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Introduction

The present paper is a direct continuation of writer’s previous paper [12]
and is concerned with the spectral and scattering theory, especially eigenfunction
expansions, for linear partial differential systems describing the wave propagation
phenomena of classical physics in inhomogeneous anisotropic media filling the
whole space. It was shown by C. H. Wileox [11] that these systems can be written
in the form

1 ou -
0.1 T ot =L{(D)ulz, t)-+flx, 1) ,
0.2) LD)=M@)™ & A,D;,
=
where t € R (time), x="(x,, %, * * -, ) € R" (space), D,~ 701— »;a~ , wl(z, t) is C™-valued

3
funetion which deseribes the state of the media at time ¢ and position z, M(z) is

an mxm positive definite hermitian matrix depending on z and A,’s are mxm
constant hermitian matrices. These systems are named uniformly propagative
systems.

The study of the spectral and scattering theory for uniformly propagative
systems was initiated by Wilcox {11] himself and has been developed by many
mathematicians from then on ([1], [5], [8], [9]). Especially, eigenfunction expansions
associated with the systems was proved by Schulenberger-Wilcox [9] recently.
These works, however, dealt with the systems under rather strong assumptions
on the regularity and asymptotic relations at infinity of M(z). For example,
Schulenberger-Wilcox [9] assumes M(z) e CY(R") and M(x)—I vanishes outside a
compact subset.

On the other hand the limiting absorption principle for the system (0.2) under
weaker conditions on M(x) was proved recently by T. Ikebe, T. Suzuki [10] and
the writer [12]. Using the results derived in these papers, we shall prove in this
paper eigenfunction expansions associated with such systems and then give re-



122 Kenji Yasima

presentation formulas for the wave and scattering operators associated with the
pair L(D) and Ly (D) in terms of the quantities related to the eigenfunctions.
Here L,(D) is the operator defined by

(0.3) Lo(D)x J%;:l Aij N

which will be considered as an unperturbed operator for L{D).

The method used here for proving the formulas is the perturbation method
developed by Kato-Kuroda [6] in an abstract form and the formulas derived here
are somewhat different from the ones derived by Schulenberger-Wilcox [9].

The present paper is divided into six sections. In §1 we shall review some
results and notations which are derived and used in {12}, and then present two
lemmas which are necessary in §3 and §4. In §2 eigenfunction expansions for
the unperturbed operator L,(D) will be discussed in two ways; but the first one
will not be discussed in detail in the following sections and only remarks on it
will be made in §5. §3 and §4 are main parts of this paper. In §3 expansion
formulas for L(D) will be obtained by the perturbation method; and in §4 their
applications to the scattering theory will be made, that is, representation formulas
for the wave and scattering operators associated with the pair L(D) and Ly(D)
will be obtained in terms of the quantities related to the eigenfunctions. In §5
we shall remark that if M(z)—I decreases sufficiently rapidly we can construect
the distorted plane waves in terms of the eigenfunctions obtained in §3. In §6
an example associated with Maxwell’s equation will be treated.

§1. Preliminaries.

Since this paper is a direct continuation of [12], we use the same notations
as in [12). Theorems, formulas ete. appearing in [12] are referred to as Theorem
1.1.I for theorems and as (2.3.I) for formulas etec. However, we shall review
shortly some of the important notations, assumptions and theorems appearing in
[12] for the sake of reader’s conveniences.

Throughout this paper we assume as in [12] that L(D) and L. (D) satisfy
(A.1.I) and (A.2.1). Namely L,(D) is a uniformly propagative system in the sense
of Wilcox and M(x) satisfies

1.1 ClelPs (&, M(2)8);m=CrYEl1* for all xeR™ and all £€57;
1.2) sup |m(®)—8,1SCo(1+121%)%* for all zeR",

1Ss. 550
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where & is a constant satisfying the condition 6>1, C; and C. are some positive
constants and m.(x) is the (i, j)-component of the matrix M(z).

Two Hilbert spaces H, and H, in which operators Lo(D) and L(D) are con-
sidered, respectively, and some auxiliary spaces H{, and H;, (s€ R',s€ R') are
defined in the following way:

Himue /@, C:lully, =| 17 @ e s
x (1+1zl%)oda < oo} ;
Himlue s (R, O, =] (i e,

M(z)- F (L1859 ula)) em (L 12?7 da < oo}

Hg:Hg_Q and HL‘_“‘H?,O ’

et

where .5 is the Fourier transform

(ﬁ"u)(&)z(&:)“"”Sﬂﬂe‘”‘fu(rc)da: .
Then by Assumption (1.1), H; ,=H;, as a set. J is an identification operator
from H, to H, defined as Ju(x)=wu(x). Then its adjoint operator J*: H,— H; can
be written as J*v(x)=M(x) 'v(z).
Under these conditions natural selfadjoint realizations of L,(D) and L{D) in
H, and H, are determined as follows. Let L,(& be the maximal operator deter-

mined by the multiplication by the matrix Lo(€)= 3. A, Then
i=1

Lof::‘?~lL0(E)y’ L’:J*L()J

are natural selfadjoint realizations of L (D) and L(D) in H, and H,, respectively.

The roots i,(8) of the characteristic equation (2, §)=det (AI— Ly(£))==0 can be
enumerated as 2-,(8) <A, (8} < + v <ALEY<AE) <A <+ v - <2y (8)<A,(8), where
(&) =0 if it exists and will be omitted otherwise. Let us take 4,{(£)>0 so small
that I,(&)={{e C': 1g—2,(&)|=8,(6)} does not enclose any root of p(%,£)==0 except
2,48 and put

1.3) Bye)=— 2—1——S (Lo(&)— L)AL .
L Jre

Then 15,(5) are the projection matrices in C™ onto the eigenspace of L(§) corre-
sponding to the eigenvalue ,(£). Let P, (j==—p, -+, 1) be the operator in H,
determined by the multiplication by the matrix P,(E). Put P,=F 'P.#, Then
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(2.1.1) {Pj}se-s,...,n 15 a complete system of projectors in H, reducing the operator
Ly;
(2.2.1) L, P25 2 2(6).7 P;, where 2,(§) is the operator determined by the multi-
plication by 2,(¢).
As in [12] the following notations and conventions will be used throughout
this paper.
R,={220:2¢R'}. By definition signj=+1, but it will also be used as a
substitute for -+ or -, for example, R,4.; is B, or R_ according as 5>0 or
J<0. The subscript j is reserved to enumerate the eigenvalues 2,, projectors P,

ete. and varies over (a subset of) {-g, ---, #}. The notation (7+#0) means that
=1 1 "

Je=—pty oo, —1,1, .-+, p. Furthermore 3, = Y, -+ 3, = 2, if signi=1
= F#E0 j=—p 3=1 signg=signi F==1

1
and > = % if signi=-—1.

signj=signd  joop

I is the m X m identity matrix.

L8, K, dp) is the L*-space of all strongly measurable functions defined on 2
measure space (2, dp) taking the values in a Hilbert space K.

B, Q=(Le—0" and R ()=(L-0)" (Im{+0).
For fe H, and g€ H_, we put
S Drpa= |0, g@Nonds

Our starting point in [12] was the following spectral representation for L(D).
Let S;={¢€5~:2,(6)=sign j} (7+0) be the slowness surface which is a C*-mani-
fold without boundary and let F,;: £"\{0} - Ry, ;X S; be the mapping defined by

Fi6)=(4,8), (sign 7)&/2,8)) .

