that u, does not converge to zero in PB[{0}]. In fact, assume
the contrary. Take fi(x)=2* k=1,2,.... Then f, converges to zero in _A({0})

Therefore we have
gy fo—0, when k—co.

On the other hand we have

. fi5=(mmgrle=2) o) +(5role=2), £.)

<uk""?6 T— 2 fk>+1

Istimating the pairing of the first term by representing it by the contour integral
along the path r=1{z; dis (g, [0, 2])=1/k}, we have

|<u“-—21~;a~e 2 fk> k<2+%)k;;«[.
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Thus the first term converges to zero, which is a contradiction.

LeMMA 2.3, Let u be a classical solution of plx, Dyu=0 which can be extended
as a funetion of class C™ to a neighborhood of w in W. Then b.iu) agree with
the classical data Diu(x’,0).

PRrROOF. First we must emphasize that such a kind of assertion is not always
apparent. This time we can make the product Y(z,)u in the classical sense. Thus
formula (2.2) holds in the sense of distributions. It remains to verify that the
tensor product Diufa’,0)®é(x,) in the sense of distributions and that of hyper-
functions agree. Recall that the latter has been defined in [7] as a unique exten-
sion to the sheaf homomorphism of the tensor produect of 'B.(S) and &{x,) which
is defined by the duality with the real analytie functions. Thus, for a distribu-
tion f with compact support the tensor produet fRd(x,) clearly agrees with that
in the sense of hyperfunctions. Then, in the general case, dividing f to a locally
finite sum with compact support, we also obtain the same result in both sense of
the tensor product. q.e.d.

LEMMA 2.4. Assume that bi(u), 7=0,1,...,m—1, are real analytic. Then u
is a real analytic solution in a neighborhood of w and can be extended analyti-
cally to a neighborhood of w in W.

Proor. Let 7 be the solution of the analytic Cauchy problem

{p(a:, Dyr=0
Div(a’, 0)=b(u), 7=0,1,...,m—1.

Then for the difference w=u—v we have b’%(w)=0, j=0,1,...,m—1. Thus by
Theorem 5 in [7], we have w=0 in a neighborhood of w. q.e.d.

In this lemma the assumption that b’ (%) are analytic is superfluous. We will
discuss the interesting problem of finding the necessary and sufficient condition
elsewhere in the future.

THEOREM 2.5. Let plx,D) be a partial differential operalor with respeci to
which the hyperplane S={xr,=0} is non-characteristic. Let KCS be compact, 0O K
be open in S, and let u(a’, z,) be a solution of p(z, D)u=0 defined in wx{0<x,<d}.
Assume that supp uC K X {0<x,<8). Then u(x’, &) converges to b%(u) in the topelogy
of ' PIK] when ¢ 0.

PrOOF. Since 'PB[K] is (FS), it suffices to show the weak convergence. Take
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flz’y €' A(K) arbitrarily. We will show
‘ul’, €), fla'y— BL(u), flz)

when ¢} 0, where ’{,)> denotes the pairing between 'B[K] and ' _A(K). Consider
the analytic Cauchy problem

tplz, D)Fe(z)=0,
(2.3) Cilz, D)Fu(x)l;, =0, 7=0,1,...,m~2,
C iz, DYF()], uc—'f

Due to a precise form of the Cauchy-Kowalevsky theorem {see, e.g., Leray [8]), we
ean assume that the solutions F.(x) exist up to Kx {0} for 9<e<e, with sufficiently
small &, Let # be an extension satisfying (2.1). Then (2.1) and the Green’s

formula (2.2) give

"B (), Coum (%, DYF(2) w0+ - -+ +7<BY (), Colx, D) Fel)], =0

={p(z, D)ulz), Fe(z))

={Y{e—z,)u(z), ‘plz, D) Fe(x)y +'ulz’, €), flz’))

="Culz’, ), fla’)) .
Here ¢, > denotes the pairing between BIKx[0,¢]] and A(Kx[0,¢]). The product
Y(s—x,)u{x) is well defined for sufficiently small ¢, since by Sato’s fundamental
theorem u contains z, as a real analytic parameter in a neighborhood of K x1{0}.
Now when we let €} 0, then we have obviously F.(z’,0)— f(z’}), and DiF.(z’,0)—0
for j=1,...,m—1in’_A(X). Thus the left hand side tends to % (), flz)). q.ed.

COROLLARY 2.6. Let S be an (n—1)-dimenstonal oriented real analytic mani-
Jold and let plx, D) be a partial differential operator on SX{—d8<wx,<d}. Let
Kc 8 be compact and assume that SX 10} is non-characteristic with respect to p
at every point of Kx{0}. Let oo K be an open set in S and let u be o solution
of plx, D)u=0defined in o X {0<2,<8}. Assume that supp uC K X{0<x,<8}. Then
ula’,¢) eonverges to biw) in 'BiK) when ¢ | 0.

In fact, by the unique continuation property, we ean solve the analytic Cauchy
problem globally with respect to the coordinates on S on a neighborhood of K x{0}.
Thus the proof goes without modification as above.

§ 3. Generalized unique continuation property

We begin with the simplest case.
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DEFINITION 3.1. Let u(x) be a hyperfunction defined on a neighborhood of the
origin. Let v(z) be an element of F,(R") which agrees with u(z) on a neighbor-
hood of the origin. If the finite limit

3.1 Ii —eifl g
3.1 im §R"e B(g)dE
exists, we define it to be the value of u(x) at the origin.

LEMMA 3.2. Whether the limit (3.1) exists or mot, or the value tiself, does
not depend on the choice of v{z) € F(RY).

ProoF. Let v(2) € B.(R") be identically equal to zero on a neighborhood of
the origin. It sufficies to prove

i 1 ~c 1258 8 =
3.2) Igl}'l(’)l (2”)"§Rne PEYAE =0 .
Put
R el L {n+1)/2) €
8.3 Elw, e =Fe = e (Ja)24-eq) iz~

Thus Elz, &) is a slowly increasing real analytic function of x for each fixed >0.
When we let ¢} 0, E{z,¢ converges to zero uniformly on a complex neighborhood
of any real compact set K R* which does not contain the origin. Choose K=3supp .
Thus E(z, & — 0 in _{(X). Considering the inner product {v(x}, Elz,¢)> as the one
between PB[K1 and _A(K), we thus obtain

(3.4) lim {v{2), Elz,¢))=0.

