On potential good reduction of abelian varieties*

By Yasuo MoRITA

Introduction

Let k be a field, p a discrete valuation of K, and R the valuation ring of p.
Let A be an abelian variety defined over k. We say that A has good reduction
at p if there exists an abelian scheme Ay over Spec (R) such that A=A,x k. We
say also that A has potential good reduction at p if there exist a finite extension
K of k and a prolongation p’ of p to k' such that AX .k has good reduction at v
For example, an elliptic curve E has potential good reduction at p if and only if
its modular invariant j is integral at p.

Let 2 be a PEL-type, Q a PEL-structure of type £ in the sense of Shimura
[8]. In particular, Q is a structure consisting of an abelian variety A, its polari-
zation, an injection of a ring into the endomorphism ring of A and a finite set of
points of finite order on A, all of the preseribed type £. Let Vo be the moduli
variety of PEL-structures of type 2. It is a quotient space of a bounded sym-
metric domain by an arithmetie discontinuous group.

Now we conjecture that the underlying abelian variety A of the PEL-structure
Q has potential good reduction at any discrete place of the field of definition of
() if the moduli variety Vo is compact. For example, an abelian variety with
complex multiplication, which has potential good reduction everywhere, gives a
PEL-structure of type 2 such that Vo consists of one point. We shall study po-
tential good reduction of abelian varieties from such a point of view and, using
the stable reduction theorem of Grothendieck, prove that our conjecture is true
in some cases. We shall prove in particular that the PEL-structures which Shimura
used in [9] to construct the canonical model of an arithmetic quotient of a prod-
uct of several copies of the Siegel upper half plane has potential good reduction
if the corresponding arithmetic quotient is compact.

The author wishes to express deep gratitude to Professor G. Shimura, who
gave the author many valuable suggestions.

* This work was supported in part by the Sakkokai Foundation and in part by National
Science Foundation Grant GP-36418X1.
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Notation. We denote by Z, Q, Z,, Q,, R, C, F,, respectively, the ring of
rational integers, the rational number field, the ring of p-adic integers, the p-adic
number field, the real number field, the complex number field, and the finite field
with p elements. For any field k, &£ denotes the algebraic closure of & in a uni-
versal domain,

§1. The first method

1-1. Let A he an abelian variety defined over a field &£ and let X be an ample
divisor defined over k. Let A be the Picard variety (i.e., the dual abelian variety)
of A defined over k. Let ¢x: A~ A be the isogeny obtained from X {(¢f. Lang
[3)). It is known that ¢y is also defined over k.

Let » be a natural number which is prime to the characteristic of k. Let ¢
be an n-section point on A and let x be an n-section point on A. Let e,(a,2) be
the m-th root of unity that corresponds to ¢ and z as in Lang [3], p. 189, Proposi-
tion 8. Let I, be the separable closure of k and let G be the Galois group of %,
over k. Then we see from the definition of e,(a, x) that e,(a’, 2°)=e,la, z)° holds
for any e €@,

Let [ be a prime number different from the characteristic of k. Let T,{A4)
(resp. T,(A)) be the Tate module of A (resp. A). Then we define a Z,-valued Z,-
bilinear form (,) on T,(A)X T\(A) as in Lang [3], p. 192. Then we see from the
above mentioned equality that (27, 9°)=(z, 9)* holds for any z¢ T\(A), j¢ T,(A)
and ¢ € G, where ¢ acts on z (resp. §) by the natural action on T;(A4) (resp. T;(fi))
and ¢ acts on (z, y) ¢ Z, by the natural action on the group of [*-th roots of unity.
Therefore we have

(@, exy)=(2°, (oxy)°)=(2’, Px¥°)
for any x, y¢ Ty(A) and ¢ €G. Here we have used the fact that ¢y is defined
over k.
Let ¢y, be the l-adic representation of ¢y with respect to the bilinear form
(,). Let o4, (resp. o, ) be the l-adic representation of ¢ € G corresponding to

the Galois module 7T,(4) (resp. the Galois module T,(G.) of the Tate module of
the multiplicative group G,). Then we obtain from the above formula that

—1
Om 1= 0x1'04, 0x 1041
Hence we have

t y —
CA1PX 1041 0m,1¥x,1 -
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This fact can be expressed by saying that the l-adic representation g, correspond-
ing to the Galois module T,(A) maps G into the group of all similitudes of the
alternating form ¢y ,.