Let ds; be the surface element of S,, and let do,(w,)=

V/,m. Let dpz(l)

:Hlﬁzidx. (Although dp, and dp_ have the same form we regard o, (or p.) as
a measure on R, (or R.).) Then the operator ﬁ,:Le(E“,Cm) — LA (Rgign 5 L3S,
C™ doy), dpuses) defined by the equation (7)1, w)=s(Fj 4, @) for any
fe L&, C™ is a unitary operator. The operator I’,::f’,ﬁ" P, (750) has the
following properties:

(2.4.1) (IyLeu)(Q)=a"u)(2) a.e. A€ R,,,,, for all ue D{L,);

(2.56.) I'yP,=0 when 1%jJ;

@6.0) If ueH,, <a> %) then (I'u)(2) : Rugas — LX(S,, C™, do,) is locally Holder
continuous ;

(2.7.1) If we define the operator I'y2): H,,,— L¥S,;,C™, do,) (a> —é—) by Ty(du
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=(I";u)(2) for 1€ Ry, then the operator I',(2) is a bounded operator and the
mapping I'y(-): Rugas -> B(Ho,q0 L3(S;, C™, doj)) is locally Holder continuous.
Main theorems derived in [12] can be stated as follows:

THEOREM 1.1.1. Let Assumption (A.1.1) be satisfied. Let I,=R"\{0} and let
M*={{e C':ImZ=20}. Let ¢ be any positive constant. Then the following
statements hoid:

(1) R,@QQ—P) (Im{+0) can be extended to II* Ul, as a B(Hg vom
Hi _.on)-valued locally Hélder continuous function. Moreover R, (L) itself
can be extended to IT* U I, as @ B(H; . iom Hy-1ron)-valued locally Holder
continuous function. Their boundary values on I, are denoted as R} {1+10)
and R, (2+10), respectively.

(2) For any ue Hyqron and 2€ Iy, (Ly— AR (A+ 10 u-=u, where the differ-
entiation 18 in the sense of distributions.

TuroreM 1.8.1. Let Assumptions (A.1.I) and (A.2.I) be satisfied. Let
L=R"\(o,(L) U {0}), where o (L) is the point spectrum of L. Then the following
statements hold:

(1) RO (Im{#0) can be extended to I1* U I, as a B(H, .0, Hy, 30)-valued
locally Holder continuous function. We put RL(Rj;iO):lipl R (A+1n) for 1€ I,.

(2) For any uwe H, ;.. and 2€ I, (L_X)RL(ziiO)u:uv;owhere the differen-
tiation is in the sense of distributions.

THEOREM 1.7.1. Let Assumptions (A.1.I) and (A.2.I) be satisfied. Then
o {L\{0} 25 discrete in R\{0} and the only possible accumulation point is the
origiN.

We finish our review of [12] with this theorem. We next give two lemmas
which will play the important role in the following sections. The first one is
proved implicitly in the proof of Theorem 1.1.1.

LEMMA 1.1. Let 1€ R1\{0} and let (&) be a Cy-function such that ¢,(§)—1

in a neighbourhood of the origin and such that ( )f: At—2I) is nonsingular
~ =1

on the support of ¢.(&); put ¢r=1—¢,. Then for any ue Hy, <a> -21-»> the

relation

(1.3) F (R (A 50)u)(E) =ha(e) élAjsj—mﬂfu(s)
L lim b BOPOT uE)

Ty = EO—Qxin

holds, where the limit s considered in H;02 (¢>0).
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LemMA 1.2. Let K be an arbitrary Hilbert space and let we HYR!, K)
(== K-valued Sobolev space of order s in the usual semse) with s> —;— For
e R put

w:(2, A= E@{:%_@Pl and w2, 2)=lim m_ﬁu(fﬂ)‘__ )
A—12y p0 A—{Zy 1)

We fix 2, and regard u, and ui as K-valued distributions of the variable 2.
Then w,e HY(R', K) and uie H 9"V} R', K) for any >0, and there exist
constants C, and C, such that
(1.4) flas(-, 2Mae 1= Crllutl e s
(1.5) luz (-, 2l -cvor ZCollullye.
Moreover, u,(-, 2) (or us(-, &) are H* (R, K)-valued (or H-"*/*(R*, K)-valued)
continuous function of .

Furthermore the following equation holds in H-*9% (¢>0) for any ue H*
(s>1/2):

a® W) —u(l) | . w(l)
g s 1 et S
(1.6) o Getin) T T e

PROOF. Since the other case can be proved similarly we shall give the proof
only for “+” case and omit the sign “+” in what follows. Let »>0. By Cauchy’s

integral formula we get

1 (= e yir 0 for x>0
—_ R SE—— i
(L.7) 2rn1 S_,,., A—Ao=—17 {e’”o“""’ for z<0.
Therefore
<2~20-i17 @) V2r )ew uly) A—Ay—17 (z=y)dy

=1 Soe(\?‘u)(y)e“lo(t'v)*"7(:-U)dy R

Since by assumption we€ H*(R!, K), Lebesgue’s dominated convergence theorem
shows that in L>(R', K)

. u(4) R R —ilglz =y
(1.8) lim y(‘—"z—zo—in )(a;) =3 § (Fu)y)e~ v dy

exists. Hence in H.(,,. the limit also exists and equation (1.8) holds. Let Y{(x)
be Heaviside function
1 for 2>0

Y(:D)‘:{
0 for xz<0,
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then

ie‘”o‘Smfu(y)e“‘o”dyf:ie‘”o’(b— Y(x)) Sm Fuly)etovdy

o

~:-z'e--‘zox(~§’ fu(y)eﬂovdywmg yu(y)mdy)

-3

holds in H_y,0,.. On the other hand
u(d) umr__zf(_,l)mu@i_*_u_ u(4y) :’

lim —— 2 : M)
10 A= (ot im) e L A—(etim) | AQot17)

= A —ud) | o uld)

A—2 vio A—(dg+1%)
in %/, because u(4) is Holder continuous and

w(A)—u(ly) _ u(d)—uliy)

e Gotin) a2, e
1t is obvious by (1.7) that
(1.9) f(lim ——-%-)(x) Ve (1 Yi@))ully) .
0 A (i)
Hence
(1.10) f(u_-—————-“)‘w‘“) >(w)
A7

oo

= te " <,. S Fuly)e*vdy + Y(x) S Fuly)evdy > .

-0

Now we shall prove u,(-, )€ H*"'. By assumption u(d)e H¢ and Schwarz
inequality we get

2

(1.11) gt

Sm"“"”f" w(y)dy

z

gt { r | Fuly)*(1+ wm'dy} {Smy““’dy}

z

S g‘” U@ P+ yl)dy >0 as 2 oo .
23—1 ).

Hence using the partial integration, we get

r L2 ! Sme“o”fu(y)dy Izdx
b x

2s—1 2|lz=R

= li
I‘Bl—{rola 25—1

Smeu"”ﬁ’ u(y)dy

=0
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S’ xqi«i 2Re<e“o~( u) (), Sme“o"ff u(y)d?/)dm

SO 1at | Fulx) -zt ‘ES e h? Fu(y)dy ;dx
{S la;'-ﬂ"u(:c)lzda:} 2{&::5“8‘" Sx e ' Fy(y)dy zdx}m

Therefore we get

(1.12) Smav"““2 Sme“ﬁvﬁ’ u(y)dy rd:v = (“z“}i’)zy | Fu(x)l d .
z z i - ]
Similarly we can get
] N z 2 2 270
(1.13) S b e? S e“oV.Vu(y)dyl dr = (*és“__l) S le*Ful@)*ds .

Let %r.1,1; be the characteristic function of the interval [-1, 1]. Then using (1.10),
(1.12) and (1.13), we get after a simple calculation

(1.14) “’U«x“:;z*‘"?::“x[-—i.n(fc)ﬁ—ul(x)"3,,_1+H(]-_“Z{ﬁl.1J)~g‘u1(x)|[211,_1
2P ex, D Ty ()] o+ {S |2+ S et Fuly)dy | de

w
-+ S z-t

1]

gm eV Fy(y)dy rdx}

2>
gzmax(s,l)”ﬂ“u”il%- <_2M) g lmxﬂ'u(x)lgdx
25—1/ ).

