A p-adic analogue of the ['-function*

By Yasuo MoriTa

In this paper, we shall construct a p-adic analogue of the classical I'-function.

In §1, we shall construct a p-adic analogue of (—1)*I'(z) as a continuous
funection on Z, with values in @,. In §2, we shall obtain an interesting theorem,
uging the results of Kubota-Leopoldt [3]. In §3, we shall prove that the p-adic
analogue of (—1)I'(z) is analytic.

The author would like to express his deep gratitude to Professor M. Sato,
whose philosophy had a very strong influence on the author when he was studying
this topie, and to Professor K. Iwasawa, who pointed out to the author the im-
portance of this problem.

Notation. Let Z,Q,Z,, @, be the ring of rational integers, the field of
rational numbers, the ring of p-adic integers, and the field of p-adic numbers,
respectively. For any ring R, we denote by RE* the multiplicative group of all
units in K. For any two integers a¢ and b, we denote by (a,b) the greatest
common divisor of ¢ and b.

§1. (—1)*I',(z) as a continuous function

Let p be a prime number, » a natural number. We define a function I ,(n)
on the set N of all natural numbers by

Fyny= 11 ¢t.
thsre

It is obvious that values of I",(n) belong to the group Z; of p-adic units.
Let a,v be natural numbers. We assume a#£2 if p=2. Put

Izrp(”+pav)/Fp(%) .

Then we have
I= 11 ¢

NSt SR+ pTeyml
{t,pl=1

=( I )7 (modp)
{Eme

=( I ¢ (modp.

te(Zp%z;X
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Now we consider the following map:
e ZlprZy vy g ie(Zip 2y .
Then we have
I=( 11 t¥  (mod p™)

{t.t (Liptsy R
eyt

=(  II ) (modp*).
{Ié:([.vp"l)x
ey

If p is an odd prime number, (Z/p°Z)* is a cyelic group. Hence 1 and —1 are
the only elements ¢ of (Z/p*Z)* such that t*-=1. On the other hand, if p==2,

(Z)pZ) = Z12Z) < (Z]2*Z) .

Hence the product of all elements ¢ of (Z/2Z)~ satisfying {*=1 is 1. Therefore
we have proved the following

LEMMA 1. Let n,a,v be as above. Then we have
, B (G if p+2,
Iyntp*-v)ly(n)= (mod p*)
1 if p=2.
Since the right hand side of the above equality is obviously equal to (--1)2",
this lemma implies the following

THEOREM 1. Let p, I',(n), « be as before. Let ny, n, be two natural numbers
satisfying ny=n, (mod p*). Then we have

(=Dl ()= (1)l (n)  (mod p°) .

In particular, (1" (n) can be extended to a continwous function from Z,
to Z,.

REMARK. Since I',(n) satisfies
fffff n(—1)"n) if nepZ,
=10y if nepZ,
for any natural number =, this functional equation holds for any ne Z,. In

particular,
Fp( - n) == H t«l

{wn§t§0
(¢,pr=1

for any negative integer —n.

§2. An application of the results of Kubota-Leopoldt
Let p be a prime number, C, the completion of the algebraic closure of @,.
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Put ¢=4, if p=2, and ¢=p otherwise. Let | | be the valuation of C, such
that {p|=p"'. We denote by .>" the ring consisting of all power series A(u)=:
}‘S’Oa,,(u—l)" (a.€ Q,) that converge on the set U={ue C,llu—11<{ql}.

For any A(u) of .57, we define Al by

fAl=max la,q" .

Then it is known that || || is a norm of % and || || satisfies
(i) L goae | =pay
k{ i ety i
and
(i) L javp<)Al
k| =

where k is a non-negative integer, u is an element of U, and A is the k-th
derivative of 4 (ef. Kubota-Leopoldt [3]).
If p==2, we define w(x) (x€ Z,) by

w(2)= lim 2?" .

N0

Then w(x) induces a Dirichlet character modulo p. If p=2, let w(z) be the
quadratic character with conductor 4 such that w(z)=2z (mod4). For any p-adic
unit = (p is any prime number), we define <&> by z=w(z)-{z>. Then { > induces
a map from Z} to U.

