Topology of C* minus a finite number of
affine hyperplanes in general position

By Akio HATTORI

§1. Statement of results

Let L,, -+, L, be affine hyperplanes in the complex n-space C*. We say they
are in general position, if dim L, 0 -+ - N L;,=n—1 for all sequences 1=7,<-+- <4,5k
with 1=l=n-+1. When [=n+1, this means that L, N---NL,,,,=@. Similarly,
homogeneous hyperplanes ﬁo, L, -, L, in C™* are said to lie in general position,
if dim ﬁ,oﬂ~--ﬂﬁ,,=n~l for all sequences 0=51,<--- <4,k with 0SiSn.

The purpose of the present note is to describe adequately the homotopy types
of C*—L,U---UL, and C*—Lou--- UL, Let T*=S8'X...xS! (k-times product)
be the k-dimensional torus, where S* is the unit circle in C as usual. We denote
by k the set {1,2,--.,k}. If I is a subset of k, we denote by |I| the cardinal

number of I. We define the subtorus T, of T* by
Tr={zl2=(2,, ---,z)e T*, 2,=1 for jel}.

The dimension of T, is equal to |I|].
Our main results can be formulated as follows.

THEOREM 1. Let L,, ---, L, be affine hyperplanes in C" in general position,
where n+1=<k. Then the space X=C"—L,U---UL, has the same homotopy
type as the space

XD: u T] .
Ifek
i=n
THEOREM 2. Let f)o, ..., [, be homogeneous hyperplanes in C**! in general

position where n+1=k. Then the space c**'—LyU--- UL, has the same homo-
topy type as X,xS' where X, is as in Theorem 1.

It is now easy to deseribe homotopical properties of the space C*"—~L,U--- UL
For instance, we have

THEOREM 3. Let X be as in Theorem 1 and suppose that 1<n. Then the
fundamental group =,(X) 18 free abelian of rank k and the universal covering
space X of X has trivial homology in dimensions +0, n, while the n-th homo-

logy group has free Z{n,(X))-resolution
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where C, is a free Z(z/(X))}-module on (f) generators. In particular of
w41k, then H,‘(X’, Z) is @ free Z(z(X))-module on one generator.

THEOREM 4. Let X be as in Theorem 1. If &7 is a non-trivial local system
over X with stalk C, then the homology group H/(X, &) vanishes for i+n. The
n-th homology group HAX, 7) is a C-vector space of dimension

S kY.
L nt

In the previous paper [2], we have treated the case n+1=k and discussed
applications to the Euler integral representation of hypergeometric functions. We
refer to [1] for results related to Theorem 4.

Proofs of the above theorems go along the same line of idea as in [2]. The
proofs of Theorem 1 and Theorem 2 are given in Section 2. Theorem 3 and
Theorem 4 will be proved in Section 3.

The author is indebted to T. Kimura and K. Aomoto for useful conversations
concerning the subjects of the present paper.

§2. Proof of Theorem 1

PROPOSITION (2.1). Let Ly, ---, L, be affine hyperplanes in general position
wn C*. Then the diffeomorphism type of the space C*—L,U --- UL, depends
only on n and k.

Proof of (2.1) will be given in Section 4.

In view of Proposition (2.1), we may take a particular set L,, ---, L; to study
the homotopy type of C*—-L,y --- UL, Hereafter, we shall assume that the L,
are given by

L,': 2,;;0 fOl‘ lgig?t y

2.2)
Lavy: Zal'z,=1 for 1=5j=q, q=k—n,
where a, - -+, @, are real numbers such that
2.3) 1>a,>a.> - >a,>0.
The fact that L,, ---, L, given by (2.2) lie in general position follows easily

from the following

LEMMA (2.4). Let by, ---, b, be real numbers such that b,> --- >b,>0 and
gy = o0, b ROM~Regative integers such that 1, < - <i,. Then, the determinant
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bit ... b1

N

w1t

mi{m
is mever zero and its sign equals (—1)" ¢,
Proor. We have the equality

Phit ... bt ) R 1
1 L ¥ S R
Ibfm-<-b;;ml b.;"”l ...};:ﬂ

where the coefficients K ..., are non-negative integers {4, Th. (7.5. B)]. But the
determinant at the right-hand side is equal to (-—-1)mm-1»2 11 (b;—b,) by Vandermonde.
Hence the lemma follows. ™
Next let ¢ : C"— C* by the affine embedding defined by ¢(z,, - - -, 2,)==(w0y, -+ -,
w,), where
w,=(-1)"1z, for 1=1=n,

wn+j:(~1)"(1-—%a{“z,) for 1=7<q.