£l 0

On the other hand, when >0 is fixed we can consider the same inner product as
the one between (J,(D") and P(D"). Then we apply the Parseval formula

(3.5) ola), Elz, o = jm I dE |

1
@m)"
(3.4) and (3.5) imply (3.2). q.e.d.

LEMMA 3.3. Assume that a hyperfunction u(z) is of class C* on a neighbor-
hood of the origin. Then it has a finite value at the origin in the sense of Defi-
nition 3.1. It agrees with the usual date u(0).

PROOF. Let v{z) € Ci*(R") be a cutting off of u(z). Then in the classical sense
we have #{0)=v(0). On the other hand, when v(z) belongs to CR™, the limit
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8.1) exists and agrees with

as is easily seen by the Lebesgue convergence theorem and the classical Fourier
inversion formula. g.e.d.

REMARK 3.4. Employing a result on harmonic analysis (see [14], Chapter II,
Theorem 1.10}, we can strengthen Lemma 3.3. For example, u(xr) has a finite
value in our sense if it is continuous on a neighborhood of the origin. Since
Lemma 3.3 is sufficient for our later application, we will go without quoting so
much from the harmonic analysis.

THREOREM 3.5. A hyperfunction ulz) is real analytic at the origin if and
only if for any local operator J(D) with constant coefficients, the derived function
J(Dyulz) has a finite value at the origin in the sense of Definition 3.1.

Proor. First suppose that u(x) is real analytic at the origin. Then for any
local operator J(D} with constant coefficients, J{(D)u(x) is infinitely differentiable
on a neighborhood of the origin. Thus by Lemma 3.3 it has a finite value.

Conversely assume that for any J{D), J{D)u(z) has a finite value at the origin.
We can assume without loss of generality that u(x)€ §3.(R?). Thus the assump-
tion implies that

B i [ eI T e TR0 =1TD) ule) % B, )
has a finite limit when ¢ | 0. Now put u,{x)=u(x) x E(z,¢,), where ¢, | 0, The above
assumption implies that u,(z) is a converging sequence in (A;({0}). (Here, _A4(K)
denotes the space of real analytic funetions f(x} on a compact set KCR* endowed
with the seminorms || f|l,= sup |J{D) f(x)], J(D) running over all the local operators
with constant coefficients; se&e 11}, Definition 2.1). Thus by Proposition 2.4 in [1],
u,(x) converges uniformly on some complex neighborhood of the origin. Thus the
limit funection is real analytic on a neighborhood of the origin. Since the sequence
g, is arbitrary, we conclude that the function u{z, &) =u(x) * E{z, ¢) converges to the
unique real analytic limit funetion in _{(K), where K is a real compact neighbor-
hood of the origin.

We claim that the limit function agrees with the original u(z) on a neighbor-
hood of the origin. If this is established, the proof will be completed. To estab-
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lish the claim we need the result in §2. As we have already remarked there, we
must pay special attention in deducing the local accordance of the limit function
in the theory of hyperfunections. Now the function u(z,e) is real analytic and
satisfies the equation

622 )u(a:, g =0

3.7 (Az +

6
on >0 as a function of n+1 variables, where A, denotes the Laplacian on 2.
Hence

2

Y ulx, &)= — A, ulx, ¢

also converges in (A(X) when ¢! 0. Further

—Q——u(x, g = Y 62_, ulx, e)de+ulz, &
O¢c ¢y O€°
also eonverges in JI(K). Thus we conclude that u(x,¢) can be extended as a clas-
sical function of class C? across the boundary e=0 on a neighborhood of the origin
in R»+. Therefore by Lemma 2.3 the boundary value B (ulx, &) of ulx,e) to the
non-characteristic plane {¢=0} with respect to the operator in (3.7), agrees with
the uniform limit 151?3 ulx, €), which we have seen to be real analytic on K.

Next we consider the limit in a global sense. Let §” be the one point com-
pactification of R®. It is a compact real analytic manifold with the coordinates

3.8 Y;

’ .
= el R e U e alt
Tt - +2a 1 :

at infinity. As the volume element we can employ

day --cdwn  _ dycccdys
(Lat+ ooz Lyt oo )"

3.9)

which is induced by the stereographic projection. Then, the hyperfunction wu(x)¢
B.(R") can be considered as an element of Bis*]. Moreover consider the real
analytic manifold S*xR'. Then the kernel Ef{z,¢) is a real analytic function on
the open subset {¢>0} of the manifold. Hence the function

dy

(3.10) ul, e):j wly) (L+yit - +ya)"Elr—y, ATy - iy 0

R®

=) 1+yi+ - +92)", Elz—y, ),

is also real analytic there, where {,) denotes the inner product between BIS7
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and _A(S"). The equation (3.7 can be written by the local coordinates (3.8) at
infinity in the form

6+62

Gyj oe?

3.11) [(yﬂ co YA @2 i - o) ijyj }u(y, & =0.

Thus the hypersurface {¢=0} is everywhere non-characteristic with respect to the
operator,
Finally we verify that

3.12) w(z, ) —ulr) in PiS*] when e}0.

If this is established, we can conclude by Corollary 2.6 that u(x) agrees with the
boundary value b%(u(r,e)) of u(r,¢ with respect to the operator in (3.7)-(3.11),
hecause the topology of G3(S8"] is Hausdorff. The boundary value is locally deter-
mined by Lemma 2.1, and we have already seen that it is real analytic on a
neighborhood of the origin. Thus we can conclude that u(x) is real analytic on
the same neighborhood.