=ClFully, =Calullys

where the constant C, is determined only by s.
As for u. we get by (1.9) and the assumption s>1/2,

[
(1.15)  Juollt -arore =1 F Ul _ ey ,07= (2) (1-+23) 02 dplu(ZN S Collullze »
1+ e

where the constant C, is dependent only on e.
Next we prove the continuity of #,(-, 4,) and u,(-, ;) as stated in the lemma.
A similar calculation used to prove inequality (1.14) shows

lasCe 5 Ao)=—a(e, A e 1= F U (@, Ao} —F e, )|,
<C,{ et~ e )l

oo
-+ S mzs—z
0

S“’ (e-uou-p)me-ué(rv))ﬂ 1,L('y)dyl2 dx

e SO jajee-2 lsr (e'“o("”’—-e‘“é‘""’)ﬁ'u(y)dy

2
d:v} .
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Since u € H(R', K)c L\(R*, K), Lebesgue’s dominated convergence theorem implies
H(e“c’me“é’)ﬁ’“ull,_x -0 as A —-4.

As for the second term we get

L}

T
SS 2t

2
dx

Sm (e“gzn(x—y ___e—uz(}(z—vi)y'u(y) dy

x

0 x

S o (eiigv__. eiléy))yy{ (y)dy]g da}

dx

N S w xzs-Qle—iAOr“_e—uéx! 2
o

Sm e2ov sy (y)dy

2{ e ,
< <_2 4> S x2[edor — g7 |2| Ty () 2d
2s—1/ Jo
+ wa?r?le-uoz#eﬁzézl: “d:c )
0

Sme“fwuff (y)dy

The assumption and (1.12) imply that z**|.Fu(x)|* and z2-2

o0 2
S et Fu(y)dy| are

absolutely integrable functions. Therefore we get, using Lebesgue’s dominated
convergence theorem

<o
S m?s—z
o

Similarly we get

¢ a
S 7 b
—

Hence [[u\(-, 2)—u(-, 2)|l;s-1 ~ 0 as 2, — 2,. We can prove the continuity of the
function u,(-, 4;) easily. (Q.E.D)

B s 2
S (e—ixo(z—w~e~tio(z—v>)ﬁ’u(y)dyl dm -0 as 1; - 10 .

z

z \ 2
X (e“'*o":“”)~e‘”i’""”))ﬁu(y)dyi d:l? -0 as )é > 20 .

§2. Eigenfunction expansions associated with L.

In this section we shall give eigenfunction expansion formulas associated with
the unperturbed operator L, in two ways. The first one is the expansion by
plane waves, which is a simple modification of the Fourier transformation. The
second one is a modified form of the first one and can be considered to correspond
to the partial wave expansion formula which has been used in the analysis of
quantum mechanical systems. They can be stated as follows.

THEOREM 2.1. For any K>0, any fe H, and any fe L¥E, C™) we have

(2ﬂ)—ﬂ/2§ e~ P e\ f(@)dze LHE" C™) and

1zi<K
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(2m)2 X eriPe)fieydee H,.
1.

12l

1eh<

Furthermore
(T, f)O)=Lim. (%)MS e~ Py(8) flx)da
K jzl<K
and

(Th,fi@-1im @ | ewsPiofads

1E1<K

exist, where l.i.m. denotes the convergence in LXE",C™) and H,, respectively.
Let T,: H,-> LYE*, C™) and T} :LYE", C™ — H, be the operator defined by

TofzélTo,jf: feH()'
Tif=x T.,f, fe Lz Cm),
2

respectively. Then the following statements hold:

(1) (Lo~ PeN=0 for j=—p, .-, p and € E;

(2) T, is a unitary operator from H, to L}&", C™) and T{ is its adjoint
operator;

(8) For fe Hy,, fe DLy if and only if 28T, f)€) e L} E", C™) for all
j=—p, - . For fe D(Le), ToLo f(6)=2/)(Ts, .S ).
Here in statement (1) the operator (L,—2,8)I) i3 applied to e"fﬁ’,(g) by matriz
multiplication rule.

REMARK. By statement (1) we may say that e"‘fﬁ,(e) is a (matrix-valued)
eigenfunction of L, corresponding to the eigenvalue 2,(¢).

ProoF. See (2.1.I) and (2.2.1).

PROPOSITION 2.2. For each j#0, let ¢%(8),k=1,2,3, ... be a C=-class com-
plete orthonormal system of LXS,, C*,do)) and let hyz, 2, k) be the matriz
depending on x€ R*, 2€ Rypm; and ke N (==the set of all natural numbers)
defined by
2.1) hix, 2, k)= (2rx)-"* S e""'“f’¢§"’(w,~)ﬁ,(cu,)da,(wj) .

8;
Then hyz, 2, k) is a bounded function of all variables. Furthermore for each
fized 2€ Rugns ke N and for any >0 each column h{P(x, 2, k) of hyz,2, k)
satisfies the following relations:
(2.2) For any n-tuple of nonnegative integers (a;, o, -+, &),

le't.;g e D:"hgﬁ)(m, Z: k) € Ho.-—(u:)lz s
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(2.3) (Lo—ADRSz, 4, k)=0 .

REMARK. By (2.3) we can consider that h iz, 2, k) is 2 (matrix-valued) eigen-
function of L, corresponding to the eigenvalue 1. In contrast to e“"‘tf’j(f) which
is also an eigenfunction of L, and describes the plane wave, h,(z, 2, k) describes
a sort of the spherical wave (see §6).

Proor. It is obvious that for every A€ R,,,; and ke N, hyx, 2, k) is a C~-
function as a function of z and for any m-tuple of non-negative integers aj, a.,
e, @, =0,

(2.4) D:Dge .- Divhiz, 2, k)

= (2z)~ 7/ S ‘(Hiwz)a’ e (1A w,) et 115600 ) Pl do (w,) .

Sj
Since Lo(w,;)Pj(w;)=2{w;)P,(w,) and 1,{w,)= signj on S;, we get for any i€ R,
and ke N,

(2.5) (Ly—2I)hfx, 2, k)

= (2z)™"/* S (A Lo(w))—2aI Je'=2 19w, Pylw,))do ()

8;

= 2=y | sien Dial—2e s g 0)P oo (o)

=0 .
Finally we shall prove the relation
DfiDf2 .- Dinhyz, 2, kY€ Hy,—1v000 -

A simple consideration shows that the operator

S={flo)r., - {(27:)“"’ z S etlersf (o) da;(w;)}
s

™"
; [ 2=21

» fe LE(S.;, Cm, dql)

is the adjoint operator of the operator IA’,(Z) : Hy, 15002 — LA(S,, C™, doy). Therefore
(2.4) shows that D{1D$2 ... Dishy{z, 4, k) is an element of Hy,_.snre. (Q.E.D.)
THEOREM 2.3. Let hyx, A, k) (j#0) be the function defined in Proposition
2.2. Then for any fe H, and K>0, S hix, 2, By flz)dz belongs to L* (R, ,,
[z]<K
l'_‘(Cm), dpsmnj) a"nd

(T,f)(3, k)=Li.m. S bz, 2, k) flz)dx
K |21 <K

00

exists, where, as usual, 1.i.m. denotes the convergence in L*( R,z 5 1H(C™), dpyign ).
Let
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T: I’-{O e Z: @ LQ(Rslguj ? l2(Cm)’ d,nslgn j)

FE0
be the operator defined by
Tr= L @T,f, feH,.
3F0

The operator

T, j-Z;:O @ Lz(Raisn I *Ccm™, dpsmn 5 - H,
can be defined analogously by Hy, _q.on-velued Bochner integral as

’ K ~
T(E @ Ff)w= T l.i.m.g 5 h@, 2 k02 ) dpusen £2) -

J#0 K JRyjen jNLAV<K] k=1

Furthermore the following statements hold :

(1) T isa partially tsometric operator from H, into 3. @ L (Rygay, 1HC™),

jwo

dpuga s} and T7 is its adjoint operator:

(2) (Ezpansion formula)

(I-P)f=T'Tf for all fe H,:

(3) (Diagonal representation formula) fe D(L,) if and only if AT, )2, k)
€ Lz(Rslgn I L:‘.(Cm), dpslgn !) fOT all jio' If fe D(Lo), (TjLof)(‘ly k)'::l(TJf)(zi k)
Jor any A€ Ry, and ke N.