(2.5)

Thus ¢(L,) is the intersection of ¢(C*} with the hyperplane in C* defined by w,=0.
As usual, we shall identify the complex k-space with the product of real part and
imaginary part. Thus, if w=(w, ---, w)e C* and w;=u,+v-—1v,, then w is
identified with (u, v) € R*x R*, where u={(u,, - -+, %) and v=(v, ---, v,). With this
understanding, let U and V be the real and imaginary part of o(C") respectively.
Since the embedding ¢ is defined over the reals, we have p(C"==Ux V. We define
X to be o(C*)—o(L;) U -+ Ue(L;), which is of course homeomorphic to C*-L;j--.
UL,. Thus X=(Ux V)N(C** where C*==C—0. Let X*==(UxXR*)N(C*)~,

PRrOPOSITION (2.6). The inclusion X X * 15 g homotopy equivalence.
ProoF. We consider the subspace F of X*x Rt defined by

F={(u, v, y)€ X*<R* |v+ye V and y,~0 whenever u,;-0} .
Let p: F— X* be the projection onto the first factor. We need the following
LEMMA (2.7). There exists a cross-gsection
g: X* > F

of the projection p: F— X*,
PrOOF OF (2.7). For a subset ICk with [[1=n, we put
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X¥={(u, v)e X*|u=0 for i¢ I}
and
F,={(u, v,y)e X**xR*|v+ye V and y,=0 for i€ 1}.

For the empty set @ we have X}=X*,
The proof of the following lemma is easy and is left to the reader.

LEMMA (2.8). The projection p:F,— X* is a locally trivial fiber space
which has an affine subspace of R* of dimension n—|I| as fiber.
For0<isn, let X%= U X¥and F,= U F,. Then X} X&), Fo< Fny
JFl=n--{ 1

11l=n—

X*=X* and F'CF, By the iterated use of the obstruction theory (see e.g.
[3]) applied to (2.8), we see that there exists a cross-section s of p: F,y — X& =X*
such that s(XX*)c Fy,. On the other hand, over X¥-—-X*_,,, the portion of F
coincides with that of F,. Thus, a cross-section s of p: F,,— X* as above is
precisely that of p: F — X*. This proves (2.7).

Using (2.7), we define 2 homotopy f,: X* - X* by

flu, vy=, v+ty(u, v)),

where s(u, v)=(u, v, y(u, v)). Then, f, is the identity and f; maps X* into X.
Moreover, f, keeps X into itself since V is a linear subspace of R%, as is easily
seen. It follows that the inclusion is a homotopy equivalence with homotopy
inverse f;. This completes the proof of Proposition (2.6).

Let I, denote the hyperplane ¢(L)N U in U. These hyperplanes [, - -, I, give
a cellular decomposition K of U by open convex cells. Indeed, if I is a subset of
k and ¢==x1 for j¢ I, then the subset

fue Ul u,=0 for 1€ I, eu,>0 for 7¢I}

is an open cell. Let K’ be the barycentric subdivision of K and N the union of
the relatively compact simplices of K’ (see Fig. 1). K’ should be interpreted as
follows. We compactify U adding a projective (n—1)-space P_ at infinity. The
resulting space is a projective n-space P" in which each I is compactified into a
projective (n—1)-space P;. These Py, ---, P;, P, give us a cellular decomposition
of P*. We take its barycentric subdivision K. Then we delete P_ from K and
obtain K.

If Iis a subset of k with (I|=n=, let u, denote the intersection point ‘_gll‘.