1-2. Let A, k, G, etc. be as in 1-1. Let B be a simple algebra over the rational
number field Q. Let (D be an order of B and let ¢ be an injection of () into
End.(4) satisfying 6{1p)=1,. Let 4, be the l-adic representation of End,(A) on
Ti(A). We denote the composition 2,20 by 6,. Since every element of ()} is de-
fined over k, 0,(()) is contaired in the commuting algebra of p,(G) in Endg, (T,(A4)).
In other words, o, maps the Galois group G into the commuting algebra of 6,(())
in End(T,(A)).

1-3. Let F be a field contained in the center of B. Put o=()NF. We assume
hereafter that o is the maximal order of the finite algebraic number field F. Let
I=1{1--- {;* be the prime ideal decomposition of I in o. Then we have 0z 2, =
0, - - - €oy,, where oy, is the I;-adic completion of v. Since 8, induces an injection of
0&zZ, into End(T(A)), 0, - -- Eo,, acts on T,(A4). Hence we can decompose T)(A)
as a direct sum T (4)B --- D T\,(A), where T,(A) is defined by Ti,(A)=0,(1) T\ (A)
(i=1, ---,s). Let « te any element of End,(4) which is contained in the com-
muting algebra of o in End,(4), Then we see that the l-adic representation of a
on T,(A) induces representations of @ on Ti(4) (=1, ---,1) and that the l-adic
representation of « is equivalent to the direct sum of these s representations. In
this way, we have the l-adic representation 4 of the commuting algebra of o in
End;(4).
Let ¢y, ¢x,; be as before. We denote by * the positive involution

End,(4) 3 a ——> a*=9¢x'apy ¢ End,(A)

of End,(4). We assume hereafter that * induces the identity map on o. Then
we see that T,(A) is the direct sum of Tl(fi)zﬂ(l,,[)T,(/i) (I=1, -, 1,) and that
¢x, maps Ti(4) into Ti(A). Let ¢x, be the restriction of ¢x ; to 7\(A). Then we
see that ¢y, is the direct sum of the ¢y ( and that the group of all similitudes of
©x,; is the direct product of the groups of all similitudes of Ox, 1

Let gi{ox, () be the set of all elements of End, (Ti(A4)) that belong to the com-
muting algebra of 6(()) in End(T((4)) and that belong to the group of all simili-
tudes of ¢x .. Since 4, A, ¢y and all elements of 0(C) are defined over k, the
l-adic representation -p, of the Galois group G induces a map p; of G into glox, .
We call this map p the [-adic representation of the Galois group.
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Now we have the following

THEOREM 1. Suppose that (i) k is a v-adic field {i.e., ¢ finite extension of
Q,) and (i) there exists a prime ideal I of F such that the characteristic of the
residue field of p is prime to l (=(NZ), and glyx, ) contains no unipotent ele-
ment other than 1. Then A has potential good reduction at p.

Proor. Let x be a homomorphism of o into the endomorphism ring of an
abelian variety C (resp. a torus S) satisfying x{l)=1; (resp. 15). Let T,/(C)
(resp. T.(8)) be the Tate module of C (resp. S). Let 7, be the l-adic representa-
tion of v induced from y on T{C) (resp. T,(S)). Then, for any «€o, the charac-
teristic polynomial of y,(«) has rational coefficients. Hence, by Shimura-Taniyama
110], p. 38, Lemma 1, ¥, is equivalent to the sum of a multiple of a regular repre-
sentation of F over O and a O-representation. Since ¢, maps the identity element
of F to the identity element of the endomorphism ring of the Tate module, %, is
equivalent to a multiple of a regular representation of F over Q.

Let T be the inertia group of p. Then, by using the above-mentioned fact, we
can prove, following step by step the proof of Serre-Tate [5], Theorem 1, that A
has potential good reduction if and only if p( maps the inertia group I into a finite
subgroup of giey, (J). So we shall prove that po{I) is finite.

By the result of Grothendieck (cf. Serre-Tate (5], p. 515), there exists an open
subgroup H of I such that p,(h) is unipotent for any ke H. In particular, p.(h)
ig a unipotent element of gy, ()) for any he H. Since gy, ) contains no uni-
potent element other than 1, this implies that p((h)=1 for any hc H. Since H is
an open subgroup of the compact group I, g maps I into a finite group.

Q.E.D.

REMARK. Let b be a discrete valuation of & Assume that the residue field
% of p has the following property:
(C) No finite extension of k contains all the roots of unity of order power of L.
Then the result of Grothendieck holds. Hence the condition (i) of Theorem 1 may
be replaced by this condition (C)).