PROOF. By the definition of I, I'*I';=F *P,[¥[',P;% =P, Hence I—P,
== 2_;0 I'fI',, We next define the operator U,: L%S,, C", dg,) — I*(C™) in the fol-

3
lowing way. For every fe L¥S;, C™, do,;) we put
2.6) (U,f)(k)ng FPwf(w)do, .
8;

Here the product on the right hand side is taken in the sense of the multipli-
cation of ¢P(w,e C* and flw)e C™. Writing flo)={f(®)}-1,....n, We obtain

M3

S WUNHEE= T %
k=1 1 k=1

g P  w)da|
8;

14

i

= & I1Alsasp=I 1P

and hence it follows that U; is a unitary operator from L*(S;, C™, do) to I3(C™).
Furthermore U, defined by

(T, )R, B)=(U,fQ, k), fe L Rygas LS, C™)
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determines a unitary operator U;: L3R, ,, LAS;, C™) > LY Ryygn 5, BIC™). We
put for each j:+0,

(2.7) T,=U,l; .

Then it is clear that 7, is a bounded operator from H, to L3R, H(C™).
Moreover the following formulas (2.8) and (2.9) can be proved easily:

(2.8) 1-Po= 3 THT;;

(2.9) (T;Lof) 2, k)=2T;f(A, k) for all fe D(L,).
Equation (2.8) implies

(2.10) la—Pofi*= 3 IT,fl* for all fe H,.

Now by the definition of I, and U, we get for any fe HinLY(R™; C™)

@11  T,f4 k)= S 5P {(27!)—1;/2 S

5;

- S (2x)n2 {S FPlaye 115D (0,)do () }f(x)dw
Rn Sj

e~-u-i1;m,ﬁj(w}.)f(m)dx }doj(wj)

R

= S bz, 2, b f(a)da .
Rn

Since H,c Li,., for any fe H, and K>0, we have

S h’/(x: 2, k)*f(x)dxe Lz(Rsign ) lQ(Cm), dpalgn 1) .
iz] <K

Then equations (2.10) and (2.11) imply that

T,f=lim. S bz, 2, kY f(@)dz
|zl <K

K —sco

exists and T,f=T,f for any fe H,. Hence equations (2.8), (2.9) and (2.10) imply
statements (2), (3) and the first part of (1) of the theorem.
Next we prove TV=T*, First of all we shall prove

X " A
Li.m. § 5 by, 2 )F (3, ) dougn f2), £1€ L¥Rugn gy 1C™), dpan )
K= JReign joilai< k1 5=1

exists. For any geCy(R",C™ and fi4, k)€ L¥( R,y H(C™) N LY (Rysgn s, I(C™))
such that f,(z, k)=0 for any (4, k)€ R, ;< N, k> K>0, we get

(2.12) S (g(m,s 5 hytw, 3, B)F (2, k)dpm.,,(z))mdx
Rn Rsign 5

=1

"

X a
=§ S (3 hyla, 2, R*g@), 14, k))emdpuge A Dda
Rn JRygny *=

-
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K "
S 5 (T2, B, )2, kD) em@bpten o)

Rgygn § 71
::(Tjg’ f)) .

Hence by the first part of statement (1) of the theorem we have

S 5 hte, 2 )F2, k)dpun R € Ho

Rgagn s ¥=1
and

| . 2 .
| g X hix, 2, k)42, k)dosga ;(1)“ , SN c2crygn go02ccm

i Rgign 4 =1 073

On the other hand a simple consideration shows that such functions fj as con-
sidered above form a dense subset of L*(R.n;, lQ(C"‘))gk(% LR, ). Therefore
A =1
for any f,(Z, IC) € LQ(REISD i lZ(Cm)' dpsisn j)
K a
T;f::l*i‘m'g Z hj(xv '27 k)fj('% k)dpslgn ;('2) € HO

Koo JRetgn Jotiai< K} F=1

exists and (2.12) shows that

(2.13) (g, T;fj)}!‘):(Tingf)L?‘(Rgign PR L)
for all ge Cy(R*, C™) and hence for all ge H°. Equation (2.13) implies the second
part of statement (1). (Q.E.D.)

REMARK. Let Ty(3)=U,[(2), where I')() is defined by (2.7.I). Then for any
e>0 we have Ty2): Hy, s~ IH(C™) and it is obvious that for fe Hoqror

T @ft= w1 ke

R

where the integration is absolutely convergent. Therefore by (2.4.1) the following
equation holds for any f, g€ Ho.q+ae and for any compact subset 4CI,==R"\{0}:

(Eod)f) @) uy= Jéo (I¥AADL )y @,

y S KCHAOL S @116, ~xvernHoav0720Pst50 1
30 ) 40Rgign §

= 2

J#0 Sdnns;gn ki

d s8ign
<T§‘(l) Tl(z)f’ g>f»'o,—(Hc)/a-J’i?o,(uu)/z_'%l‘;‘id'l .

On the other hand by Stone’s theorem we have

(Eold)f, g)yg,=lim =2 S (Buyldt i) — RugA—in)f, )iredA
sio 2m1 );

zhmzi—g AR LA+ 1) = RegR—)F 92m0, 150372070, ~cs 7284 -
7 4

o 271



Eigenfunction expansions and scattering theory 135

Therefore as a B(H,, (.00, Ho,—1:002)-valued function the following equation holds
for i€ I,:
@14) @i HRLGHI0— R, G-i0)= N TAWFT) ﬁ&z;zz. _

sign j=sign & d

This fact will be used in the proof of Theorem 3.1.

§3. Eigenfunction expansions associated with L.

In this section we shall give eigenfunction expansions for L, using the per-
turbation method developed by Kato-Kuroda [6], Kuroda [7]. At first we record
some immediate consequences of results derived in [12] which are necessary in the

sequel.

PROPOSITION 3.1. Put GoQ)=(L—0JR.(0) and GL)={(L,—8JR(L) for
e C\R'. Then the following statements hold :

(1) For 2¢ I, GO(XiiO):l’%{gx Go(Ax1in) € B(H, 20, H,,3,2) exists, and is locally
Holder continuous in I, where lim stands for the convergence in B(Hy,z/0, Hy 500) ;

(2) For ie I,=R"(op(L)U{0}), G(Zim):liﬁl GAxin)€ B(H, 39, Hy.5/2) exists
and is locally Holder continuous in I,, where lim stands for the convergence
n B(H, 50y Hoor2) ;

(3) In B(H, s, Hy50), GRE10)=Go(A+40)"" for 2e I,

(4) GoAxt0y*=J+ AR, (AFi0NJ—J* Y€ B(H,, 470, Hy,-512) for € I;

(5) GRAi0*=J '+ AR, (AT i0)J *—J*)e B(H,, -5ss, Hy,-312) for 2€ 1.

Proor. Statements (1), (2), (3) are proved in the proof of Theorem 1.3.1 in
[12]. (4) and (5) are obvious. (Q.E.D)

Next two theorems are the main theorems in this paper.

THEOREM 3.1. Let ai(z, 2, k) (§+0) be an m X m-matriz depending on z¢ R,
ie R, \o (LyU{0}) and ke N defined by

3.1) ai(x, 2, k)=GQAxi0*h,(-, 2, k) ,

where GA:10)* is applied to hy-, 4, k) by matriz multiplication rule. Then
the following statements hold:

(1) Each column ai(z, A, k)® (1=1,2,---,m) of al(zx, 2, k) ts an H, s
valued locally Holder continuous function of 1€ R, \No(L)U{0}) for each
fized ke N;

(2) af(z, 4, k) can be decomposed into three parts as

(3.2) ai(x, 4, k)=J 'hzx, 4, k)+t5(zx, 4, k)+wile, A, k),
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where hix, 2, k) is the matriz defined by (2.3), t;(x, 4, k) is an H,, _qsor-valued
continuous function of 2€ Ry, \o,(L) for each fized ke N and any >0, and
wilx, 2, k) is an Hy i nn-valued continuous function of 1€ Ry \a,(L) for each
fized ke N;

(3) LDar(z, 2 ky=2a;(x, 1, k), where L(D) is applied to aj(z, 2, k) by
matric multiplication rule and the differentiation is in the semse of distri-
butions.

