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1. Let T be the set of power series with integer coefficients whose radii of
convergence are equal to 1. Then the following Theorem of G. Pélya and F. Carlson
is well known (ef. [1]): A power series fe T is a rational function, or it has
no analytic continuation across the unit circle. Moreover, if f(X) 18 a rational
Sfunction, it can be expressed in the form P(X)/(1—X™)", where m and n are
natural numbers, and P(X) is a polynomial with integer coefficients.

The analogous assertion for a power series with integer coefficients whose
radius of convergence is strictly smaller than 1 is false, unless some additional
condition is imposed on the coefficients.

We propose here two kinds of such conditions: Let f(X) be a convergent
power series f}o A, X" (A, € Z) such that its radius of convergence is strictly smaller
than 1. The;—one condition is

(D): A.€Z and A, divides A,., (n=0,1,2, ---), and the other is

(K): A, is the n-th denominator of the continued fraction of some irrational
real number 4.

First, we shall give a necessary and sufficient condition for f(X) to be a
rational function in each of the two cases (Proposition 1, 2). Then we shall show
that these rational functions have similar properties to those of Pélya-Carlson,
and that the possible poles lie at the division points (i.e. Farey points) of the
cirele of convergence of f(X).

These phenomena seem to suggest the validity of an analogy of the theorem
of Polya-Carlson under condition (D) or (K), and a possibility of a generalization
of the circle method for some special functions of that type. But it seems fairly
difficult to prove this conjecture. We shall treat only case (D) with some further
conditions (Proposition 3, 4), and give an example in case (K).

2. First we investigate the condition for f{X) to be a rational function.

PrOPOSITION 1. Let f(X)= Z} A, X" such that A, _lI a., and a,€Z—{0}.
Then f(X) 18 @ rational functwn if and only if there emsts a number k, such
that a, 1s periodic for k>k,.
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Proor. Let f(X) be a rational function. Then f{X)—h(X)/g(X} with g(X),
hMX)ye Z[X]. Since g(X)f(X)wiz(X)::O there exist a natural number 7, and
integers Ny, Ny, - -+, N, (N,#0, N,7#0) such that for any n=>n,

NoA, o+ - +NA,=0 . (1)
Since A,,:«:Llﬂl a;, we have
o

Nolasrlnsz =+ Qnagt * 0+ Ny ylneyt Ny=0 . (1)

Hence a,., must divide N, for all n>mn, It follows that the g-ple %,=(a,, @u,,

“+, @q.y) has only a finite number of possibilities, and consequently there exist
two numbers s,, 8,, such that %,-=%,,. Now a,’s satisfy recursive relation (1), so
the sequence {a,} is periodic from a sufficiently large number # on. The converse

is obvious. Q.E.D.

In preparation to treat case (K), we introduce some notations. Take and fix
a sequence of integers u,, U., Us, ---. We define {u,, u,, + -+, 4 >="U, inductively
as follows:

l]’;"?'?[,] ' Ua"'“ﬂh %“1 ’ U’umuqu»14” Uv»2 s (1)23) .

We extend the definition formally by Uy=1, U_,=

Let @ be a real irrational number whose continued fractional expansion is
160, by, by, -+ 1. Put Ap=Lby, + -+, b, By=={b,, -+-, b,>, and more generally A, =
by ooy by By=biyy, o0, biyey. Hence B, is the n-th denominator of 4.

Now our proposition is stated as follows:

PROPOSITION 2. Let B, be the n-th denominator of the continued fraction
of a real irrational number 0. Then f(X)= L B, X" is a rational function
if and only if the number 0 1s a real quadmtzuc wrrational number.

Proor. Let ¢ be a real quadratic irrational number such that its continued
fractional expansion [b,, by, b, ---] has a pre-period of length %, and a periodic
cycle of length k. We need the following lemma which is essentially contained in
{81, §12, (30). But we give a proof for the convenience of the reader.

LeMMA 1. Let h>k,. Then
Bhwx:(Ag~1,n’1"“Bk-2.n)Bn+x+(“'D”lBh ’

and A+ Bio. 1s constant for h>k,.
Proor oF LEMMA 1. The following relations are known (cf. [2] §5); Bys,.i=
B Ay gt B 2B,y (v, t21). Putting v=Fk, t=h+k-+1, we have
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Bn+2k:Bh+kAkwl,h~ék% 1+Bh+k \;Bs,mx,mku .
Put I=By.oi—(Asy.n+By2.4)Brsx. Then
I:Bnﬂc(Akwl,n«:-h'vl‘“’Ax:~1.lz‘“‘Bx :,n)‘?‘ B?:%R»»}Bl—-l‘h+&¢) .
Here we note the facts that {uy, -, U= UUy, <+ +, U+ Uy, » o, Uy (ef. [2] §5,
(28)), and by definitions
<RI’ . uc>-;;uv<u“ N uv~1>'7‘"<ux‘ “ee ?(r~2> .
Since b,..,=b, for i>k,,
Ak-l,h+k+1“-‘4kwl,IL“Bk»-2,!zr::<bh+k+lr Ty bn+ak>““<bm ] bm L’»~1>“‘<bh+ly Sty br:u-,::>