The collection {u;},;1-. is nothing but the 0-skeleton of K. We denote by D, the
closure of the union of those simplices = of N whose closures contain u,.
We shall denote by the same letter N the underlying space of the cell complex
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U=

Fig. 1

N. The D, are closed dual n-cells of N. It is easy to see that there exists a
deformation retraction p: U-—> N which preserves the cells of K. In particular
p (1) equals I, itself. We set X¥={(u, v)e X*lue N}. From the existence of a
deformation retraction p with the above property, it follows easily that XF* is a
deformation retract of X*.

Next let X* be the subspace of X consisting of the points (u, v) such that
v;=0 for j &I whenever ue D,.

PROPOSITION (2.9). The inclusion X*¥C X* is a homotopy equivalence.

ProOF. We shall first define a map «'=(uf, ---, ul): N[0, 1] as follows.
If ¢ is a cell of K, let b, denote the barycenter of o, J, the set {je k| ,N5+ T}
and I, the set {ie klocl}. We define 4/ on b, by

1 it jed,,
J,—n .
Hby)==o{ ——foee £ jed,—1,,
wld=1v oo 1
0 if jel,.

The b, are just the O-simplices of N. We then extend «’ on each simplex of N
affinely. The following is an easy consequence of the definition.

LEMMA (2.10). If u 18 in D,, then wi(u)<wj(w) for all pairs (¢, 7) with
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teland jelI. Moreover ui{u)>0 if ue D, and j¢l.

Now let m,: [0, 1]*— [0, 1] be the function given by m (w/)=uj, where u},= ---
Zul,2 - 2uj, and g=k—n. It is a continuous function. We define a homotopy
g.: X¥ - XF by

0.(u, v)=(u, v(8)),

min (ul(u), m(u'(u)))
oW () t)”‘

(2.11)

ott)=(1-

Note that m(u/(1))>0 by (2.10), so that g, is a well-defined homotopy. It follows
also from (2.10) that g, is the identity, that g, maps XF into X* and that g,
keeps X ¥ into itself. Therefore, the inclusion: X* — X¥ is a homotopy equivalence
with homotopy inverse g,. Since X is a deformation retract of X*, the inclusion
X¥c X* ig also a homotopy equivalence. This completes the proof of Proposition
2.9).

For a given ICk, |Il=n, and jg I, we define 6(J, 7) by

é(, j)':ilﬁllsign (t—7) .
LEMMA (2.12). Let |Il=n, ICk, and j€I. Then, the sign of the j-th
coordinate u, of the point u, is equal to (I, 7).
This follows from a bit of linear algebra together with Lemma (2.4). The

details are left to the reader.
If Ik, |Il=n, we define the subtorus 7/ of T* by

T/={(zy, - -+, )€ T*{2,=6(1, 5) for jeI},

and put E,={(u, v)€ X{*lue D;}. Let r:(C**— T* denote the usual projection :

7wy, ey W)= (-“-’—1—, . _Z’ze,__> i
lwl, lw;-l
By (2.12), » maps B into 7/ and hence X* into
X1= U T]’ .
ICk,ifl=n

Let r,: Xi* — X, denote the restriction of + on X*.

PROPOSITION (2.18). The projection r,: X*— X, is a homotopy equivalence.
PROOF. Let I, ---, I, be subsets of % such that {I,|==n for all v. Notice
that the intersection 1505.T;" is non-empty if and only if the following condition
(A) is satisfied.
(A) Given jek, a(l,, j) does not depend on the choice of v such that jel.
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A collection C={I,, ---, I,} will be called an admissible collection if it satisfies
the condition (A). An admissible collection C={l,, ---, I} will be called a basic
collection if it satisfies the following condition (B).

(By If ICk, {Il=mn, is such that CU{I} is also admissible, then the intersection
LQCI, 18 strictly greater than (I‘QCI,)HI.