Now we verify (3.12). Take a test function flz) € _A(S"). Then we have

dz
A4ai+ - +2i)"

B8  aronCule, d, fEan=| ute,d )

dzx
T4+ - +xi)"

- S ), Elo—y, oduf @)

The inner product under the integral sign denotes the one between G[K] and
JAK), where K= suppu. For fixed ¢>0, E{x—y, ¢ is an (A4 (K)-valued continuous
funetion of 2 and the integral

L . ! - de
3.14) Iew)uij(x bSO G

converges in {(K). Thus we can take the integral into the inner product and
(8.13) becomes (u(y), L{y)>. Thus it suffices to show that the integral (3.14) con-
verges to f(y)/(1+1+ - +y2)" in A(K) when we let ¢} 0. Since E(z—y,¢) and
fleyl+ai+ -+ +2x5)" are functions of class L,, we can apply the classical Fourier
transform. The Parseval formula gives

=1 ~slét+ive Sla) :l
(3.15) L) (2:;)n§xﬂe vt G | g LB Nyt

The function F[f(zx)/(1+a} + -+ +22)"] is rapidly decreasing as a Fourier transform
of the real analytic function. Thus when we let ¢ [0, (3.15) converges to
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L[ e fl) _ £
M=t Lne g[umﬂ --~+xi>“}(5)d5 Aoi+ -+

uniformly for y, when y runs on a complex neighborhood of K. Thus we have
verified the weak convergence, hence the strong convergence of (3.12). q.e.d.

COROLLARY 8.6. Let ulx) be a hyperfunction defined on a neighborhood of
the origin. Then it is identically equal to zero on a neighborhood of the origin
iof and only if for each local operator J(D) with constant coefficients J(Dyu(x) has
value zero at the origin.

Proor. We only have to prove the sufficiency. By Theorem 3.5 we see that
#(x) is real analytic on a neighborhood of the origin. Therefore employing the
disecrete data Deu(0)=0, we conclude that u{x)=0 there by the unique continusa-
tion property. q.e.d.

It is well known in elementary analysis that the vanishing of every finite
derivative D*u{0) is not sufficient for u(z)=0.

The following result strengthens Theorem 3.3 in [1] (see Remark 3.4 there).

COROLLARY 3.7. Let u(z) be a germ of hyperfunction at the origin. Assume
that for every local operator J(D) with constant coefficients, J(D)ulz) defines a
germ of continuous function at the origin. Then u(x) is indeed a germ of real
analytic function.

Proor. From the assumption we see easily that every J{(D)u(z) defines a
germ of elass C?*. Thus by Lemma 3.3, each J{D)u(z) has a finite value at the
origin. Hence by Theorem 8.5, u(z) is real analytic on a neighborhood of the
origin. q.ed.

Note that even if every finite derivative Deu(x) defines a germ of continuous
function we cannot conclude that u(z) defines a germ of class C=.

For a Fourier hyperfunction u{z), the following criterion is sometimes useful.

THEOREM 3.8. A Fourier hyperfunction w(z) s real analytic at the origin if
and only if for every infra-exponential entire function J(§) the finite limit

(3.16) lim —& <J<s>a<e>,e-cvm>=nm-l- E e~V 16541 J(8)71(6)dE
eio (27)" ci0 (2r)" Jan

exists.

Proor. Instead of the Poisson kernel E(z,¢), we employ the Yukawa kernel
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(3.17) Kz, &) =F1[e-eV e+

2 1 [ v
S e [l ~-{g/{z}) 721~‘z(2, ni2 , -
2 o ), € 25peni2 J oy (r)dr .

When n=1, we have

® i an e
[ A A Ki(e+a?lzf),

-2 &

0 var Ve +atzl?
where K, (2} denotes the modified Bessel function with the asymptotic K,(z)~
V7|22 ¢ for |arg z|<3x/2 and |2]>1. When n=2, we have

ST S o |z €I eI

jo g~ leli=b +izi TJo(df)dTulliz*(‘;W(l+ﬁ/sz+a ]ﬁblz) .
Therefore the integral (3.17) for general = can be calculated by the following
recurrence formula

w9“[04"",]'.) (ar)]=—a"*rdolar) .
ta

The power of x| in the coefficients cancels. Thus if we take jz|*=2ai+ --- +22 for
complex x, we see that K(x,¢) is a rapidly decreasing real analytic function for
fixed £>0, and when [0, ¢*V/2K(z,¢) converges uniformly to zero on {z€C™;
{Im2|<3, |Rez|>25 for any & satisfying 0<s<1. Thus K{z,¢) converges to zero
in (P.(K) for any compact subset K D" which does not contain the origin. Hence,
if K =suppu does not contain the origin, we have

lim L (a8, e‘ef/.““‘»’“[?;i)zli'r? {ulz), K(x, e)>=0,

where the inner product is considered at first between Q(D") and CP.(D", and
later between Q[K] and (P,(K). Therefore the limit (3.16) does not change if
we replace u(x) by a hyperfunection v(x)€ GB.(R") which agrees with u{x) on a
neighborhood of the origin. Thus we only have to prove the assertion for those
u(x) € B(R™. The analogy of Lemma 3.3 for our present situation clearly holds.
On the other hand, the real analytic funetion wi(z, &) =u(z) % K(z, ¢) satisfies

(3.18) [Az- 1+é%]u(x, ) =0

on ¢>0. As in the proof of Theorem 8.5, we introduce the real analytic manifold
S*XR:.  Then wu(x,¢) can be extended as an infinitely differentiable solution of
(3.18) on S$*X{e>0}. The hypersurface {¢=0} is non characteristic with respect to
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the operator in (3.18) even at infinity. Thus the remaining part of the proof goes
just in the same way as that in Theorem 3.5. q.e.d.

REMARK 3.9. We can define the value of a Fourier hyperfunction u(x) at the™
origin as

(3.19) Hm (@(8), g7V isi2an) |
£l0

Since the kernel K(z,¢) belongs to P.(D"), it is theoretically convenient. But we
preferred (3.1) as the definition of the value because of the elementary look of the
Poisson kernel E(r,e). I do not know whether the two values (3.1) and (3.19)
formaily agree for u(x) € GB.(R™).

Next we treat real analytic parameters.

THEOREM 3.10. Let w(x) be a hyperfunction defined on a cylindrical domain
Ux{lz. 1 <dl, where UCR'™ is open. Assume that u(v) conioing 2z, as a real
analytic parameter, and that for every local operator J(D) with constant coeffi-
cients we have

(3.20) J(Dyula) s, =0 €' AU) .

Then u(x) is real analytic on a neighborhood of UXx{0}.