82. The second method

2-1. Let A be an abelian variety defined over a field k. Let (9 be an order of
a simple algebra B over the rational number field. Let @ be an injection of O
into End,(4) satisfying 6(1p)=14. Let p be a discrete place of &k and let B (resp.
k) be the valuation ring (resp. the residue field) of p.
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Let Az be the Néron minimal model relative to p: Az is a smooth group
seheme of finite type over R, together with an isomorphism A, X, k= A, which re-
presents the funetor

Y+—s> Hom (Y Xz k, A)

on the category of schemes Y smooth over R.

Let A be the special fibre of Ay and A° the connected component of A. Then
A is a commutative algebraic group defined over %. Hence A° is an extension of
an abelian variety C by a linear group . By Lemma 3 of Serre-Tate [5], it is
known that A4 is an abelian variety if and only if H is reduced to {1}.

Now the stable reduction theorem of Grothendieck {ef. Grothendieck [14] or
Serre-Tate [5], p. 499) states that there is a finite extension K of & such that the
connected component of the speeial fibre of the Néron model of 4x, K over K is
an extension of an abelian variety by a torus. Therefore, changing & by some
finite extension if necessary, we assume that A° is an extension of an abelian
variety C by the (trivial) torus S=(G,)’, where G, is the multiplicative group,
and that all of them are defined over k.

Now, by the universal mapping property of the Néron model, every element
g of End,(4) induces an element of Endy(A,). Hence it induces an endomorphism
of the special fibre. Since every endomorphism is continuous in the Zariski topolo-
gy, ¢ induces an endomorphism § of the connected component of the special fibre.
Moreover, since S is the maximal linear subgroup of A® and since the homomorphic
image of a linear group is linear, § maps S into S. Hence g induces an endo-
morphism g, of the torus S=(G,)” and an endomorphism g of the abelian variety C.

Now we see from the construction that

¥ : End.(4) 59 > g, € End;(S)

is a ring homomorphism satisfying x(1.)=15. Since Endy{S)=End,(Gnz=M/ Z), 1
induces a homomorphism of End.(4A)®:0 into M.(Z)R:Q=M,Q). Therefore we
have a homomorphism z¢0 of B into M,(Q) satisfying (x60)(1s)=1y, . Since B is
a simple algebra over Q, (x°0)(B) is either isomorphic to B or equal to {0}. Hence,
if » is not zero, (xo8)(B) is isomorphic to B since it contains the identity element
of M, (Q)+1{0}. Hence we have the following

THEOREM 2. Let A be an abelian variety. Let Bbe a simple algebra over the
rational number field. Let 6 be an injection of B into End(A)®:Q satisfying
6(1p)=1,. Suppose that B is not isomorphic to any subalgebra of M,(Q) (r<dim A)
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containing the unit element of M,(Q). Then A has potential good reduction at
any discrete place of the field of definition of A.

2-2. Let the notation and assumptions be as in 2-1. In particular, 30 is an in-
jection of () into End.(S) if r=dim S is not zero. Let : be the representation of
End,{A) on the tangent space at the origin of A. Let 7 (resp. ¢,) be the represen-
tation of End;(A") (resp. End;(S)) on the tangent space at the origin of A° (resp.
S). We see that ¢ i3 equivalent to M,(Z) 5y +—> ye M.(Z) (resp. M.(Z) 37—
ymod pe M,(F,)) if the characteristic of the residue field £ is zero (resp. a prime
number 7).

Sirce Ay is a smooth scheme over R, we see that the tangent space at the
origin of A° is obtained by reduction modulo p of the tangent space at the origin
of A {for a more detailed proof, see Shimura-Taniyama [10], pp. 84-92). Moreover,
since A° is the extension of the abelian variety C by the torus S, the tangent
space at the origin of § is a subspace of the tangent space at the origin of A°.

Now we restrict ¢ (resp. ) to the subring 6((D) (resp. (x°6(())). Then we see
from the above consideration that the representation ¢;ox00 of (9 is a subrepresen-
tation of the representation of () obtained from ¢o# by reduction modulo p of the
representation space.

Now we have the following

TuEOREM 3. Let A be an abelian variety defined over a field k. Let o be the
mazimal order of a finite algebraic number field F. Let 0 be an ingection of 0
into End,(A) satisfying 0(15)=1,. Let ¢ be the representation of End,(4) on the
tangent space at the origin of A. Suppose that (:o6)(v) does not generate a k-sub-
algebra of dimension [F: Q) of the endomorphism ring of the tangent space at
the origin of A. Then A has potential good reduction at any discrete place of
the field of definition of A.