REMARK 1. By statement (3), a;(x, 4, k), as a function of z, can be considered
as a (matrix-valued) eigenfunction of L corresponding to the eigenvalue .

REMARK 2. In the decomposition (3.2) of «aj(z, 2, k), J hyz, 4, k), t;(z, 2, k)
and wi(z, 2, k) are considered to describe the state of incident wave, outgoing
(incoming) spherical wave, and the wave damping rapidly, respectively, in the
description of the stationary scattering process. Furthermore ¢j(z, 2, k) is the
quantities which are connected with the scattering amplitudes (see (3.3) and §4,
Theorem 4.2).

ProoF. By (2.8), ks, 2, k)" is an H,, _s-valued locally Héolder continuous
function of A€ Ry, for any fixed k€ N. Therefore statement (2) of Proposition
3.1 shows that

wi(x, 2, kY= G 30)%h,(z, 2, k)

is an H, _s.-valued locally Holder continuous function of 1€ R4, \0,(L) for each
fixed ke N. This proves (1). By statement (5) of Proposition 3.1,

ai(xz, 2, k)D=J " hyx, 2, k)O+ AR, AF IO —JT®hx, 2, k)" .
Hence by Theorem 1.3.1 and Proposition 2.2,
(L—Rai(x, 4, k)®
e=(J*¥ Lo — D 1hy(z, 2, B)O4 2T ¥)h iz, 4, k)©
:—*-J*Loh}-(m. }., k)<i)—~2J*}bj(x, 2, k)(i):() .

This proves statement (3).
Next we prove statement (2). By statement (3) and (4) of Proposition 3.1,

hyzm, 2, B)y=G,(2 1 10V*a(z, 2, k)
=Jai(x, 2, B)+ AR, AFi0)(J—J* Naj(x, 4, k).
Hence
ai(@, 2, ky=Jh(x, 2, k)= A 'R AT ) —J* Yaj(x, 2, k) .
By (A.2) and statement (1), (J—J* Yai(z, 2, k)= —M{(x))ai(z, 2, k)€ H, 5.. Let
ti(z, 2, k) be defined by
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8.3) tilz, 2, k)

— —-/-_J“ S ka——‘ ‘:_hm lpy(f)/'&((l ‘i""‘ijy))(‘;{(ﬂyj 2; k))(g‘;)lix-(f)‘?i.‘}
sign k=sign j Lore L&) {45 ) J

and let wi(x, 4, k)= —AJ 'R, (AT 10)J —J* )a;(x, 4, k)—¢;(x, 4, k), where subscript
A,(&)=1 denotes to take the trace on the hypersurface Z,(&)==2. Then using Lemma
1.1 and Lemma 1.2, we get after a simple consideration statement (2) of the
theorem. (Q.E.D)

QOur expansion formulas can be stated as follows. Here we shall use the
notations ¢X(L)=={2€ R*: |A—7| <K for some 7€ o,(L)} and I, y= R,  \ili|> K}
U{lAl < K-t UeX(L)) for K>0 and j+0.

THEOREM 3.2. Let ai(z, 4, k) (7%0) be the matriz-valued function defined in
Theorem 3.1. Then for any fe€ H and K>0, S a;(x, A, k¥ M(z)f(z)da belongs
el <K
to Lﬁ(Rsxgn Js lﬁ(Cm)’ dpslgn j) a'nd

(Z:f)2, k)=1im. S a: (A, ) M) f (@) d
2] <K

K0

exists, where Li.m. stands for the convergence in L (R N(C™), dpygs ). For

. K .
any [, k)e LA(Ragnj 1C™), Apgn ;) and K>0, S Zla;(a:, 2, k)42, kY. #(2)

15,577

belongs to H, and

(Z§*ﬁ)(x):l}§;m.

o0

[, Zaitw a7 bdpae
Ii k=t

i K
exists, where L.i.m. stands for the convergence in H, and the integration is
Bochner integral. Let

Zi : Hl -» éo@ Lz(Rslgn b2 l:’.(Cm), dpsxgn ])
2

and
Z,i :j§0 @ LB(RSIKD i l‘.’.(Cm), dxaslgn j) —> Hl

be operators defined by
Z:f= ;U@fo. fe H,

and

A

Z’t(f—‘gn "':f-—l’fiy "'rfy)
= ¥ Lim. § 5 ajla 4 B Do
I gkt

i £0 K .
§#0 Ko K
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(f'_,,, e o £ f,) € 3 J_(%LE(RS.“,, O™, dpgens), respectively. Then
the following statements hold :

(1) Let P, be the projection operator in H, onto the absolutely continuous
subspace with respect to L. Then Z* is a partially isometric operator from
H, into % ;@DL?(RS‘SM PC™), dpyign ;) with the initial set P, H, and Z’* is its
adjoint ;

(2) (Exzpansion formulas) For any fe H,

Pof=2"Z5f
- I.i.m.D S ai(z, 1, k)
17,58

G0 Koo

Koo

X { Lim. S i, M@y }dps,gn,o.)] .
fzi <K

(3) (Diagonal representation) For fe H,, P,.fe D) if and only if
AZif(2, )€ L*(Raign 1, I(C™), Apyign o) for each j+:0. Furthermore for such f

(Z; LAY, BYy=MZ: /)2, k), 2¢el, .

PROOF. At first we proceed rather abstractly. Let K(d2) be the spectral
measure associated with L. Then by Stone’s theorem we get for any compact
set 4 R\(s (LYU{0})=1, and f and ge H,,

1

3.4) (EWDS, @u, = i
i

lim S (Ro(3+in)— RiG—in)f, ) u,d)
i 4

= lim 2 S (Ru(+in)f, R, (A+57)g)n,d2

%

B

. 7
= lim -%
10

e T

((1“"J*J)RL(1i?:77)f, Rz,(ﬂ-i’éﬂ)g)u;dz

J

ey

-+ lirg1~ S R, Axf, JR, (A9 )y, d2 .
i 4

T

1

If we choose f and g& H, ;., then by Theorem 1.3.1 and (A.1) (1 —J*J)R,(1+ip)f,
R, (A1g)y,=<{0—M@) YR, 2+1in)f, RL(Zi'577)9>111.a/2-1!1,“a/2 converges to {(1— M(x))
X R (A410)f, RL(Zi*iO)g)v),,l’m,,,hnm uniformly on 4 as»{0 and <(1— M(x)) B.(2=10)f,
RL(Zj:iO)g>,,M/2,,,L_m is a continuous function of 2€ 4. Therefore, for such f and
g the first term of the last member of (3.4) vanishes and using (2) of Proposition
3.1 we get

(E(DF, @)= lim - S (TR, % in)f, TR A% 17)g)u,dA
o T Yy

= lim X S (Ryy (A )G i), Rug(A im)G (A== i7)g) o
LU
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- \ LR (34 150)— Ry (2—10) G5 50)f
271 RE]

G109 my ey 5081 -

Hence using (2.14), we get

(E(A)fr g)H1: Z

30 SJQRsignj

(T(DGRAE0)f, TANG(A10)g) 2 om,d0y1en 54)

Put Z:()=T;)GA+10) (A€ l,), then Z;(3) is a B(H, ;. 12(C™)-valued locally
Holder continuous function of 2¢ I, and for any compact set 4<I, and f and
g€ H, s

65 B0 5| T Z0 D e g

4N Rgignj

Hence for f€ H,,5» and any compact set 4 1,

(3.6) EAdf= 5 Z;V*Z (D f dpagn (A

#Ogmxsignj

where the integration is Bochener integral in H, ;.. Put (Z:f)(-, k)=
Sjgn;;:mz@(z";(;.)f)(k) for f€ Hj.,, 2€ I, Then using (3.5) and (3.6) we can prove
that Z* can be extended to H, ‘»J_;O@LS(RB,“ 51 (C™), dpyen;) by continuity
and is a partially isometric operator from H, into j};_,;DQ-)Lz(R,m 7 P(C™), Pargn ).

