The conjugacy classes of the finite Ree
groups of type (Fy)

By Ken-ichi SHINODA

{Communicated by N. Iwahori)

In the paper (3], the author has determined the conjugacy classes of the finite
Chevalley groups of type F,(2"). From the results of that paper many informations
about the finite Ree groups of type ¥, —*F,(g)— can be obtained. In this paper,
using those informations we will determine the conjugacy classes of 2F,(q).

After some preliminaries in §1, we shall settle the case of the unipotent classes
in § 2, in which some examples of H'(¢, Z/Z° will also be given. In §3, the semi-
simple classes and the general classes, i.e. the classes of type x=gx,z, (z,#1, x,#1)
where z, (resp. z,) is the semisimple (resp. unipotent) part of z, will be treated.
Moreover the calculation of H(s, W) will lead us to the classification of maximal
torus; with respect to this problem, see [4], p. 191 and p.213.

§ 1. Preliminaries

(1.1) Throughout this paper, % denotes the finite field with l=22"+! elements, k
the algebraic closure of k, g=+/1 and #=2". G (resp. G) always denotes the Che-
valley group of type (F,) over %k (resp. k). Under this situation we shall follow
the notations in [3], §1; for example, B, H,U, N are the subgroups of G, which
are a Borel subgroup, a maximal torus splitting over the prime field, the maximal
unipotent subgroup of B and the normalizer of H in G respectively, and B H, U,N
are rational points over k of B, H, U, N, respectively., @ is a root system of type
(Fy) and 4 is a set of simple roots whose elements are

1
€:—€;, €3—€;, €, E<e1~ez—es—ea).

We set P.= }C: Za and V=R®;P,. Then V is a Euclidean space of four dimen-
agP

sion and {ey, ¢,, e;, ¢,} is an orthonormal basis of V.

(L.2) There is an abstract outer automorphism ¢ of G, also of G, expressed explic-
itly in Ree [2], p.405, Theorem 2.7. For a subgroup X of G, X, denotes the
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stabilizer of ¢ in X, i.e.
X,={z€ X|o(x)=2x}.

Then G,=G, holds and G, is a Ree group whose conjugacy classes we are going
to study.

(1.3} We shall use the following notations used in [2], p. 407;

() =24 (8%) 254 (£) 25 (£°41),
)

il

g (t) =24(8%)2344(F),
ay(t) =Ty poa4(t0) 2y 4(t),
aylt) =% _5-344{8%) Tom o (£} Trga—5-oEFY),

{

(

(
as(t) =2, (t%) 2,5 (t) 2, (£°F1),
a6(t) = T1-245-4 (L) T4 (E) D142 4344 (E7*1),
a7 {t) =T1-543+4(8%) (
as(t) =T142-3-4(87)21-5(t),
() =y p2-544(87) 2y -a(t)
a19(t) = Trra43-4(E)Tr44(t),
11 (t) =Trio4344(89)2145(2),

(t)

(44T t

£,(8%) 3 142(2).
a,(t) is an element of G, if tck.

{1.4) Any element of G, can be written uniquely in the form g=uhn,v, where
ue U, he Hy,ve (Uy,)e and {nylwew, is 8 representative system of W,=N,/H, in

N,. Hence
Ga= UW UaHunw(Uw)a-
we Wy

If we express an element h{y) of H as

h{x)=(2y, 22, 23, 24),

where y e Hom(P,, k*) and x(e,)=z; (:=1,2,3,4), then h(y) is an element of H, if
and only if it takes the following form:

26— I)
»

RO =(e, 62777, €5, €3 where ¢, € k*.

Any element u of U, can be written uniquely as follows ([2], p. 407, (3.4)):

12
u= [] «;(t;), where t;€k.
i=1

W, is isomorphic to the dihedral group of order 16 and is generated by 7,=
To_glig-g-g aNA 13={r -, )i =147, which satisfy the following relations:
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=1, ri=1 and (r,r)=1.

(1.5) For the determination of the conjugacy classes, the following propositions
are often used and well known.

PROPOSITION 1.1 ([4], p.176, 3.4). Let C be a conjugacy class of G stable
under 0. Then
(a) C contains an element stabilized by o, and
{b) if z is such an element, then the conjugacy classes of G, contained in G,NC
correspond bijectively to H'(a, Z5(x)]Z ().

PROPOSITION 1.2 ([4], p.197, 8.9). If t is a semisimple element of G, then
Zs(t) 13 a connected reductive group.

§2. Unipotent classes

(2.1) From Proposition 1.1, it follows that in order to determine the unipotent
classes the following caleulations are needed and sufficient:
(1) To list up the unipotent classes {C;} of G such that ¢(C)=C..
) For each C, to find an element u; contained in C;NG..

) For each u,, to calculate Hl(s, Z,/Z}), where Z,=Z4u.).

) To find a representative system {u,;} (u; ;€ C) which correspond to the
elements of H(s, Z,/Z3).

{5) To calculate Zg,(u;.;).

(1) and (3) are almost settled in [3], Theorem 2.1 and (2) and (4) are theoretically
solved (ef. (2.4) below).

(2
(3
(4

(2.2) For convenience’ sake, we summarize and rewrite the results about the
unipotent classes of G in Table I (ef. [3], §2).