Let x be a Dirichlet character, f the conductor of x. Let f be the smallest
common multiple of f and ¢. Further, for any subset I of Z, :2;;" denotes the
sum over all z such that z is an element of I prime to p. For any natural
number #n, we define a linear operator M} on & with values in C, by

mmmﬁ§MW@HMﬂm

Then Kubota-Leopoldt proved that (i) for any A€ %, the sequence {M;(A4)}7.,
has a limit My(A4) in C,; (ii) there exists a constant C, depending only on 1
satisfying
M ADISCH AN
and
Mg A) - DA SColl Al fgn] -

-

In particular, M A)|SC Al and hence M, is a bounded linear operator on .%

with values in C,.
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Let z be an element of ¢Z,. For any natural number n and for any element
A of 5, put

My o(4)= 1= TH y(0) Aa+2) .
far =

By the Taylor expansion, we have
Az +2D)= A+ o Hx)2)
— Z __]‘A A(m)(<x>)w—m(x)zm
m!

mzl

Hence we have

z { s z*xw“M(x <m><<x>>}

z
= 5 My, (A Z
mzo m!

Since w(z) i3 a Dirichlet character, some power of o is the trivial character.

Hence the quantity

C’;_—“. max Cy,-mn<oo

tEmee

is defined. Hereafter we assume that };0”% A™(y) ” is finite. Since
L i :

Z (k”“m)am(u%)"q“
kzo\ k
— 3, max (k+m)ak+mq"*"'

mei k

= 7 max |ag.q**",
mat ok

z

mzo

q A(m)(u) “,_ Z(‘g

this condition is satisfied if A(u) is convergent for |u—1|=<{q]*~* with a positive

number ¢. Then we have
Ve HA) -] (A)|S max [ DL (A™)— M (A™)]|E—
: ' mz0 @ m!

o™
qm
m! }

< max CHIA™|| fg 1

SCHIAlfe

Hence the limit

My, (A)= lxm‘JR" J[(A)
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exists. Furthermore, since

T | Myy-n(dm) Enl <
m!

m20

for any natural number n, we have

My (A)= 2. hm‘m,m—m(A‘”")m—

MmO N0

= 5 Myy-n(A0) 2
mzo m!

Therefore we can define an analytic function F, , from ¢Z, to C, by
F, (2)=Ty, (A)~T[{A) .
Now we assume that z is an integer satisfying z=0 (modf ). Then we have
wet2)=x(z) .
Therefore we have
.1 e .1 T
Fya(2)=lim —— Z*x(x)Az+20)— lim —— 2¥* 2(x)AKzD)
n—oo fq z=1 R fq"z:l

= lim 715-’2* 1(@+2) A+ 25)—1(z) AKED))

= lim — 5 (e f) A7)~ K) Aa)
= T lim — A+ )
Prig x(x)hmT{A«xwdw-*(m V) — Az}

i

!x

H

2} “x) hm ~{A o>+ hy— AzD)}

= I¥ 10 @) AV ;

here Z* should be replaced by — Z* if z is a negative integer. Therefore we

z=0

have obtained the following

THEOREM 2. Let p,C,, ¢, 0, %, 7, 5% be as before. Let A(u) be an analytic
function Z a.(u—1)" {a,€Q,) that is convergent on U,={ue C,llu—11=lglr™}
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for a positive number ¢. Then

Fole)= im = 30 10) Al +2))

—im =Y aw A
7 —eae fq”x,;)

determines a well-defined analytic function from qZ, to C,. Furthermore, if
2 18 an integer satisfying z=0 (mod f), we have

[Zrwmwarn i a2,
FA,Z(Z);V: [:ﬁ

L (@ AYKEY) i 2<0.
REMARK. It should be noted that, if A(u)= } a,(u—1)"€ & is convergent
nae0
for {u—1|<p, then
Foz)y= X m?z@""(A(m))‘z:—
mz1 m!

is convergent for |z|<p.

REMARK. If |zl<lql, the linear functional M, ,: A(u)— My .(4) is well-defined
and continous on ¥ .

§3. (—1)[",(z) as an analytic function
Let p be a prime number. Put

An)y=ullog u—1),

S (=1t

=1

log == (u—1)".

Then A(u) is an element of ¥, and
AV =logu .