Furthermore (3.6) shows that
3.7 Z*7*f=P,.f .

Therefore if we can prove that

(ZDf) )= Sa(x 2, Ky M(@)f@)dz

for fe H, 5.NLY{R*, C™), statements (1), (2) and the existence of Z;f and Z;*ﬁ,
can be proved by arguments similar to those used in the proof of Theorem 2.3.
However, for fe H, ;.0 LY{R", C™) we obtain

(Z: (D f ) Ey=(T DGR 10)f)(k)
=LGRLI0VS, By, A KDy 470,100, 57
=f GAEOR Y, 2, kD uy g0ty 310
={f, ai(@, A Kuy sy, -5

— S ai(e, 2, kM) f@)ds .
R™

Finally we shall prove (38). Let P, .fe D(L), then it is obvious that there exists
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a sequence f, € F(R", C™) (v==1,2,83-..) such that f,—> f in H, and Lf,— f in
H,. For f,€.% it can be easily proved that G(Axt0)Lf,=L,G(1+10)f, where L,
is applied in the sense of Z’/. Therefore it is obvious that Z:(WLf,=1Z:(Af.,
since L, maps Hy3. into H, 3. and TH{A)L.g=2T g for any ge H, ;.. Hence
the above arguments show that AZif)Q2, k)€ L* Rz IXC™), doygn,) for any
0 and (Z:LfYQ, k)=AZ;f)A k) for any j+#0. Conversely let AZ5f)(4, k)¢
LA(Ry4n 5o IM(C™), dpyyn ) for any j#0. Put for any Ke N,

w5\ 5 aite L DZiN0 oD
LR ) g =)

Then it is obvious that

file) - P flw) in H,.
Furthermore

Lriw=3 | 5w L 0ZN0 Bdoa ()€ H,

Pk
K
converges to l.li.m. é,og }] a; (@, 2, kN Z )R, k)dpaen 2) in H,. Hence fe D(L).
o' S0 )p;
(Q.E.D.)

THEOREM 3.3. (Orthogonality of eigenfunctions.) The range R(Z*) of Z*
is equal to the range R(T) of T, where T is the operator defined in Theorem
2.8.

Proor. For the proof it is sufficient to show Tf=Z*Z**Tf for any fe H,
and Ztf=TT*Z*f for any f€ H,. We shall only prove the first equation. The
second one can be proved symmetrically. Put

§==Tf~Z*Z**Tf .

Since Z**Z:Z**=Z%* we have Z**{=Z*Tf—-Z**Tf=0. Put ={f.,, -+, -y,
$1, -+, .. Then for any compact interval 4C1I; and for any p(x)€ Hysp

0= <E(A>Z**g,p>-hm—~§ AR+ i7)— Ry (A—in)) Z %G, pdda
—lim -—1~.—S <(RL(x+im~R,,(z—z‘n))
4

70 7T
x{l.i.m. 5 S
Koo 30 lj ®

1Y
2 01 @,9, 03,0, K)dpugo o)} , p)d
= 11{? %g dk<l i.m. Z S - g ’_&L—af(x: a, k)éj(gr k)dpslgnj(a)! p> 3

Koo 570 1 (g— 247t

where ¢, > denotes the natural coupling between H; ;. and H, ;,. Here
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2iy

’ K
\/llm Z S E T e ;a{;(x’ g, k)éj(ar k)d.aslgn )-(O'), P
\ Ko JF0 Sy ES1 (60— AR /
= lim ,ZS 20w, 0, k)G 0, k), POA0sga (0)
—w j20 )y gt

=lim ¥ S —J%L—@;(a, k), S a;(x, o, k)*M(z) p(x)d:u) d0s1gn 5(0) .
Ko j5£0 Ik i R™ [

it
—
<
!
,\\;
f
-3
(e

k
By the definition of Z:(3),

g ai(x, o, k)*M(z)p(@)dz=(Z;(0)p)(k) € L*(Rutgn ;, IN(C™), dp.grn (0)) .
R’R

Therefore the Schwarz inequality shows

% (.cua, k), S a;(x, o, )* Miz)p(x)dz )

k=1 (5

€ L!(Rslgn i Cl; d.oslxn j) .

Therefore by Fubini’s theorem and Lebesgue’s dominated convergence theorem we

get

0=(E(A)Z=*§, p>=lim -1 § dz{ = g —~——2H--(g',<o, k),
w0 2 4 i%0

2 Ryignj (g - 2)2 + le

Sa; (=, o, k)*M(x)p(x)dx)l dpumm}

2cm)

12i0m)

hs dps!a‘n o)

=% S (9, 1. \ai @, 2, kM@ p@Ida JLIVCR
0 Rsignjnd
Since 4 can be chosen arbitrary,

0=z (0.0, [aitw 2 kM@ ) = 2 6,0, Zi WD

12cm;
= 5 KZ*§,), p>
70

for almost every 2¢ I,. Since H, s is separable, we can conclude after a simple
consideration that

5 Zi %G, N=0 for a.e. 2€ Ry, .

jvo

Thus we get for almost every ie R?,

0= EOZ F()*G,(2)
= §0 [T T % J AR (AT IONT —J %) Z ; (]G3 .
3
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Hence we have for such 4

bEad

(3.8) L T0*G (0= 2 2R, FOJ—J ) Z5()*G,0) .

we get

(3.9) 0= % AJ—-J M) Z:N*G,(2) ,

e

by applying (L,—2) to the both sides of (3.8). Then by (3.8) and (3.9) we obtain
Z]OT,(X)*é,(Z):ﬁO, that is,
e

(3.10) T*§=0.
Equation (3.10) implies that § is orthogonal to R(T). Hence

WG+ Tf =g — TP =N 2 Z** TP = TA1j* -

Therefore equation §=0 must hold. (Q.E.D.J

REMARK. By the same line of argument used for proving (2.14), we get as
an equation in B(H, 32, H,,-5/2)

(3.11) 1 (R,0+i0)—R—i0)= X Zf(,‘()*Z;@(,z)il&LE‘Lf_
271 signj=signl da

for any 2¢e I,.

§4. Representation formulas for the wave operators and the scatiering operator.

In this section we shall give representation formulas for the wave operators
and the scattering operator associated with the pair L and L, in terms of the
quantities related to the eigenfunctions.

It is known (see [1], [6], [12]) that under assumptions (A.l) and (A.2) the
wave operators

4.1) WL, Ly ; J¥)=8 -lim et*tJ*e %P, .,
t~+i 00

(4.2) W.(Lo, L J)=s- ltim etLoJe "L P, ..
0

exist and can be represented by the boundary values of G({), G.(&), R.(&), and
R, () on R* as follows:

4.3)  <WulLy Lo; JOE(D S0 fdu, ity o2

~1--~S <(RL<1+ §0)— Ru(A—i0)GoA+30)fo, f > dz,
F]

21 Hy _5/2081 572
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(4.4) KWLy, L ; J)E(d)g., go>1r0._5,2,no_5,,2

= L0 (R0 Rii—ion G0 0, o) a1,

7 Ho, waraly 570
where fo, 9o € Ho.500, f1. 01€ Hi . and 4 in (4.3) is any subset of I,=R"\{0} and 4~
in (4.4) is any subset of I;. Using equations (4.3) and (4.4), we can obtain the

following theorem.