" We shall denote by £Z the set of all basic collections C={l,, ---,I,}. If Ce ¥,
then T(C):InCT/ is a subtorus of T* of dimension | nCI,l. For Ce %, we set
LEC 1€

Se=T(C)~ U _T(C).
CRC’
Clearly, {Sc} gives a stratification of X,.
Given Ce &, we set N(C):I?CD, and S*¥C)={(u, e X*lue NIC)}. It is
clear that S*(C)zl?cE, and that the projection r,: X*— X, maps S¥C) into
T(C).

LEMMA (2.14). The projection r(C)=r;IS*(C): S*(C) - T(C) i3 a fiber space
with a contractible fiber. Any segment in X* joining a point of ri'(z)e Xi¥
to a point of r(C) '(z), where z€ S;, 15 contained in 77'(2).

PROOF OF (2.14). Given z€ X,, the real part of the fiber ri'(z) over z is
contained in an open cell ¢ uniquely determined by 2. Thus the real part of
r(C)-*(z) for ze T(C) is contained in ¢N N(C), which is clearly contractible. From
this, it follows easily that the fiber »(C) *(z) is contractible.

Next let z be a point of Se. If w=(u, v) is a point in the fiber 7'(2) and
we D,, then I must be a member of C. For otherwise z should belong to a
subtorus which is strictly smaller than T(C). Then, any segment in U joining
ueonND, to a point of ¢NN(C) is clearly contained in aND,. It follows that
any segment in X* joining w to a paint of (C)}(2) is contained in r;7'(z). Thus
Lemma (2.14) is proved.

By virtue of Lemma (2.14), there are no obstructions to extending a cross-
section of 7(C) given on T(C)—S; over the whole torus T(C). Hence we can
construct a cross-section 8: X, Acg’S*(C) of 7, such that 8(S;)<S*(C), proceeding

stepwise on the stratification {Sc}. Then, again by virtue of (2.14), the homotopy
tw+(1—t)sr(w) takes place in the space X*. Thus, 37 is homotopic to the
identity map of X; the projection 7, is a homotopy equivalence and g is a homo-
topy inverse of 7,. This completes the proof of Proposition (2.13).

So far, we have constructed explicit homotopy equivalences X X*, X* o Xk
and 7, : X*— X,. Thus, the proof of Theorem 1 will be achieved by the following
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ProposiTioN (2.15). X,= lIJ T! has the same homotopy type as Xo= l;l T,.
PROOF. We shall change the notations slightly and write X(»n, k)= [chb T,

==
and X'(n, k)= U& T, for 1<n<k. Then, we set
Ic
1ri=n

Xa(nr k): U 3 Tl y X‘{(’ﬂ, k): U TI’ 1

Ik,

and, when n <k,
Xb(n; k): U T; ’ X[;I('n, k):' U T/ .
I Ic:hk,ell

Clearly we have
X(n, by=X.n, &)U X,(n, k),
X'(n, bYy=X!(n, K)UX{(n, k) ,
X, k)=X{n—1, E—-1)xSt,
Xin, by=Xn, k—1)x1,
X!, b)=X"(n—1, k—~1)X 8", where X’(0, k—1)=1,
X!, ky=X'(n, k—1) X (—1)*.

Moreover X(n—1, kyc X(n, k) and X'(n—1, kyc X'(n, k).
The condition n+1=<F is indispensable in Theorem 1, but not in Proposition
(2.15). Indeed we shall prove

PROPOSITION (2.16). For each pair (n, k) of integers with 1=n=<k, we can
associate a homotopy equivalence fin, k): X(n, k) = X’(n, k) such that
1) fln, B)IX(n—1, k)=f(n—1, k) : X(n—1, k) - X’(n—1, k) and
2) f we regard fin, k) as a map X(n, k) —> T*, then f(n, k) is homotopic to the
tnelusion 1: X(n, k) — T*.

Proor. We shall proceed by double induction on (n, k).

Case: n<k. Assume that we have f(m, k—1) satisfying the conditions 1) and 2)
for 1€m<k-—1. We define f(n, k) to be equal to fin—1, k—1)x(—1)" on X,(n, k)
=X(n—1, k—1)x$* and to f(n, k—1)xX{—=1)" on Xy(n, k)=X(xn, k—1)x1. Using
the condition 1) for f{n, k—1), we see easily that f(n, k) is a well-defined map and
that f(n, k) itself satisfies the condition 1).