Let @ be the Dirichlet character modulo g that was defined in §2. If follows from
Theorem 2 that F .(2) is an analytic function from ¢Z, to @,. Moreover, if 2
is 2 non-negative integer (resp. a negative integer), we have

Fy.o(2)= Z:“ log <a>

(resp. Fy o(z)=— Eﬂ* log <2>) .
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Let (—1)'T,{z) be the continuous function from Z, to @, that was defined in §1.
Then the preceding facts imply that log <(—1)*" o2-+1)> is an analytic function
from ¢Z, to C,. Since (—1y*I'(2+1) (z€2¢Z,) belongs to U’'--{ue Z, w1

{2g]} (cf. Theorem 1), and since exp(u)= E -@;— satisfies

m=0 M
exp (log wy=—u
for any ue U/, we see that
(—1y " (z+1)==exp {log {(— 1) (z-+1)}]

is an analytic function on 2¢Z, with values in @,. Therefore we have proved the
following

THEOREM 3. Let p be a prime number, (—1)*I',(z) the function defined in
§1. Put q=p, if p+2, and g=4 otherwise. Then (1) (z-+1) is an analytic
Sfunction from 2qZ, to @,. Namely, (19", (z+1) can be expanded as a con-
vergent power series éon(z“zo)” (1.€ Q,) for every z,€ 2¢Z,.

REMARK. It follows from the caleulations in §2 that
log (I'p(z+-1)>=M,(log wz-+ X DMor-nl(--1)"(m—2)! u"’““)% .
We note that
(i) log <I"p(1)>=0;
i d 7 S
(if) - bz—log Tty | =—Mllogu)

which is a p-adic analogue of the Euler number:

(iii) (g;)zlog Tz 1= My )

o ) 7 d [P 1
which is a p-adic analogue of ( P ) log I'(z-+1)= }; (n+2)

(iv) the above Taylor expansibn of log<I',{z+1)> is convergent for any ze C,
such that |z|<1.

(ef. Appendix);

REMARK. We can prove that (--1)**'I"(z-+1) gives a uniform analytic func-
tion on {ze C,12|<12¢]} (cf. Krasner [2]).
§4. Further discussions of analytic properties

Let p,q, A etc. be as in Theorem 2. Let f be a natural number divisible
by ¢, v an element of Z/fZ such that v (mod p)e (Z/pZ) . For any natural
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number 7, put

Gq {13:;&!05‘];

r=vi{mod f}

Then, following step-by-step the proof of Satz 1 of Kubota-Leopoldt [3], we can
prove that (i) the sequence {f17{A4)}7., has a limit N,(A4) in @, ; (ii) there exists a
constant C, depending only on (f and) v satisfying

AN G AL
and

IR+ A)—Re(AISCI ANl fam)

Therefore, as in §2, we can prove that (i)

N, (A)= lim7-1—; 5 AKe+2)

e J@U ngasien
z:zv{mod f)

is 2 well-defined analytic function on ¢Z, with values in C,; (ii)
Ron(A)= T 0 m)R(A™) L
mzo m!

(iii) if z is an integer satisfying 2=0 (modf), then

L e ANYKD) if 220

5282 -
z=v{mod )

— 2 eTWAYK) i z2<0;
{t%léﬁ) -
zzv{mod S}

T (A)-R(4)=

(iv) if ¥ is a Dirichlet character modulo f, then

My, (A)= DN )N, (4) .
ve Zire
{w(mod me(ZlpZyX

Let v, v/ be elements of Z/fZ such that v (mod p), v/ (mod p)e (ZipZ)*. Let
#, ¢ be natural numbers satisfying 1<y, o/ <f-1, ,u(modf):u and (mod f)=v".
Suppose g5y’ Then we have N, ,(4)=MN,s .., (4). Therefore N, (4) is, as a
function in 2, well-defined on {z€ Z,|z# —v (mod p)}.