THEOREM 4.1. Let Assumptions (A.1.I) and (A.2.]) be satisfied. Let 41,
(or A< 1,) and let fo, g0€ Hose and f1, g:€ H, ... Then the following equations
hold :

(4.5) <W:(L: Lo ' J*)Eo(d)foy f1>: jZ;: S R <Z~; (2)*711('0,{'0' f1>dPsign ;‘(2)
O J40Rsignj

=(Z*TE(MDfo, fn, 4T Is;
{4.6) W (L, L JYEDg., goo= Z <Tj(x)*2~;(2)gxsgo>dl’elgn A

=(T*Z*E(dg., 9u, 41,
where <, in (4.5) (or in (4.6)) denotes the natural coupling between H,, .
and Hy.s (07 Hy 52 and Hy s

ProOF. By equations {4.3) and (3.11) we get
<W.t(LJ LD ; J*)EO(A)ny f1>
1 S
278 30 Jngign;na

:2_—1472

271 j#0 Sﬂslguj n4

T BTG 0S, £ L 4

KZ;*TAD S oy FODPurgn #A) .

This relation proves equation (4.5). Eguation (4.6) can be proved similarly.
(Q.E.D,)

As usual scattering operator S and scattering matrix S associated with the
pair L and L, are defined by equations S=W. (L, Lo ; JX*W_(L, Ly ; J*) and
S=TST*, respectively. Then it is well known that S is a unitary operator on
P, H, and S is a unitary operator on M, where M==R(T)-=R(Z*). In what
follows we shall write W.(L, L,:J*) as W,.

The following representation formula for the scattering matrix will be proved.

THEOREM 4.2. For 70, let Fy (4; k, k') be the m xm matriz depending on
A€ RygnsN I, k, ke N and @ (signi=sing j) defined by

(47  Fa5k k)
ZSSisog—k,)(mi)ﬁj(wi) [f( 2 E%B‘L’(J*_J-l)a}(x, 3, k))} dod) .

2i(6)=2
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Then for any fized 2 and k, each column of F; (2;k, k') belongs to I*(C™) with
respect to k'€ N and for any fiehe B(C™ and 2¢ R, .;N1,

5 Fydsh, kO € LC)

with respect to ke N. Let
£(2) % B HC™) - 2 DEC™

signjosigni signgj=signs
be the operator defined by
4.8) e n @

signg osigni

@B F0k k) .

signjusignl signiwslgnd k=

Then {(4) is @ compact operator on smngsigﬂ696‘-’(0’") and the scattering
matriz S can be written in terms of the operator £(2) as follows: For any
foe M=R(Z*y=R(T)

(SF4, B =7, k) —2xiEDf (D)) a.e. 2e R,

REMARK. F,,(1; Kk, k') is the k’-th Fourier coefficient of the numerator in
(8.3) multiplied by g%-‘i‘—“i with respect to the complete orthonormal basis ¢/ (w,)
as an element of L*(S,).

Proor. Let 4 be any compact interval in I,. For any f-e R(T), put
T*f_ =f_€ Py.neHos. We can choose fe E(d)H, such that W*f=E,(4)f.. Put f.=
W*f. Then by the definition of S and elementary properties of the wave operators
we get SE(d)f.-=f,. Therefore by definitions we get

SEMNf-~EyDf-. W (Lo, L s IHEYf— W (Lo, L ; HNEAS .
Let f,¢ H, ;. be such a sequence as f, — f in H, as v — oo. Then for any g€ H, 42

(SE(Af-—~ Eodf-, g)=1lim (WL, L, N EDS,~ W-Lo, L, NEDS,, 9)

=lim 3 STANMZIN—Z5 D) for @y 30ty 70800160 5(A)

il i Sus‘glum
By statement (38) of Proposition 3.1, relation Z: (A=T;AGA+10) and (2.14) we
get as an element of B(H, g., IH{C™),
Z;0—Z; () =TGR +10)—G—1i0)]
= THAG A+ 10)[Go(2—120)— G2+ 10)]G(2—10)
= — TADGQA+ 10 [AT* T Y (R, (2-+10)— R (A—10)1G(A—10)

2 Y 2 [x(J*mJ— NTUFTAR) é‘—oéi;f‘—‘](}(2~i0)

signd=signi
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signi=signi

=2z % Z;(/i)[/‘.(J*wJ‘l)Ti(z)*]z";(z)ﬁ’?é’ggm,
A

Therefore
AS—=NE(Af-, g>110'm3/2,110_5_,2
= lim 2ri 3 S 5 ‘<T,-(2)*Z~;(2)[2(J* TN T2 ()
PR 370 Rsignj{tﬁ signi=gigny
dp“gn if g )dpslgn ;(/)
= hm 271 3, X Z LZiWf ATANT —T*¥ D Z; DX TARDG = cmy
e Rgjgn; 45 signi=signj

d sign Jj
X -‘{ZdI; - dpglgn 1(2) .

Since g€ Hy 50, AT —J* ) Z; (H*T,(Ag is an 1}(C™)-valued continuous function.
Z:(Df, converges to (Z,f)(2) in LR, 1*(C™). Hence we have

4.9 ((S—=LE(Df-, @)
=—2m 2 S L UZiHW, AT DT TN Z 5 D* T gdeem

e Rsignjﬁ_,signimsignj

d s8ign J
X _%i_’ d.os!gn j(z)

=—21 },

FESY Sksngnf 4 signi= signg

<AZ DT*— J-l)Tm*d"“ng @),
T,(2)g > Apen 1(2) -

On the other hand, by Theorem 4.1
E(Nf. =W*f== 2; T*Z;f.
70

Multiplying T; on both sides, we get by Theorem 2.3 and Theorem 3.4

4.10) Zif=T.E)f-=TEHT*f. = 1),

The left hand side of (4.9) can be rewritten as

(4.11) 5 X (TAS—DELDT*)@), (T,0)D)2icm dusga 5D
J signj

jA0

- z:S (TL(S—1)T*F)R), ToDg)icm@pna S) -
Rbigl’)]nd
By (4.9), (4.10) and (4.11) we have

z

F#0 gRslgnjﬂ‘

<(T,(S DTHOW 420 8 AZI 0TI YT

signj=signi
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dBursn s A (T N
hat 4 (T ), (Tg)R) /lzmm;dpsxsuz(/-)wo-

Since H, ;. is a dense subset of H,, {g}g Tig;9€ Hy 30 forms a dense subset of
range T. Therefore

(TS DT )@t % AZ 0 T Eaees(f) =0,
that is,

SHO-f 02 ® 52T T e ),

F#0 signié=signg
for a.e. e R
Now, for any fl)e @ I2(C™)
F#0
df'nx

(uZ ST T Mzt i )(lc)

o / E 3 S AN sk dps!gni 3 . - \
(AT* =T DT 22t Q) ajlar, b F) )

S Hy grarly g

- (f(z), T.0) [ 2 % T ¥} (z, 2, k)])

12c™m)

By the definition of T.(A)
! dps!sni e J LRy o F 7 7
(rw [ A% (] )0 (3, 2, k)])(k )

g T Pyw) [7“( 3 @fggﬂ J—T*Ya} (&, 1, k))] doa) .

148=2
Hence we finally have
S =F D—2milfRf. (D] a.e. e R.

Since T.()*=I'()*U¥ and I';()* is a bounded operator from LS, to Hi o

for any large s and any small ¢>0, Rellich’s compactness theorem shows that

(%) is a compact operator. (Q.E.D.)
REMARK 1. We can prove by using elementary methods that

1--2r38(2) : L PrlC™ - DI R (2

signj=signd signj=signi

is a strongly continuous unitary operator valued function of 2¢ R*N 1, (or R-nI).
Moreover we can prove the so-called phase shift formula using the method used
in Tkebe {4]. We shall not discuss the subjects here.

REMARK 2. If M(x)—I decreases sufficiently rapidly at infinity we can prove
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by using the method which will be used in the proof of Lemma 5.2 that the
operator f(1) is Hilbert-Schmidt type. We shall not discuss the subject here.

§5. Concluding remark.

If M(x)—1I decreases sufficiently rapidly at infinity (see Theorem 5.3) we can
construct distorted plane waves in terms of ai(x, 4, k). In what follows we shall
show the process briefly.