To prove the condition 2) for f(n, k), we note that f(n, k) is homotopic to ¢
if and only if f(n, k)x=1x: Hx(X(n, k), Z) — H(T*, Z), since T* is an Eilenberg-
MacLane space. By definition, X(n, k) is the n-skeleton of the usual economical
cell decomposition of T* so that 7y identifies H(X(n, k)) with H,(T* for g<n.
By the Kiinneth formula, f(n, k)« restricted on Hy(X,(n, k)) is identified with
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fn—1, k=14@(—1); : H(X(n—1, k)QHx(S") - Hy(T* )@ Hx(S)= Hx(T*. But
the multiplication by (—1)* on S* has degree 1, so that (—1); is the identity.
Using the condition 2) for fin—1, k), we see that SJr—1, k—1)4®(—1)3 coincides
with ix. In a similar way, we see that f(n, k)x and ix restricted on Hy(X\(n, k)
coincide. By an argument using Mayer-Vietoris sequence, it then follows that
S, B)x=1ix on Hyx(X(n, k)). Thus, f(n, k) satisfies the condition 2).

Case: n=k. Assume we already have f(k—1, k) satisfying 1) and 2). T* has a
cell decomposition T*=X(k~1, k)Ue*. Since 4: X(k—1, k) - T* has the obvious
extension 7 : X(k, k)=T*— T* and f(k—1, k) is homotopic to ¢ by 2), it follows
from the homotopy extension property that f(k—1, k) has an extension flk, k):
X(k, k) — T* such that f(k, k) is homotopic to i. Such an f(k, k) obviously satisfies
the conditions 1) and 2). This completes the proof of Proposition (2.16), and hence
of Proposition (2.15) and Theorem 1.

Finally we shall prove Theorem 2. Let L,, L,, -+, L, be homogeneous hyper-
planes in C**! in general position and P,, P,, - --, P, the corresponding projective
hyperplanes in CP". As usual, we identify CP*— P, with €". Then L,=P,—P,, -+,
L,=P,—P, are affine hyperplanes in general position in C*=CP*—P,. If n:C""
—0— CP* denotes the Hopf fibering then we have

aYCr—L,y - ULE)=C"“"’E0U£1 U U-ﬁk .

Since the Hopf fibering restricted on C*=CP"—P, is trivial it follows that C»*!
—ﬁouﬁ, U --- UL, is diffeomorphic to (C"—L,U --- UL, XC*. Hence, by Theorem
1, C**'—L,UL,U -+ UL, has the same homotopy type as X ;xS

§3. Homology with local system coefficients

First, we shall investigate the universal covering of X=C"—-L,U - - UL,.
Let X, be the space as in Section 1. Since X, iz the n-skeleton of the usual
economical cell decomposition of T* the homomorphism =,(X,) - n,(T%, induced
by the inclusion, is surjective for n=1 and bijective for »>1. Therefore, if p,:
Rx > T*, pylty, -+, t)=(e"*1, - .-, e¥"%), ig the usual projection, then X =p51(Xy)
is the universal covering space for n>1. We have obtained

PROPOSITION (3.1). Let X, be the subspace of R* consisting of the elements
z=(2,, - - -, ;) such that z,€ Z for jél for some ICk, [Il=n. If n>1, then
X, is the universal covering space of X, with projection ps.