=00 psr, 00y Broeap—<buy oo 0y brasny
z~'“<bn@2; Ty br:+;¢~1> .

So we have
I’_‘-:(_l)(<bh$27 ey bn+k—1>Bh+xz"“<bn 2y "0y bh+k>Ble ml)

:Bm;;~1<bn+:y T bnsk>‘“<bn rar C 0Ty blr'fk 1>(bn~‘«a-8n->x vt Bh »k»c)
::Bh+k-ﬂ<blz+21 Tty blz-?»k—2>“Bh+kn2<bh+2y ] b!z+k ).

For general 1<k, we obtain inductively
I:(~1)i(<bh+2, Tt bm zcwi>Bn+z; fi'!~\u<bh+2! ST bh ‘»k~¢+1>Bh+k~1)
:(_I)Xﬂ»lBh .

Last assertion follows from easy calculations. Q.E.D.

By virtue of this lemma, put 4., .-+ B cnza (B>k). Then f(X) can be ex-
pressed in the form P(X)/(X*-—~aqX*-(—1)%) with P(X)e Z[X].

Conversely, take any continued fraction [b,, by, b., -+ -], and consider the power
series J‘”(X):—-‘éjj_1 B, X™ with B,=<b,, -+, b.>. If fiX) is a rational function, then,

as in the proof of Proposition 1, we have
NoBoigb NiBousgos+ -+ +N,B,=0, for n>>mn,, (1)
with Ny, ---, N,€ Z (N,#0, N,+0), and B,’s satisfy
Boty=bnsoBaii-+Ba . (2)

Since B,’s are natural numbers which increase monotonously as n increases, we

obtain
b,,+an+q_1 <Bn+q<((lN11+‘N2|”L ree ‘%"!qu)/ INODBnH]—! .
Hence we have b, <(IN,I+ --+ +|N,)/IN,l. Thus b,’s are bounded for n>2>n,1¢.
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Since they are natural numbers, b,’s have only a finite number of possibilities for
n=n, -q. Now, by substituting the relation (2) into (1), we obtain

Qan-bL”é‘Ran:'io 1 (3)
Whel'e (L)n. "Nﬁ<bné2v ttty bn»‘~q,\"“*‘Nl<bn?~29 tt bnél;—l‘)’é‘ crt '“}'”Arq~2bn«.2+ g-1 and Rn:_‘.
Nﬂ<bn~:~.’u Tty bn+q> i ;Vz(\bn w39 T % bn;.qw;)' ; vt "*“N,IA 3bn+3+N _2":‘Nq. NO\V bn,sy and

also @,’s and R,’s have only a finite number of possibilities. But B,—cc as n—
oo, and G.C.M. of B, and B,., is equal to that of B, and B,. So relation (3)
implies @, =R,~0 for all sufficiently large 8. Thus b.., is recursively determined
by buiz, -+, by 1 from the relation @,=0. Now we can conclude the periodicity
of the sequence {b,} as in the proof of Proposition 1. Q.E.D.

REMARK 1. The quadratic equation X*-aX-i-(—1)*=0 is the characteristic
equation of # (ef. [3], §10).

REMARK 2. In case that f(X) is a rational function, possible poles of f(X)
lie at Farey points of two concentric circles.

3. Now we study the nature of non-rational function f(X) under condition
(D) or (K). In particular, we wish to show the validity of the analogy of Pélya-
Carlson’s Theorem. But we can solve this problem only in case (D) with some
more additional conditions.

Let f(X) be a power series with 1/p (<1) as its radius of convergence such
that its coefficients satisfy condition (D). Let P be the set of all the rational
primes, and we arrange primes Pe P in the ascending order i.e. P;==2, P,=:3, Py=
5,---. We denote by vp(n) the exponent of the P-part of the coefficient A,.
Then by virtue of condition (D), vp{n) increases monotonously (in a wider sense)
as 7 increases. We denote vp(n)/n by #,(n).