Proor. We are going to show that wu(x) is real analytic on a neighborhood
of every point a° of Ux{0}. Without loss of generality we can assume that 2° is
the origin of R*. Let VU be another neighborhood of the origin in R*~'. Then
we can find a hyperfunction #,(x) € PR x {|x,|<5)) such that 1) v,(z) contains z,
as a real analytic parameter, 2) »,(2) is real analytic outside Vx{|z.|<d}, where
V denotes the closure of V in R*', 8) the difference h(z)=wu(x)-v,(x) is roal
analytic in Vx{lz,J<d}. In fact, let sp (ulyxis,1<s) be the image of ulyxie, <a by
the eanonical mapping to the global section of the sheaf (¢ of mierofunctions on
Vx{z,| <8} Xi8&™". By the flabbiness of the sheaf  ([13], Chapter 1II, Corollary
2.1.5), we can find a hyperfunction »,(2) on R"'Xx{|z,| <6} such that sp (v;)=sp (u)
in Vx{lo,| <8} x1i8E* and supp sp (v)) Csupp sp (wlvx i, i<s1), where the clogure is
taken in R* !X {|x,| <8} X85!, Thus we see obviously that »,(z) satisfies all the
required properties.

Next let K be a ball in R*' containing V in its interior. Let yx(z’) be the
characteristic function of K. Since w(x) is real analytic on 2KXx{|z,|<d}, the
product v(z)=yg{x"}v,(z) is locally well defined, and contains x, as a real analytic
parameter. The condition (3.20) holds for v{x) with ‘_A(U) replaced by ’_A(V).
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‘Thus it suffices to prove that under this condition v(x) is real analytic on a neigh-
borhood of the origin.
Put

3.21) v(z, e ="{vly’, z.), ' Elz'—y', )y,

where 'E(z’,¢) denotes the (n—1)-dimensional Poisson kernel, and ’{, > denotes the
inner product between 'B{K] and '_A(K). Let S be the one point compactifi-
cation of R*!. Then hy Lemma 1.4, v(xr,¢) is a real analytic function of « and ¢

on the open subset §™ 1% {|z,|<d} X {¢>0} of the real analytic manifcld S*'X R'X R'.
Put

(3.22) wlx, €)= Y<~6£ —xﬁ)v(x, £).

£

For each fixed ¢>0, this is a hyperfunction with compact support L=8""1x{|x,!<é/2}
in §™1xX R'. We claim that

3.23) w(z, &) —w(z Y(——a,) 2)  in GILI,

where the product in the right hand side is well defined because v(z) contains «,
as a real analytic parameter. Take a test function flz) € _A4(L). Then we have

B.24)  auwlz,e), fl@dacw

- N
_S_alz{anlv(m, e) flz', 2,) (1+l:v’[2)"“l}dx"

biz v (', x,) 'Ela’ ' €) fla!, 2) da’ d
j_m <vy,xn.j‘m_1 'y’ €) fla!, x, (1+1x'lz)"“1>w Zn,

i

where we have employed dx'dz,/(1+|x']*)"! as the volume element on S* X RL
The last deformation is legal because the integral

dx’

.29 By =B A

converges in ‘_A(K) for fixed 2, and . Since L(y’, x,) belongs to JA(KX {|z.]<3/2}),
we can rewrite (3.24) by Lemma 1.4 as follows: (Y(6*/4—2%)v(z), L(2/, z,)>, where
the inner product is used between PBIEX{|x.|<8/2}] and A(KX{|z.1<8/2}). When
we let ¢} 0, L{z’, x,) converges to flz)/(1+|z'|5* in A(KX{|z,]|<6/2)). The proof
is similar to that in the last part of the proof of Theorem 3.5. Thus we conclude
that (3.24) converges to (Y{3?/4—axa)v(x), flz)/(1+|2'|5*~%), which is obviously equal
to s Y8 4—2)v(x), f@)>uw . Thus (3.23) was proved.
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Now w(z,¢), as a function of n+1 variables on an open subset §*~1X R' X {¢>0}
of the real analytic manifold $*1xX R'X R', satisfies

(3.26) <A 4+ ) (——x,,X /+w- vz, ¢)
= <v(y’,xﬂ),<d:'+ gg v, e)>y,=ﬂ0,

because the differentiation (A, +98%/8¢%)’ E(x'—y’, ¢} converges in ' A(K). A calcula-
tion similar to (3.11) shows that the hypersurface {¢=0} is everywhere non-charac-
teristic with respect to the operator in (3.26) even at infinity. Further, supp wlx, €)
is contained in LX{e>0}, where L is the compact subset of $*'XR' defined
above. Thus by Corollary 2.6, we conclude that the limit function w(x) in (3.23)
agrees with the boundary value % (w(x, ¢)) with respect to the operator.

Now we examine the convergence in fuller detail at the origin. Near the

origin, w(x,e)=v(x,¢) is a real analytic function of x for fixed ¢>0. By Lemma
1.1, (3.21) can be rewritten as follows

vz, &) ="Cvle’ —y’, z.), 'Ely, €Dy

Hence by Lemma 1.5, for any local operator J(D) with constant coefficients we
have near the origin,

J(D)wlz, &) =J(Dyv(z, &) ="{J (D)o@ —y', z.), ' Ely’, &),
=S (D)) (@' =y, xa), " ElY, €)Dy

Now take the value at the origin.
(8.27) J(D)w(z, &) (0)="LJ(D)v) (¥, 0), 'Ely’, &)y

By the condition on v(z), the function (J(D)v)(—y’,0) is real analytic on a neigh-
borhood of the origin (in fact in — V), and has compact support K. Thus if we
let ¢]0, (3.27) converges to the finite value (J(D)v)(—y’,0)l,~o by Lemma 3.3.
Thus in the same way as in the proof of Theorem 8.5, we conclude that when ¢} 0,
wix, ) converges to a real analytic funection of z on a neighborhood of the origin
in R*. By the same technique used there, employing the equation (3.26) we can
show that w(z, ¢) can be extended as a classical function of class C? on a neighbor-
hood of the origin in R**! beyond the boundary {¢=0}. Thus by Lemma 2.3, we
conclude that the boundary value w(z) is real analytic on a neighborhood of the
origin in R". Sinee w(z) is equal to v(z) near the origin, we have completed the
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proof. qg.e.d.

CorROLLARY 3.11.  Let u(x) be a hyperfunction defined on a eylindrical domain
Ux{lx,|<d}, containing x, as a real analytic parameter. Assume that for every
local operator JID) with constant coefficients we have
(3.28) JDula),, -o=0 in TRUY.

Then we have u{x)=0 on a neighborhood of U {0}.