PRroOF. Let the notation be as before. Suppose that A does not have potential
good reduction at p. Then r=dim S is not zero and y induces an injection of o
into M,(Q) satisfying X(1p)=1y . Hence y is equivalent (as a representation of
F) to a multiple of a regular representation of F over Q (cf. the argument in the
first part of the proof of Theorem 1). In particular, the image of o generates a
Q-subalgebra of M,(Q) of rank [F: Q]. Since 0 is the maximal order and since o
is given by

M(Z)3r+—>7e M(Z) or M,/(Z)57+>rmodpe€ MJF,),

the image of o generates a J or F,-subalgebra of rank [F: Q] of the endomorphism
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ring of the tangent space at the origin of S. Herce (foxo0){v) generates a Q or
F,-subalgebra of rank [F:Q] of the endomorphism ring of the tangent space at
the origin of A°. Since 7oyof is obtained from :-8 by reduction modulo p of the
representation space, this contradicts our assumption that (:00)(0) generates a Q or
F,-algebra of rank less than [F:Q]. Hence we have completed the proof of
Theorem 3.

§3. Applications

3-1. Let B be a totally indefinite division quaternion algebra over a totally real
algebraic number field F of degree g. Let A be a 2g-dimensional abelian variety
defined over a field k. Let 0 be an injection of B into End,(4)®20 satisfying
0{15)=1,. Then we see that the conditions of Theorem 2 are satisfied. Hence A
has potential good reduction at any discrete place of the field of definition of
(4,0).

3-2. Let F be a totally real algebraic number field of degree g. Let K be a

totally imaginary quadratic extension of F. Let 7,4, -+, 7o,y be all isomorphisms
of F into R, and let 7,, -++, 7, be extensions of o, -+, 7y, to K. Let # be the
complex conjugate of 7, (v=1,---,g9). Let A be an abelian variety defined over

a subfield k of C. Let @ be an injection of the maximal order ox of K into End,(4)
satisfying 0(1x)=1,. Suppose that the representation of K on the tangent space
at the origin of A is equivalent to

g
};l(nrmtsm) (r,, 80€ Z) .

Then we see that the condition in Theorem 3 is satisfied with K in place of F if
at least one of the 7, or s, is zero. Hence 4 has potential good reduction at any
discrete place of k if at least one of the v, or s, is zero.

3-3. Let Q=(L,0,p0; T, V,M; =z, ---, ) be a PEL-type in the sense of Shimura
[8]: L is a division algebra over Q, p is a positive involution of L, @ is a re-
presentation of L into M,(C) such that @+ is equivalent to a rational represen-
tation, V is a left L-module of rank m, where m=2n/[L : @], T is a non-degenerate
L-valued p-antihermitian form on V, M is a free Z-submodule of V of rank 2n,
and the z; are elements of V. Let Qx(A, C,0;¢t,---,t) be a PEL-gtructure in
the sense of Shimura [8]. That is, A is an abelian variety defined over €, £ i3 a
polarization of A, @ is an isomorphism of L into End(4)®;Q and the ¢; are points
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of finite order on A, We say that () is of type £ if there is a commutative
diagram

0 > P> V@R ~—> (V@ eR)M— 0

[ 4

0—D rC” A 0

such that the following five conditions are satisfied:

(i) & gives a holomorphic isomorphism of C*/D to A;

{ii) f is an R-linear isomorphism satisfying f(I)=D;

(iii) flax)=0(e)flx), and Ola) defines O{a) for every a€ L;

(iv) ( contains a basic polar divisor X which determines a Riemann form E
on C*/D such that E(f(x), fy))=Trpie( Tz, y)) for every (x,y)€ VXV,

(v) t,=E&(flx))) for every i.

Let G be the algebraic group defined over Q such that G, can be identified
with the group of all L-linear automorphisms a of V satisfying T(xa, ya)= Tz, y).
Let S he the quotient space of Gr by a maximal compact subgroup. Put

I={a ¢ Gg|Ma=M, vie=x, mod M (t=1, ---, s}} .

Then I” is commensurable with Gz and acts naturally on S. Moreover, it is known
that V=I\8 has a structure of an algebraic variety defined over an algebraic
number field and V is in one-to-one correspondence with the set of all isomorphism
classes of PEL-structure of type £, if dim S>1 or I'\S is compact (cf. Shimura
[81, for more detailed properties of the moduli space V). By Borel-Harish-Chandra
[1], V=I\ S ie compact if and only if the reductive group G is anisotropic over Q.