In passing, we note the following

PRrOPOSITION (3.2). If mn>1, then the wuniversal covering space of C"—
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LU -+ UL,, where Ly, ---, L, are affine hyperplanes in general position, can
be embedded in C* as a complex analytic submanifold.
ProoF. We consider the commutative diagram

o

b |

(C*),_I._, T*

where p(w,, - -, wy)=(€*"1, ..., e, #(u, v)=% and 7 is as in Section 2. The
map p is also a universal covering map. Now, as was shown in Proposition (2.16),
X, is deformed into X, in T* Therefore from (3.1) it follows that o H(X,) is the
universal covering of X,. Since r: ((C*)*, X*) — (T* X)) is a homotopy equivalence
by (2.18), p~'(X/) is the universal covering of X*. By (2.6) and (2.11), the map
g:: X~ X¥ is a homotopy equivalence and the composition X—gl-* X¥*¥C(C** is
homotopic to the inclusion X (C*)*. Hence it follows finally that pUX)cC* is
the universal covering of X which is identified with C*—L,U --- UL, through ¢
as in Section 2. This proves (3.2).

We turn to homological properties of X and proceed to prove Theorems 3
and 4. Changing the notations slightly, we denote by X(n) the subspace mtin T,

of T* and by X(n) the subspace p;'(X(n)) of R* where 1<n<k. po: X(n)— X(n)
is the projection of a regular covering with group H,(T* Z) which is canonically
identified with H,(X(n), Z). If n>1, then = {X(n))=H(X(n), Z) and the covering
poz)?(n) —» X(n) is universal as in (8.1). For Ick={1,2, ---, k} we set

o=z |xe R, 0<ux,<1 for iel, x,=0 for jel}.

o, is an open cell of dimension |I|l. The totality of the transforms ¢,.7, 1I1<n,
r€ H{(T* Z), forms a cell decomposition of Xm). Let (f, denote the free
Z(H,(T*, Z))-module generated by the o, with |I|=p and 8:C,— C,_, the usual
boundary operator (Z(H,(T*, Z))-module map) defined by

do,= gjs(L Oty Cr—psy°T)

where &(I, )= II sign(i’—1) and 7, is the generator of H,(T* Z) determined

61,44

by Ix -« XIx8'x1X .-- X1, 8 being placed at the ¢-th factor. From the above
cell decomposition we obtain the chain complex C*(X(n)) given by

- C,, 0<p=n,
Cy( X )= =p=n

0, otherwise.
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PROPOSITION {3.3). The p-th homology group H,,(}Z'(n), Z) vanishes for
p#0, n. The n-th homology group has a free Z(H,(T*, Z))-resolution

b a

~ a - -
0 — Hy(X(n), Z) Cuns e G e—0.

PROOF. Since Co(X(n))=C,(X(k)) for p=<n and C,(X(n))=0 for n<p, we see
that H,(X(n), Z)=H,(X(k), Z) for p<n and H,(X(n), Z)==Z(C,)=the cycles of
C,.. But X(k)=R*. Hence we have H,,(X(k), Z)=0 for 0<p and the sequence

= ~. 0 -
0 —— Hu(X(n), Z2)=2(C,) < Cas1 = Z(Co11) <0

is exact. Iterating the process we obtain the desired resolution.

Theorem 3 is an immediate consequence of Theorem 1 and Proposition (3.3).

Next, let % be a local system with stalk € on X(n) with characteristic
homomorphism 6 : z,(X(n)) — C*. Since § factors through =,(X(n)) —» H(X(n), Z)
and H,(X(n), Z)=H,(T* Z), the local system & is the restriction of a unigque
local system on T* which we shall also denote by 57.

As is well-known, the homology Hx(X(n), .97) of X(n) with coefficients in &
can be computed from the chain complex Cu(X(n), &), where Cx{X(n), &) is the
C-vector space with basis {g,||]|=p} for 0Zp=n, C){(X(n), ¥)=0 otherwise, and
the boundary operator ¢ is given by

ag'lzi%e(,l, DA—0GNor-u »
cf. [2].

PROPOSITION (3.4). If & is a non-trivial local system with stalk C over
X(n) then the homology group H,(X(n), &) vanishes for p#n. The n-th homo-

k—n
logy group H.(X(n), &) is a C-vector space of dimension Z}’l)‘“( niz) .

REMARK (3.5). Suppose that the affine hyperplanes Ly, -+, Ly in C* are
defined over the reals and lie in general position. Let I, be the real part of
L, i.e. Li=R*NL, It can be shown without difficulty that the number of the
relatively compact domain in R* bounded by some of the 1, is precisely equal

k—an k
to ‘%(—1)*“(%”).