In fact, by Theorem 3.10 we conclude that u(x) is real analytic on a neighbor-
hood of Ux{0}. Thus employing the discrete data Diu(x)l,',=0, £k=0,1,..., we
conclude that u{x)=0there. Note that we cannot assert that u(x)=0in Ux fla.)<a}.
For example, 6(t—~2 is a hyperfunction of two variables on {x>0}x B! containing
¢ as a real analytic parameter. Its support contains {t=x4}.

REMARK 3.12. In Sato’s original conjecture, the assumption (3.28) contained
only the normal derivatives J(D,). If we prove the following assertion, we can
prove the eonjecture in the original form without adding any further technique.
“Let {fi(z)} be a sequence of germs of real analytic functions at the origin. Assume
that for every local operator with constant coefficients of the produet type, the
value Ji(D)) -~ -J.(D,)f,(0) converges to a finite limit when k—co. Then f,(x) converges
in A(0}).” Note that the topology defined by the seminorms JUDy) - (D, £(0)
of the product type is really weaker than the usual weak topology of (A({0}).
Thus the above conjecture makes sense only for the sequences.

§4. Complex holomorphic parameters and examples

In this section we first give the definition of complex holomorphie parameters,
and later give critical examples concerning analytic parameters, mainly for the
results in this paper.

We say that a hyperfunction u(x) of m-variables x=(2’,z,) contains z, as a
complex holomorphic parameter at the origin if it admits the following defining
function Fi{z): There exists a complex neighborhood V of the origin such that
each component F,(z) on V, can be holomorphically extended to
4.1} Va={zEV; 0;Imz,>0, g=1,...,2-1}.

We say that a hyperfunction w(z)€ PB(U) contains x, as a complex holomorphic
parameter if it satisfies the above condition at every point of U. The sheaf of
hyperfunctions with the complex holomorphic parameter z, is defined by the rela-
tive cohomology ,_g[;:;:—l-lxc,”(@) lgn. For such argument see [11], [12] or [13). A
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real analytic funetion contains z, as a complex holomorphic parameter. The com-
plex holomorphic parameter is preserved by the operation of differential operators,
or even of local operators. These are readily seen from the definition. If u(x)€ B(U)
econtains x, as a complex holomorphic parameter, we can choose a global defining
function Fl(z) satisfying the above definition at every point of U/. The complex
holomorphic parameter is a special case of the real analytic parameter. Therefore
we can take the restriction u(z’, 0} or the product Y{x®—al)u(s).

By Sato’s fundamental theorem, the real analytic parameter is preserved by
solving an elliptic equation. As for the complex holomorphic parameter we have

LEMMA 4.1. Let u be a hyperfunction which contains x, as a complex holomor-
phic parameter. Let J(D) be an elliptic local operator with constant coefficients.
Then every solution v of JID)V=u also contains », as a complex holomorphic
parameter.

ProoF. The problem is local and the solutions of the homogeneous equation
J(Djv=0 are real analytie, hence contain z, as complex holomorphic parameters.
Thus it suffices to prove the assertion locally for a special solution v. We con-
struct v solving the equation J(D)G,(z) = F,(2). We can assume that F,(z) is holomor-
phic on V,. of the form (4.1), where V is convex. Thus by the existence theorem
of the holomorphic solution on eonvex domains for the local operators (see, e.g.,
[1], Theorem 4.1) we can find holomorphic solutions G.(z) on V,.. Let » be the
hyperfunction defined by the defining functions G,{z)|y,. Then v contains z, as a
complex holomorphic parameter and satisfies J(D)v=u. q.e.d.

LEMMA 4.2, A hyperfunction u(x)€ BU) contains z, as a complex holomor-
phic parameter if and only if it s the restriction of a solution vix,y,) € H(W),
of the equation 9,v=0 to the non-characteristic plane y,=0, where

1 0 .19

515: TR )
2 ox, 2 oy,

and W CR" i3 an open set such that WN{y,=0}="U.

PrOOF. Let u(z) € B(U) be a hyperfunction containing z, as a eomplex holomor-
phic parameter. Let F{z) be one of the global defining function on a complex
neighborhood V satisfying the definition. Let w»(z,y,) be the hyperfunection of
{n+1)-variables defined by the defining functions

G0l W) =F, (2, 2,+1w)
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on
Vian={z, ) €EC"*; (2,2, +1w)EV, 0;Im2;,>0, j=1,...,n, Imw>0},
G o) (2, w)=0
on
Vi-n={z,w)€C*; &/, 2,+w)EV, 0;Im2,>0, j=1,...,n, Imw<0}.
Put
W={(z,y.) ER"*; (&', 2. +1y,) EV}.

Then by way of the defining function we see easily that v(z,y,) is a solution of
d,0=0 in PB(W) satisfying v|, -o=u.

Conversely let v(z,y.) be a solution of 3,u=0 on an open set W C R™*! satisfying
Wn{y.=0l=U. Let G(z,w) be a defining function of v on a complex neighbor-
hood X of W. Since the assertion is local, we can assume that U is convex, W=
Ux{ly.l<d} and X=W x{|{Imz2,}<4, |{Imw|<s}, where >0 is sufficiently small.
Then 2,v==0 implies that

41
<—+ ——~——) (e, w)= 2 Hilz,w),

0z,
where H,(z,w) is holomorphic on
Xi={(z,w)€X; Imz;#0 for 5k},

where we understand w=z,,;. Since each connected component of X, is convex,
we can easily find holomorphic solutions G,(z, w) of §,G,=H, on X,. Then Gz, w)—
Z G,(2,w) is another defining function of v(r,y.). Thus we can assume without

loss of generality that
1 9 . 9
- L L w)=0
2< 2. +1 - )G(z w)

Put Fo(z2)=G 21z, 0% for a fixed w® satisfying +Imw'>0 with the same sign.
Then we have

8 .
- Y Fd ’) n =0'
A 4 P ) (#, z,+1w)

Thus by the uniqueness of the Cauchy problem we conclude that G sy (2, w)=
Fole!, 2.+t w—w")) =G 0,21, (7', 2o+ 1w —w, 0%, Choose w®=—(§/2¢,+(5/2)i. Then
we have
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G o,z (2, ) :G(a.in<z', z,‘+iw+~52~a,.ii-g—, —%G,i%i) ,

where the double signs are taken in the same way. Since

g, Im <z,,+iw +%o,ii—%>zaﬂ Imz,+0,.Re w+% s

. 5 ., 0 ]
Re (z,.+ W+ — ,.zi-—-)zRe Za—-Imwt—,
27> 2

the above formula implies that G +1,(2, w) ean be continued holomorphically to
" G 3
Usx 0 {0<0; Im z,<a}n{um z,.l<—4—} X {lwl<z} ,
j=

where Us={z€ U; dis(z,8U)>6}. Thus the restriction u(x)=w(x,0) defined by the
defining functions

Fo(z):G(a,+1)(z’ 0) ‘G(d._l)(zr 0)

contains z, as a complex holomorphic parameter on U,. Thus in the general case
we see that u(z) contains x, as a complex holomorphic parameter at every point
of the given domain. g.e.d.