Let ¢®(w,) (7#0,k=1,2, -..) be the normalized eigenfunctions corresponding
to the eigenvalues 7 of Laplace-Beltrami operator A; on C~-manifold S, with
metric induced from the metric in 5°. Put ¢¥(w,)= ¥|grad i,(w,)[¢¥(@;)). Then
it is easy to see that ¢®(w, (k=1,2, --.) is a complete orthonormal system in
L3(S;; day). Let af{z, 4, k) be the eigenfunction of L constructed in §3 in terms
of ¢ wy).

The following lemma is well known.

LEMMA 5.1. Let p be an integer with p>(n—1)j4. Then for any fixed
;€ S;, ’:Lj 9}(“1((_1:_’)(96;:)))(:) 4

LEMMA 5.2. Let p be an integer with p>(n—1)/4. Then for any fized
A€ Rygo s and w;€ S,,k;ZVl PN whlx, 2, k) converges to e“‘”’“’/p,(w,) in Hy, _sp-avon
as N-» o0 (¢>0).

converges uniformly in o) as N-» co,

ProOF. Let a=(a,, a:, - -,a,) be a multi-index and |a}= Z a;. Then with
suitable polynomials p.(z, 1) of £ and 1 of degree {a] and smtable matrices Q. (wf)
dependmg smoothly on wj€ S,, we have the following relations:

Z PP (@b iz, 4, k)

= B9 | e TP e w)

i

N ST
= 2 Vigad L)l | e s Pngs ) Puw))ds (o)

§;

= 2 Vigrd o | eonie; LLESWLLDRE) b0ty ur
= & YRR | (0t vetiniP oty PRIBEIOD o o)

P e e ¢u)(w;)¢ ’(w,)
:Ia;zo Jigrad lj(wj)' p“(x’ A Sé gt=ihes ’;:" ’ (7,tt>);j,r1 Qa((t)/)dsj(wj) .

(¢ (k)
By Lemma 5.1, kZ; KW converges uniformly in o} for any fixed o
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& izl ilwj ‘f‘;‘m )¢ (wj) ’
as N -»cs. Hence for any fixed 2 and w,, SS e i }‘Z:)WQU( w)ds (w?)

converges in Hy _.m0 (€>0) as N> oo, Hence for any fixed 1 and o, k;%“m,)
X hyz, 4, k) converges in H, _,,_iom 38 N—> oo,

It is obvious by the definition of h,(x, i, k) that for any fixed 21 and =,
Z, h(z, 2, k)yF(w;) converges to gi=2iu P Awy) in L¥S;; C™:do;) as N— oo, Hence
the statement of the lemma holds. (Q.E.D.)

THEOREM 5.3. Let p be an integer with p>(n—1)/2. Let assumptions
(A.1.1) and (A.2.1) be satzsﬁed with 6=4p+1-+te (¢>0). Then for any fixed
0,;€ Sy and 2€ Ry \o (L), Z dw)a;(x, 2, k) converges to G(A+ 10)*[e””“"fﬁ,(w,)]
W Hogprsnn @8 N> co,

PRrOOF. By Proposition 3.1, G(2:+10)%€ B{(H,,_3/2, Hy,5:2) for 1€ RN\o,(L). Hence

2 g @, )= T /o) GREi0*h,(y, 4, b
=GQEIOM 2 dylwhly, 2, )] .

By Lemma 5.2, Z_. ¢lwph(y, 2, k) converges to e“‘““’:ﬁ,(a)) in Hy, _s3.. Hence
Z dlwpal(z, A, k) converges to G(1+10)*[e“““"1p {w)] in Hy .4 as N— co,

Q.E.D)
Let £=|3lw,, then Pjw,)=PF,&) and

G+ 10)4[e= 105 P ()] =G (A= 50)*[e*¢D,(8)]
=6t Py(€)+ [A,(O) Ro(2,6) Ti0)I[(1— M(z) e L (£)]
=5z, &) .
We call B;(z,¢) a distorted plane wave. We can obtain the eigenfunction ex-
pansion theorem and representation formulas in terms of distorted plane waves,

following the method used in the preceding sections. We shall not discuss it in
detail here.

§6. Example.

We shall consider here Maxwell’s equation in R*;

j_(u)____(E’(x) 0 )( 0 rot)(u)
at \ v 0 M)/ \—rot 0 v /)
Here wu(f, x) and v(f,z) are C®-valued function of t€ R!, xc R* whose real parts
describe the strength of the electric and magnetic field, respectively, E(z) and
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M(x) are 3x3-matrices depending on z€ R® and are the dielectric constant and
permeability of the media filling the space. We assume that the dielectric constant
and permeability of the vacuum is equal to 1. Our assumptions on M(z) and E(x)
are as follows:

ASSUMPTION (1). M(z) and FE(z) are hermitian and positive definite and there
exists a constant C,>0 such that

CoHEP<E M) ¢<C.|e1° for all ze R® and £eC?,
CrijeP<E Elx) - 8<C, 1812 for all ze R® and £eC?°.
ASSUMPTION (2). M(z) and E(x) are bounded measurable functions of z¢ R®
and there exist constants C,>0 and 6>1 such that

sup max (|m(®) 04l len(®)—0,) SC(1-+ fal®)"
ze R3 154,753

where m;(x) and e (x) are (z, j)-component of M(x) and E(x), respectively.
We put

w7 ). 103, )

Then we can easily see

Lo(£)=< 0 Lé(E)) ’

Li¢) 0
where
0 & &
W= & 0 =& 1,
—4 & 0
and
6.1) det (21— Lo(8)) = 22— £1)* Q-+ €D .

Therefore IL.(D) is uniformly propagative system in the sense of Wilcox and
assumptions (1) and (2) imply (A.1.I) and (A.2.1). Hence our resuits derived in
the preceding sections are all valid for the Maxwell system satisfying Assumptions
(1) and (2). We shall construct the eigenfunction of the unperturbed operator in
what follows. Egquation (6.1) shows that we should put

LB =813 48 =0>1,&) =—[¢];
S,={¢: 161=1}=8?, S.;={:—|fl=-1}=8%;

I+ Liw) 0 ) )= __;__ (wLo(w) ﬁiLg(a)))

Py¢) = Y
0 I+ Li(w)? +Lilw) —Lilw)
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where @==£/|¢] and I is the 33 unit matrix. Therefore our eigenfunction
hoifz, 32, k) (A>0) associated with the unperturbed operator are given by

b, +2, k) X ¢ 7Y () P, (0)do
52
“\i1 Oz

2z f+d
w P (% JQ—) S X gldizlcos I Y (in # cos ¢, sin  sin ¢, cos 0) sin 6dgde .
$=0 J o0

Here Y,(sind cos ¢, sin 0sin ¢, cos 0) is one of

}/ éZ_L P,cost), J (n?:; W Pm{cos §) cos mo ,

/!?E.,:_?’Qiizn**'“ll! Pu(cos 0) sin m¢p n=:0,1,2, -+, m=1,2,---, n
dx(n-Fm)!

where P,(z) and P7(x) are the Legendre and the associated Legendre functions

of first kind, PL<—_15 j—) is obtained by putting —1* instead of w; (J=1,2,3)
12 0% 14

in P.{w).

It is well known that

1/2
PUETET I . hN nt L S uraa/o{1212) Prlcos 8)
lxlA = 2

=
0x;

where J,(z) is the v-th Bessel function. Therefore k..(x, 2, k) does not vanish for
only k for which Y, (w) corresponds to one of \/ 27Z+1 P,(cosd), and for such k
T

i () (o)

BTy A SV 1 6 27!' -
v (2k-+1)xP, < T 9 >[< [13[1) J“(‘/g)(lxll)] .

Then our eigenfunctions associated with perturbed Maxwell’s equation are obtained

2k+1]

by limiting absorption method as solutions of the equation
(LF|8Du=0.

Using this eigenfunctions, we can obtain the expansion formulas and re-
presentation formulas.
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