PROOF OF PROPOSITION (3.4). Since C,(X(n), &)=C,(X(k), &) for p=n and
C(X(n), &)=0 for n<p, we have H,(X(n), F)=H,(X(k}), &) for p<n and
H.(X(n), &)=Z(C.(X(k), &))=the cycles of C,(X(k), ). By assumption & is
non-trivial. Hence there is a 7, for which 6(r)#1. We may assume without loss
of generality that 6(r)#1. We have a homotopy operator s: C(X(k), &)
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Cpii{Xtky, &) defined by

(_1)9 Ty s if k(‘:[,
s(o)={1—00)
0, if kel,

where |I|=p, 0<p=k. It can be seen easily that the equality J0s-+-86—=1 holds for
all p. Therefore H,(X(k), ¥)=0 and we have a short exact sequence

0 e Z(CAX k), 7)) el Con(X(k), )« Z(Cpir(X(k), &) ¢ 0
for all p. It follows that H,(X(n), &)= H,(X{k), &)=0 for p<n and
k-—n
dim H (X(n), - )=dim Z(C(X(k), &)= Z‘; (—1)*t dim C,. (X(k), &)
ko-n i1 k
D (n+z> '

This proves (3.4).
Theorem 4 is a direct consequence of Theorem 1 and Proposition (3.4).

§4. Proof of (2.1)

Proposition (2.1) seems to be known by experts. But the author was not able
to find a proof in the literature. In the following, a proof will be presented.
If I is a subset of Xk, then we put

Cr={wlwe C¥* w;=0 for 1eI}.
If I consists of a single element %, then we write simply C; for C;. We shall
denote by E%k, n) the set of all n-dimensional affine subspaces M in C* which
satisfy the condition:
™ dim MNCr=n~—1|]I}| for all fIck with 1Z|[1<n+1.
An n-dimensional affine subspace M in C* given by a system of linear equations

13
4.1) byt by b, =0, 1=1,.---,q,
3=1
where n--q=-k, is in E%k, n) if and only if the matrix B=(b,;)15:5, satisfies the
0SSk
condition :
Q det B,,...;,#0 for all sequences 0=<7,< .-+ <j, <k,
where

[biy, -+ by,

quh tee bq!q
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We denote by M q, k-+1) the set of ¢ (k-+1) matrices B=(b;) which satisfy the
condition (Q). Let p:M°%gq, k+1)— K%k, n) be the map which assigns to B the
affine subspace determined by the equation (4.1). Note that the set E(k, n) of
all n-dimensional affine subspaces of C* can be identified with the total space of
the universal g-vector bundle over the complex Grassmann manifold Gk, n). We
regard E°%, n) as an open submanifold of E(k, n). Moreover M%gq, k1) is also
an open submanifold of the space of all ¢x(k--1) matrices and it is easy to sec
that p: M%q, k+1)— E°k, n) is a smooth fiber bundle.
We put

Alk, n)={M, w)l(M, w)e E°k, n)<C* we M}.

Let 7 : Ak, n) > E(k, ») be the restriction of the projection of E°%, n)-{C* into
the first factor. The fiber =" Y(M) over Me E%k, n) is canonically identified with
the affine subspace M itself.

Now let L,, ---, L; be affine hyperplanes in C* in general position. If L, is
given by a linear equation

K3
Qi+ ?.4‘ a2,=0,
=

then we define an affine embedding ¢:C"->C* by ¢z, -+, 2)={(wy, -+, W),
where

k3
W= Qgg+ 2 B2y .
it

¢ maps L; onto C; and it is obvious that the image ¢(C") satisfy the condition
(P). Thus, if we put A%k, n)=Ak, n)N(E(k, n)xX(C**), where C*-~C--0, then
¢(C™~Ly U --- UL, is isomorphic to a fiber of 70| A%k, n) s A%k, n) > E%k, n).
Sinee the base space E%(k, n) is connected, the proof of (2.1} is reduced to the
following

LEMMA (4.2). =°: A%k, n) > E%k, n) is a smooth {(locally trivial) fiber
bundle.