LEMMA 4.3. Let v(@, 2., 4,) be a function of class C (§)', or ultradistribu-
tion) on V' XV, where V'CR"™, V,CR? are open. Then v satisfies the partial
Cauchy-Riemann equation 3,v=0 if and only if v is naturally regarded as a
C=(V")-valued (respectively §)'(V')-valued, or ultradistribution-valued) holomorphic
Sfunetion of zo=2x,+iY, on V.

ProoF. Since the proofs are similar, we give one for C case. Let v(x’, Tn, ¥a)
be a solution of 3,v=0 of class C*. Take a test function ¢(x’)€£’(V’). Then the
product ¢(z’)v(@’, Z., y.) belongs to §)'(V'XV,). We define the integral along the
compact fibre

<9O) v>Z'ES 90(33’)1)(33’, Loy U»)dx’ € .@’(Vn)

An-1

by the following formula

bz, ¥a), o) v>z'>=S G, Yo @), Tay Yu)da'de.dy., ,

Rr+1

where ¢ € CP(V,) is a test function. We have
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<(/f}(r’m ?/n)' an(ff-’» ”>2’>: <'” 5,,(,’1’(3’,‘,,, yn)! <9’>r v>2’>

= _S (5n¢(xny yn))(yo(x,)v(x’, L,y yn)dx,dxndyn

= g dlx,, yela1o,v, ., yda'dr.dy,
JERAL
=0,

Hence (¢, v, is in fact a holomorphic function of z,+14y,. Thus v{@’, z,, ¥.) is a
C»(V'j-valued weakly (hence strongly) holomorphie function.

Conversely, let v(z’; z,) be a C=(V’)-valued holomorphic function of z,=z,+ ¥,
Then v and its derivatives on z, up to a fixed order form a bounded subset of
C>(V") when (z,, 9. runsa compact subset of V,. For a test function of the type
o2 P, y) EE (V' X V,), we define the functional v(z’,x,,¥,) by

LoV p(xn, Ya), v(@’, Tas yn)>=§ 2<9f>(x’), 2z’ 2a)D e (@, Yn)dTaOY,
§3

Then we see that w{a’, 2,9, is a continuous functional, hence o{x’,x,, ¥.) €
C=(V'xV,}). From the same formula we have obviously 3,v(a’, 2., ¥.) =0.

The two correspondences given above are clearly inverse to each other. g.e.d.

Since C=- ({)-, or ultradistribution-) solutions of 4,v=0 are of course hyper-
function solutions of the same equation, we see that those functions in Lemma 4.3
contain x, as a complex holomorphic parameter due to Lemma 4.2. Conversely,
based on these functions we can locally characterize general hyperfunctions con-
taining x, as a complex holomorphic parameter.

THEOREM 4.4. Let u{x) € GV) be a hyperfunction containing x, as a complex
holomorphic parameter. Then on every relatively compact subdomain of V of the
type V' X {a<x,<b}, where V' R™! is convex, we can find an elliptic local operator
JI) of n—1 variables x’, and a function v{x) which is a C=(V')-valued holomor-
phic function of x,, such that u=J(D")v.

Proor. By Lemma 4.2 we can take a hyperfunction solution u,(x,y,) of
3.%,==0 such that u,(x, 0)=u(x), where V, is a convex open set in R* with the system
of coordinates (x,, ¥, such that V., N{y,=0={a<x,<b}. By {1}, Theorem 1.3, we
can find an elliptic local operator @Q(D, D, ) such that every hyperfunction solution
(2, y,) of Q(D, D, )u,=u, is of class C*. In fact we can take one of the type

62 62 62 62
J<(§T?+ e +»;§A+ ‘“"'2"+‘“‘2‘> ’
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where J is an entire function of one variable of order 1/2. (See the proof of the
quoted theorem.) Consider the system of equations

{Q(D, D, yw=u,,

a,0=0.

4.2)

If the polynomial corresponding to the operator o, does not divide the entire func-
tion corresponding to Q(D, D, ), we can solve (4.2) with respect to w, because the
compatibility condition is satisfied ((1], Theorem 4.1). Thus w(x,y,) is a solution
of 3,w=0 of class C=. Due to the second equation of (4.2}, the first equation can
be rewritten as Q(D,iD.)w=u,, where D,=18/dz,. Now put v(x)=w(x,0). By
Lemma 4.3, v is a C=(V")-valued holomorphic function of x, and satisfies Q(D, iD,)v=
%. For our choice of Q, we have

Q(D, fiDn):J(,??z R wai,)
oxy i, /)’
which is an elliptic local operator of z’. ged.

REMARK 4.5. We can also take

2 2 2 2
J <,,?_~24 doeee __@zm_‘_z,.x.'? 2.{_.67)
8 xr 1 n n

0%n-y ox oy

as the operator Q(D, D, ). Then we can finally get

Jo=d(-ZLw o +-2

- ( oz a:cﬁ>

as the regularizing operator. Since the latter is elliptic in all variables x, every
solution v of J(Djv=u satisfies the property required in Theorem 4.4.