PROPOSITION 3. If lim #p(n)=0 for all prime PeP, then the circle of
convergence of f(X) is ;;ze naturael boundary.

Proor. Let N be the cardinality of {i;1<n, A,_,#A,;}. Hence N< 3 vs(n).
So if we ascertain the relation }Lrg (P%jpvp(n)/n):(), we can apply Fabry’s Li;,celfensatz
for the function (1—X)f(X), and we obtain the expected conclusion. Since the
radius of convergence of f{X) is 1/p, the numbers %p(n) satisfy § (log P)¥p,(n)<c
with some constant ¢. So for any given ¢>0, there exists a m;rznlber t such that
‘2;@ #p,(n)<cllog P,<e. Therefore, by the assumption that 7,(n)—0 as n—co, we

-

have p Tp(n)<2¢ for any sufficiently large n. Q.E.D.

P
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We treat below another type, which, in a sense, make a contrast to the
preceeding case.

@

PROPOSITION 4. Let f(X)= Z:OA,,X“ (A.€Z) be a power series such that A,
divides A..,. Let 1/o be the r:':diuS of convergence of f(X) and assume that
SX) satisfies the following properties:

There exists a set S of finite number of primes such that the coetlicients
A.'s satisfy

(i) lim|AP | "=p, where A~ 11 Prrw,
P e

(i) for all Pe S, #x(n) oscillates slowly (i.e. #p(n)/To(m) tends to 1 when
the two natural numbers m and n, satisfying the inequality m<n<em with
some constant ¢, tend fto infinity).

Then f(X) is a rational function, or it has no analytic continuation across
tts circle of convergence.

Proor. First we quote some results of G. Pélya. Let 1. be the determinant

Then the following two lemmas are known.

LeEMMA 2. (cf. [4]). Let f(X) be a power series whose radius of convergence
ts YVo. If fIX) has an analytic continuation across its circle of convergence,
then [im |40 Y090 g holds for N-on, and n—1.

LeEMMA 3. (cf. [1]). For a power series f(X) to be a rational function, it
18 necessary and sufficient that there exists a number n, such that 477 47 9 0
Sor all ni-n,. /

Now let f(X)== ,_\::‘)A,IX" be a power series whose cocfficients satisly the assump-
tion of Proposition '47.(1 and assume that f(X) is not a rational function. Then by
virtue of Lemma 3, there are infinitely many number » such that J4.°:0 or
Lm0,

We assume first 477220 Tor infinitely many #n. Since the determinant 47 is

a sum of terms of the form
()4, --- A (T a0 o 2aln 1), weTd, 03w,

ta -l -

we have the exponent of the P-part of
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(wplt)+ - - Vp(Tass)) -

We denote this minimum by Vyin,n).
In case PeS, by n<i,<3n and condition (ii) of the proposition, we have

(wpi)+ o A vp(ia))/ 2n(n-+1)
Bl P Tpli)in t e FTplineime) 20+ 1) Tp) ,  as mooo . (4)

Since 4% is an integer, and PY+®.™ divides 4%, we have 1I Pream gm0, if
Fe$
4770, By condition (i) and relation (4), we have | Il Pvetrmiii2atntl g g5 p-sco,
i PES - - -
g0 lim [4W|/tniD =g By Lemma 2, f(X) has no analytic continuation across
TGO

its cirele of convergence. It is obvious that the same reasoning works if we assume

that 47-1:+0 for infinitely many =. Q.E.D.

4. It seems plausible that Proposition 4 remains true in a wider situation.
But even in the case such that the set S contains only two prime numbers, the
problem turns out to be a difficult one if these two primes satisfy only condition
(i). In this case, the problem seems to be related with diophantine properties of
prime powers, such as Pillai’s Theorem with respect to the growth order of p*—
q', where p and g are prime numbers and two integers = and ¥ tend to infinity.

In case (K), the situation is even worse, and we can treat only some cases
which can be reduced to the Liickensatz. For example, take a continued fraction
[Bo, by, be, - -] with the following properties:

(1) b,=xaq or b, where a and b are fixed two natural numbers;

(I) Let Am)=8{i;+<n, by=a} and Bn)=48{2; i<n, b;=>b}, then A(n})/B(n)-0

as n->09,
Then, it is easy to see that the power series f(X )::,OZOI B, X" with B,={b;, ---, b
satisfies the following assertions. "

(1) The radius of convergence of f(X) is ((b*4+4)*—b)/2.

(2) The power series (1—bX—X?)f(X) satisfies the Liicken condition of Fabry,
and its radius of convergence is also ((b*+4)/*—b)/2.

So f(X) has no analytic continuation across its circle of convergence.
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