Let F he the set of all elements x in the center of L such that x’=z. Then
it is known that F' is a totally real algebraic number field. We see from the def-
inition of G that there is an algebraic group G’ defined over F such that Gr=G,.
Therefore V=I\ 8 is compact if and only if G’ is anisotropic over F. Hence, up
to the Hasse principle of the p-antihermitian form T (cf. Weil [13], p.80), V=I"\8
is compact if and only if there is a prime v of F such that G’ is anisotropic over
F,,

Now we have the following

THEOREM 4. Let the notation and asswmptions be as above, Let k be a sub-
Jfield of € and let O=(A,C,8; t, -+, 1) be a PEL-structure of type 2 defined
over k. Let p be a discrete place of k. Then the following assertions hold:

(i) If there is an archimedean prime v of F such that G’ 13 antsotropic
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over F,, A has potential good reduction at p.

(1) Suppose that there is a finite prime v of F such that the characteristic
of the residue field of v is prime to v and that G’ is anisotropic over F,. Then,
tf k is a p-adic field (i.e., a finite extension of Q,}, A has potential good reduc-
tion at p.

(iii) Suppose that m=1 (i.e., V=L). Then A has potential good reduction
at p.

PROOF. If m=1, then 2dim A=[L : Q). Since L is a division algebra, L can-
not be imbedded in M,(Q) (r<dim A). Hence we obtain the third assertion from
Theorem 2.

We note that the algebraic group G’ depends only on L, ¢, p, V and 7, and
does not depend on M and the z;. Now there exists a free Z-submodule M’ of V
of rank 2n such that

O={ae L|aW W}

is a maximal order of L. Moreover we see that, for any PEL-structure Q——-
(A,(,0;t, -, t,), there is a PEL-structure Qr=(4’,(",0") of type 2'=(L,®, p:
V,eT, W) with ce Q that is isogenous to (4, ,6). Since 6’ maps () into End(A’)
and since two isogenous abelian varieties have potential good reduction if one of
them has potential good reduction, we may assume that ¢ maps a maximal order
of L into End(A) and Q has no level structure. Moreover, it is clear that ¢ maps
the identity element of L to the identity element of End(A).

Now suppose that there is an archimedean prime v of ¥ such that G’ is aniso-
tropic over ¥,. Then we see from the results of Shimura [7] that m=1or L is a
central simple algebra over a totally imaginary quadratic extension K of F. Since
we have already proved Theorem 4 in the case m=1, we assume the latter case.
Let ¢« and 7 be extensions of » to isomorphisms of K into C. Let r (resp. s) be
the multiplicity of r (resp. #) in the restriction of @ to K. Then we see from the
resuits of Shimura {7} that vav is isomorphic to the unitary group of type (r,s).
Hence G’ is anisotropic over F, if and only if » or 8 is zero. Hence A and 0| K
satisfies the conditions of 8-2. Hence A has potential good reduction at any dis-
crete place of k,

Next suppose that the conditions in (ii) are satisfied. Let X be the basic polar
divisor of A that corresponds to the Riemann form E(f(x), fy)=Tr.e(T(2, y)) (see
{10], p. 25, (7)). Let ! be the prime ideal of F corresponding to v. Then we see
that all conditions of §1 become satisfied if we replace k& by some finite extension
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of k. Moreover we see that the alternating form ¢y ( corresponds to Try:p (Tix, y)).
Hence qlox, () is isomorphic to a subgroup of the group H of all L& F,-linear
automorphisms « of V(@pF, satisfying T(za, ya)=pla) Tiz, y) with pla) ¢ F,. Since
Hoa—» pla) ¢ F, gives a rational character of the algebraic group H defined over
F,, 1 maps unipotent elements of I to the identity elemert of the multiplicative

group of F,. IHence any unipotent element « of H satisfies T(xa, ya)=T(x, y).
Hence « is a unipotent element of vav. Since G’ is anisotropic over F,, this im-
plies that a=1. Hence H has no unipotent element. Therefore gil¢x, )} has no
unipotent element. Therefore our assertion (ii) follows from Theorem 1. Q.E.D.

REMARK. We can prove the second assertion of Theorem 4 without assuming
that k is a p-adie field by considering the imbedding of the moduli variety V=I"\S
into the moduli scheme of Mumford. But we shall not discuss this here.

REMARK. W. Casselman studied the same problem and proved the second as-
sertion and the third assertion of Theorem 4 independently. The author thinks
that parts of the results of this paper may have been known to some other spe-
cialists.
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