REMARK 4.6. If u(x) is a C®(V’)-valued (or §)'- or ultradistribution-valued)
holomorphic function of z,, we can decompose the support of u parallel to the x,-
axis in the way u(@)=Y o.(z')ulx), where ¢,(z") € C7(V’) are appropriately regular
functions and each term ¢, (x)u(z) is a C=(V’)-valued (or g~ or ultradistribution-
valued) holomorphic function of z,. Hence in general if u{z) is a hyperfunction
containing =, as a complex holomorphic parameter, then regularizing u(x) by
Theorem 4.4 as u(z)=J(D)v(x), we have the decomposition u(x)=3 J(D)[g.(x’)v(x)],
where each term in the right hand side contains z, as a complex holomorphic
parameter, and has a support whose intersection with {r,=const.} is compact. Thus
for the complex holomorphic parameter, we have a way of decomposition more



400 Akira KANEKO

elementary than that used in the proof of Theorem 3.10 employing the flabbiness
of (.

Now we give miscellaneous examples. For the sake of simplicity we put n=2
and write z, ¢ for x,, z,.

ExaMpLE 4.7. Put

0 for z=0.

Then u is an infinitely differentiable function of x, ¢, and for each fixed z, % can
be continued holomorphically in t to the whole complex line C. But % does not
contain ¢t as a real analytic parameter (much less as a complex holomorphic parame-
ter). In fact, suppose that u(z,?) contains £ as a real analytic parameter. Let
p(x) be an infinitely differentiable non-negative even function such that suppecC
[~1,11 and ¢=1 on [—1/2,1/2]. Then the product ¢(xju(x,?) must also contain ¢
as a real analytic parameter, because u(x,t) is real analytic outside {x=0}. Then
by Lemma 1.7 and Lemma 1.4, the integral

1'(15):5cn o(x)ulx, f)dz

-0

must be a real analytic function of . Putting 1/2*=y, we have

0= ey )

The result cannot be real analytic at ¢=0, which is a contradiction. For, choosing
Jy)=y*e’V +¢¥¥), we have

J(D)I(0) =1im Sme“’ Vgo(-{/-lz;) ;/1y,3y? (e¥¥ e YV )emvit+idy

540 J,y

>lim .rx/ Y e Vilridy=co .
€48 1y

Thus by Theorem 3.8 we reach the conclusion.
ExaMpLE 4.8. Consider the function

Fs =~ {5 i),

where v/ z etc. denote those branches which take the positive value on the posi-
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tive real axis. Clearly F(z, ) is holomorphic on {Imz>0} X {r€C}, hence defines a
hyperfunction u(x, t)=F(x+10, t+0) which contains ¢ as a complex holomorphic
parameter. Since for Im2>0

—Z~ r—Im ’<arg(~f/~~~)<g~-f —Im=

when we let Imz 0, Imz |0 from the side Im >0, Flz, ¢} converges in C™(Ri,)
to the infinitely differentiable function
16t 1
5rq ¢ (. AU . for 2#0,
exp( Nr+i0 AT+ ) or a#
0 for x=0.

Sle, t)=

We have u{z,t)=f(z,1). We can check this, e.g., by showing that Flz, ) defines
the Fourier hyperfunction f(z,t¢) employing the rapidly decreasing real analytic
test functions. Thus u(x,?) is an infinitely differentiable function containing { as
a complex holomorphic parameter as a hyperfunetion. But it is not a C2(R.)-
valued holomorphie function of t. For, assume that at least u(z,t) is a §)(R.)-
valued holomorphic function of £. Then for every ol(x) ECF(R,), elx)ulz, 1) must
also be a §)’(R,)-valued holomorphic function of ¢, hence

I(t)=Sm o(r)ulz, t)de

must be analytic in £. Choose ¢(x) € CF[0, 2] such that ¢(z)=exp i/ ) , where
¢(z) € CFl0, 2] is a non-negative function satisfying ¢(x) >exp —1&/x) on nggl.
Then we have, putting 1/V 72 =y,
1=, oo Say.
u¥y Yt/ Yyt
Thus taking J{y)=y%(e*¥V +¢72V¥) we have.
J(D)I(0) =lim r’ e—ﬁ}p(}_}i YV eV gV iETI y
¥z ¥t/ Yt

£i0

>lim rde‘ﬁ‘/ Vitidy=oo
€10 Jy
Due to Theorem 3.8 this shows that I{¢) is not analytic at ¢=0.

The above argument simultaneously shows that the product ¢{z)u{z,?) does
not contain ¢ even as a real analytic parameter. Since S.S.¢(z)C R*X{tidzoo},
S.S.ulx, t)C R*X {*idzoo}, this shows that the rule of estimating the singular
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spectrum of the product (see [13], Chapter I, Corollary 2.4.2) does not hold for
such produet.

ExampLE 4.9. Put
it 1
XD oy for fCiO,
iz, =0 P\ Veti0  Vaii0
0 for x=0.
Thus on a neighborhood of {t=—1}, we have
v(x, t) =u(x, —~log (—1)),

where u(z,1) is the one defined in Example 4.8. Since —log (—1t) is a holomorphic
transformation on a neighborhood of t=—1, v{z,t) is a function of class C* con-
taining ¢ as a complex holomorphic parameter on a neighborhood of {t=—1}.
Take the local operator J(D,)=e¢"?: +¢™¥?;. Then we have

; 1 1
J(D 1)(33, ) =ex *‘“'}‘E‘f,“"“ - 1“""“){ 3 —_ “*f’“‘”‘“>+ 3 ( FyyE—— ’f)} .
Huis, f)=exp Voo Vatio U Vario )P\ Vatao

Thus the result goes beyond the class C*, because it is not bounded at z=0.
EXAMPLE 4.10. Finally we give a famous counter-example by M. Sato that
Theorem 1.5 does not hold in general when the condition for supp u(a) is dropped.
This example has long be known though unpublished. Let P,(z) be a sequence of
polynomials in one variable which approximate 1/z locally uniformly outside the

negative real axis. Namely, there exists a sequence of compact subsets K,C
K.c .-+ cK,C -+, such that UK,=C\]—oo,0], and a decreasing sequence of posi-
tive numbers ¢, such that

l%——P,,(z)‘gs,,, if 2CK,.

Further, writing ¢,=dis ({0}, K,), we can assume that V5, tends to zero when 7

tends to infinity. Then the power series Flz,z)= § P_(2)" defines a holomorphic
n==0

function in (€C\ ]—o0, 0]) X {r €C; |r|<1}, since for z€ K,

an(Z)lS'%‘+e“S~—al—-+eo for n>m.