PROOF OF (4.2). Put A=A, n)N(Ek, nyxC). Take a point y,€ Kk, n)
and let O be a small open neighborhood of %, such that there is a smooth cross-
section s of p: Mg, k+1) - E°k, n) over O. We shall construet a local triviality
¢: 7Y 0) > OxXn '(y,) such that S O)NA)=0x(x" Y y,) N A) for all 7, which
clearly suffices to prove (4.2). Let 27(0) and #°(z }(0)) denote the set of smooth
vector fields on O and z7Y(0) respectively. Constructing & map ¢ as above i3 easily
seen to be equivalent to constructing a map “Z(0) — 27 (x X0)), v+ 7, satisfying
the following four conditions.
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1) # and v are z-related, i.e.
Veen=7x(0s)
2) % depends smoothly on v.
3) If e(t) is an integral curve of v and ¢(f) an integral curve of ¥ such that
#é(0) ¢(0) then é(t) is defined for te [0, a] whenever c(t) is defined for ¢€ [0, a].
4y Regarding 7 as a vector field in E°(k, n)x C¥, let us write ¥ as ¥={(v, #V, ..,
%), where 7® is the projection of ¥ into the ¢-th coordinate of Ct If 2=
(M, wy, -, w) e a Oy (k, n) < C*, then 7¥P=0 whenever w,=0.
Now let s(y) be given by the matrix s(y)=:(b,(y)), 1=1=q, 0=j=k. Then,
(y, wye O~ C* belongs to = ' y) Alk, n) by (4.1) if and only if the relations
k

b)) 2 by)w,;=0, 1=5i=q

Fesi

hold. Let y(¢t) be an integral curve of v. A curve in Ak, n) covering y(t) is of
the form (y(t), w(t)) where w(i) satisfies the relations

() + 3 byO)w,0)=0 .

Differentiating this we get

db(y(®))
4.3) i Py

dbyyt) duyt) _
dt w,(t) + 2 by, (y(t) dt =0,

The cross-section s induces a vector field s*(v) on s(0). Let it be given by
8*%(0)eey=(v,,(y)), where we identified the tangent spaces of Mlq, k+1) with M(q,

k--1) itself as usual. We consider the equations in the unknowns %%, ..., 3®
k k

(4'4) 1)1‘0(?/) "}“ 2 v;,(y)w,-% 2:1' bu(y){)(‘i)m()
27 7=

with the additional conditions that 7”=:0 whenever w;==0.

For a subset Ick=—{1,2, ---, k} we put A’:.'GIA" Note that A, is empty if
(Il>n. We put U=="%0) and B;=UUA,;. Let U, be a small open neighborhood
of B,»«IQJB_, in lengJ. We may take U; small enough so that we have
UinnUp=@ if \Il=\I"l, I+=I'. Then {Ulosizis. 18 an open covering of U. Let
{4;} be a smooth partition of unity subordinate to the covering {U;}. We choose
a map a of {I}osirse into {I};,.. such that ICa(l). Given I with 0=Z(I1<n, the
equations (4.4) has a unique solution (", ---, %) such that 7’=0 if jea(l),
since (b;;(y))e M°(q, k+1). Then the vector field #,=(v, 7, ---, %) on U, clearly
satisfies the desired conditions 1), 2) and 4).
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We now put ¥:= 34,7,. It is easy to see that 7T satisfies 1) and 2). The
condition 4) is also preserved because of the particular form of the covering {U,}.

Next we observe that (7%, .-, ¥¥) is also a solution of {4.4) where ©=(v, ¥'9,
co, T, Thus, if (y(t), wt)) is an integral curve of ¥, then w(f) is a solution of
linear differential equations (4.3). It follows that w(¢) is defined whenever y(t)€ O.
Thus (y(t}, w(t)) is defined whenever y(t) is defined. This completes the proof of
(4.2), and hence of (2.1).
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