Let A(u)==u(log u—1) be as in §3. Put

LR)=wp+2)N,, .(A)—o()T(4)

for each ve (Z/qZ)*. Then the above remarks show that (i) f.(2) is well-defined
on {ze Z |zt —v(mod p)}; (il) if z is a non-negative integer (resp. a negative
integer) satisfying 2z —v (mod p), then
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L=+ N, (A)—o@)R(A)+logd  TT x>

15252
zEp+2{mod ¢)

(resp. f.(2)=0+2)N,:,(A)— )R, (4)+ log < o 27);

25Ts
zmy+2z{mod ¢}

(iii) log (—1y* I (2+1)== Z f,(z) for any ze€ 2¢Z,.

vE(ZiqZ
Let z be an element of qZ,,. Then we have

£lay= I oA 2

Hence
(—%)2 D)= T oo amn) £
=0 ' )N, (u™)
— 1
mee g gt a2
Put

1 1
2)= > =
gx(2)= "“ {xsmq"‘“ x+z
z=y(mod g}

Then g.(2) is a rational function in 2z such that its poles are in the set
2
{z€ Z,l2++v=0mod ¢} and such that the sequence {g,(z)}nz: converges to (-—g;) J.(2)

for each ze ¢Z,.

Now let z be an element of the complete algebraic closure C, of @, such that
lz+vol>1gl, where v, is the smallest non-negative integer satisfying v,=v (mod ¢).
Then we have

n+l {mi(slg"“ (a: vo)+(z bvg)
(=™ z~—y)™

gt {15150""‘1 mzo  {(2-y)m*t

b .
z{ (z—vp) }—~—-—~——-—

n20 (z-+yy)mtt

g.(2)=

I-"Q

qnﬂ {15:5‘1"'“
ze=y(mod g}

5 {l 5 xm}(_:l_)."‘.{l_"'_“_

nz0 {@™ 1525¢7 (z+pg)™ !

i

Therefore we obtain

I e
lim g.(2)= lim mZZO{qn 2B ” } (z+ve)™*



264 Yasuo MoORITA

<5 fim 2z P Lo

%0 {noe @Prniden f(z%‘vo)”‘“

3

e q-t ._!L. -1 -3 m ™
s TS iyt e o)

(__,_,l)fnqm*‘l 1
l_pm“l (Z%‘vo)’"“ *

Furthermore, for any positive number ¢, this convergence is uniform in z for any

2
z€ C, such that [z+vl=lgl'™. Therefore (—g;—) f.(2) is a uniform analytic func-

tion on {z€ C,U{a}llz+4vol>1¢l} in the sense of Krasner {2].
ReEmaRrk. If z is an element of {z€ C,{co}l|z]>1}, we have

d \2 i — _— my m 1
(“éz—) log <Lz +1)>= 5 (— 1" Pam(w™) =55 .

We note that this formula is a p-adic analogue of the well-known asymptotic
formula

<d' >zlogI"(z-H)Nmzo(—l)”‘(~-“m)l(1*~m) 1

dz zm*l *

Appendix

Let &(s,z) be the Hurwitz zeta funection. Hence

- 1
C(S) Z) . ué() (2%‘ n)‘

for any complex number s with Re(s)>1. We define polynomials ¢,(z) in 2 by

e 2 dala) (="
eut,“.l “m}:‘l m! '

Then it is known (cf. e.g., Whittaker-Watson [4]) that if s is zero or a negative
integer (==-—m), we have

Praal2)

{(—m, 2)=— m .

Let p be a prime number and put

Uls,24l)= 35—
(s Erm

Then we have
s, 2+ 1)=Ls, 241)— p“‘{(s, % +1) ,

Hence
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(=m, z4+1)={(—m, z+1)-:0’"{(—m, % +1) .

Now, as a formal power series in z and {, we have

e-‘tt . e—nte—lt . e-—:z(l__e“nz)
et —1 e*—1 et—1
fn—1
:__,e-lt E e—!c
n—1
e 3N gTGtEM
k=0

n-+(a function in n of degree =2).

Now we assume that 2z is an element of @, such that |z|<lq] and n is a power
p® of p. Then, taking the limit as a— +oo, we obtain

tem @ g LA (=)
S =3 {hmpa kZ:IO (z+Fk) } paall

e t—1 m=o
Hence we have

1 m+
{(—m, z)mmu—+—f 1m——— Zj (z+k) L,

Therefore

U(—m, 24+ 1)=L(~m, z+1)mpmc<nm, £ )

1 *

e . + m+l
+1 u—am p A!; (z m)
1

= M m m+1
m+1 ™

This proves the following

THEOREM. Let p,%, w,2, Wy, be as in §2. Let {’(s,z+1) be as above. Let
m be zero or a non-negative integer. Then we have

U=, 24+ 1) = — — e M ()
m-+1
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