The associated hyperfunction f(z, t)= F(z+10, t+10) — Flz—10, t+10) contains t as a
complex holomorphic parameter. Clearly every derivative of the finite order
vanishes at ¢=0. But supp f(x,?) contains the origin. In fact if flz,t) vanishes
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identically on a neighborhood of the origin, then the above series must obviously
converge uniformly on a neighborhood of the origin. This implies

Vmax [P,z < C

laisr

for some r>0 and C<co. Since by the assumption

[Paldn) >

1 1
€y 2T 6,
PR W

hence

By S

| P,(5,)]-—>c0 when n-»co,

we have a contradiction.
Note that if Flz, ) in the above example would have an estimate of the form

4.3) |Flz, )] <C exp (ﬁ)

near the real axis, then f(z,t) would become an ultradistribution by Komatsu's
criterion (see [6] Theorem 11.5). Then fix,t) would be an ultradistribution-valued
holomorphic funetion of . Hence, choosing a sufficiently regular function ¢{x)€
CY(R,), we could make the produect o(z)f(x,t), thus cutting off the support with-
out losing the assumption that the restriction of every finite order derivative to ¢t=
0 was zero. Thus by Theorem 1.5 we could conclude that o(x)f(z, t)=0. Since
¢{x) was arbitrary, this would show flz,t)=0. Thus we conclude that any Flz, 1)
appearing in such counter-example cannot satisfy the estimate of type (4.3).

REMARK 4.11. Xolm and Nagel [b] has made an interesting work conecerning
the problem on the “edge of the wedge”. When n=2, their result can be rephrased
as follows: Let u(z,t) be a distribution containing ¢ as a real analytic parameter
in the sense of hyperfunction. Assume that every derivative of the finite order
vanish at t=0. Then u(z,t) vanishes identically on a neighborhood of {=0. When
n>3, their situation is different from ours. Thus the following problem occurs:
If in addition we assume in Theorem 3.10 that u(z) is a distribution, then are
only the derivatives of the finite order sufficient to give the same coneclusion?

Supplement

Professor Komatsu has kindly pointed out that the proof of Theorem 4.1 in
[1] is incomplete in showing that the operator J({) in (4.3) there has closed range.
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Since we quote it in the proof of Theorem 4.4 in this article, we give here a least
necessary complement. We assume in addition that J{{) has the form

JO)= ,}__I; C1+ +Cn>

(msﬁxm»

with a monotone increasing function ¢{m) oo, and show that

(s.1) I ¢ OIO VY — 1O (W) QIO V)]

has closed range. This is sufficient for most of our application, especially for the
present article and for the proof of Theorem 4.2 in [1].

Applying the Fundamental Principle, we obtain the following commutative exact
diagram

(O (V)@ (V) 2OV e, d}—0
J) J e
[ (VT 0 (V)1

A
Here (9’(V){q’,d} denotes the space of holomorphic ¢’-functions with respect to a
P

"Vlg', d}—>0.

normal noetherian operator d satisfying the growth condition of the type ('(V)
By [15], Lemma 2.2, the induced operator I() has the form d'(z, D)J((), where

1 0

o'z, D)=] °

* ' 1
with rational ecoefficients whose denominators do not vanish identically on every
irreducible component of the family of algebraic varieties N(q’) associated with
q’(0). By the assumption also J({) does not vanish identically on every irreducible
component. Thus the matrix is invertible there except on a proper algebraic sub-
variety of each component and the zeros of J({). The inverse matrix can be
written as the product of a negative power of J({) and a matrix with coefficients
of infra-exponential growth. By the assumption on J({) we can show below that
given ¢>0 arbitrarily

(s.2) JQ=Ceeitt
outside
(s.3) 1G4+ -+ 0+ mem)?<l, m=L2, ...

These exceptional sets are mutually disjoint for large m. Since the family of
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algebraie varieties N{¢’) can contain only a finite number of components contained
in i+ -+ +22=0 at infinity, all hut a finite number of irreducible components of
Nig') intersect with the exceptional sets (s.3) in a neighborhood of breadth one of
some corresponding proper algebraic subvarieties. Due to the usual Fundamental
Principle, we can remove the finite exceptional factors. Thus by (8.2) and by the
maximum modulus principle we can prove: for any >0 there exists C,>0 such that

sup |F(Qe 5 V|<Ce sup |IQFQe x|,
feNG@D {€NG@)

for an arbitrary holomorphic ¢’-function F(£). This inequality obviously implies
that I(¢), hence (s.1) has a closed range.
Now we prove (s.2) on (3.3). We have for me(m)>+v 2L,

2 2 N\, 4Re &)+ - +(Re )
={1- :
( (mp(m >)2>+ E—E

21/(1+ (m‘i;(iln)) > ‘

21/7ﬁ1 (H (ma(c‘z))z>

e
>C./ 11, <1+ o
—C sinh e]{]
T
>Cle~eidl

G+ -+ 8
(mep(m))?

51+

Thus

1 '1 G+ -4 G
mo(my >V E ] {me(m))?

Next assuming No(N)<[KI<(N+1)e(N+1) we have

2 .
| S = > T
and, if (N+1e(N+1)<v 212,
’1+ Gt 4G | 1 51
{(N+1De(N+1))* (N+De(N+1))? 21¢®
Further
B St = B )

! (No(N))*— (me(m))?

>T, (me(m)?
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=

(N=1)%(1)?
(N=1)1%p(N— 1))

:99(1)26“2(”'1) logp(N-1)

2@(1)2Cee-E(N—l)¢(N~1)
>Cle-eltt

Finally assuming Me(M)

i G- +Cn 4k
il (mplm))? |~ e m(l (mep(m )))
ﬁ (mo(m))®— N+ 1o(N-+1))2
meNt2 (mep(m))?
_{p(N+1))2
(¢(M))Z(M—N—U )
We have
vV 21~ 1= Mo(M)— (N+Do(N+1) > (M- N-1)o(N+1),
hence
M—N—lgw(l/%—ﬁ)'—c'- < (VI —=1)(N+1).
Therefore
((N+1))2 e(1)?

<V 2RI (M+Dp(M+1),

(SD(M))2(M—N—1)

Note that the above proof applies even if we replace I+ ---

quadratic form.

2 ((p(N+1))2(M—N—1)

299(1)29—2“/?—1) (N+1) log (N +1)
ECse—e(Nﬂ)cp(Nﬂ)/s/?
che—exwum/i

>Ceeeltl
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