(2.3) Table I shows that there are 10 unipotent classes in G which are stable
under ¢. If Z/Z°=1 or Z,, then ¢ acts trivially on Z/Z°. Hence we have only
to caleulate H(s, Z/2% for Cy, Ciy and Ci.

For the representative elements contained in C;NG, (i=14,17,19), we can
choose

wy=as(Vas(l) € CuNGo,
up=ap{)a,(1) € CxNGo,
us=cy(Day(1) € C1oNGo.

We set Z;=Z,(w,) (i=1,2,83), and for an element z¢ Z,, # denotes the canonical
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Table 1.
G a(Cy) rep. element diagram VAV A
Co Co ze=1 & 1
Cy Ce z3 o 1
Ce C 7] ® 1
Cs Cs I3 c::i:a 1
Cy Cy T4 ° ® 1
Cs Cs X5 OF Zg OO Zy
Cs Cs z7 O Ty *® Zy
Cq Cr 2y OF Lyp lo——="=" ] Z,
Cs Cs Ty OO ® 1
Cy Cy 2y o &+ 1
Cie Cu 13 oY . 1
Cu Cu Ty o e 1
*
o 1

Ci Ciz 25 e

Cu Cy L1 % 1
Cus Cu Ty7, Tigs OT Tyo %1 &,

O

Cis Cis T20 OF 2y Zs

Cu Cis Tgs O g oc—p—o Z

Crr Cy Ta4, o5, X26, Loy OT Tag +“ Dy

Cis Cs 25 OT Tsp + [T - S U, CU——, Z,
. °

Cis Cis T31, 32, T3y OF Tgg o » Z4

Remarks on Table I: (a) x; in the column of “representative element” denotes the ele-
ment defined in Theorem 2.1 of [3]. (b} The column of “Z/Z " denotes the group Zs(z)/Zg(z)°
for z€C;. ©; is the symmetric group of degree 3 and Dy is the dihedral group of order 8.
{¢) From each class C;, we can take an element z such that z= .I’Il:va‘.(l) (1£7<4) where

a; ¢ @ and {a,, ..., a;} are linearly independent. This element is not always equal to “rep-
{Continued on next page}
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image of x in Z,/Z!. These notations, u;, Z, (t=1,2,8) and %, are used only in
(2.3).
First we calculate Z,/Z} and Zy/Z;. We set v=ay(1)a,(1), then

Zl/Z?:<77; fd>:@31
since #*=7;=1 and (#7,)*=1; and
Z3/Z23<Z73>=Z4.

Hence ¢ acts trivially on Z,/Z; and Z,/Z;, and so the elements of H'(s, Z,/Z0) or
H'(s, Z,/ Z3) correspond bijectively to the conjugacy classes of &; or Z,, respectively.
Next we consider Z,/Z;. We define v; (i=1,2,8) as follows.

1 =25(1)2,(1),
V=0 g.5-4(1)%;3-(1),
Vs =Ta-¢(1)T1-p-544(1).
Then we have
Zz/Zgz By, T =Dy,

since 7i=1 (1=1,2,8), (5,%,)*=1 and (9,0.)*=%; hold. o interchanges », and 7,
hence it follows that H'(o, Z,/Z3) consists of three elements:

{Iv 77lﬁZ: ’52?71, 773}1 {ﬁls 172} and {171?73) 5253}-

From the results above and Table I, it is easily deduced that G, has 19 uni-
potent classes,

(2.4) Step (2) and step (4) in (2.1) are not so easy. Step (2) is solved as follows: if
C=0(C) and z is an element of C, then there is an element g in G such that x=
go{z)g™*. From the theorem of Lang-Steinberg, we have g=zo(z)~* for some z¢ G
(cf. [4], 1, 2.2). Then z7'xz is a desired element. Step (4) is solved as follows:
let g be an element of Z=Z,(u)(u€G,), then the corresponding element of G, to
the element of H{g, Z/Z°) represented by g is obtained by z~'uz where 2 is deter-

(Continued)

resentative element”. For such an element, we can associate a “diagram”. This diagram
consists of nodes and bonds; the nodes correspond to the roots {ay, ..., a;} and the node O
(resp. @) stands for a long (resp. short) root; the number of bonds which bind the nodes

corresponding to the roots « and § is equal to 74, 14,4, Where 74, ,9:2(%5)1“; the sign +
above the bonds (for example Cs: O==%-@) shows that (a, 5)>0. Roughly speaking, the
automorphism ¢ interchanges long roots and short roots, hence o(C;) can be read off from

the diagram.
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mined by the relation ze(z)'=g (cf. [4], I, 2.7).

Difficulties lic on the way of finding the element g such that z=go(x)g™ in
step (2), and finding z such that ze(z)"'=g¢ in steps (2) and (4).

But we can find representative elements in some way: in some cases by using
above method and in some cases by the examination of all the possible elements.
We omit the process how to get the representative elements, but as a result we
get the following theorem.

THEOREM 2.1. G, has 19 unipotent classes. Their representative elements,
the orders of their centralizers and the class of G which contains the class of G,
are given in Table II.

The caleulations of the centralizers in G, are straightforward and quite similar
to those in G and much simpler. Hence we omit the proof, but we explain some
properties of Z; (u,).

u, € Z(U,)
Zg (w)) = U, H, U Us Hyro(Uy,)o,

where H,={({1,1,¢,¢?1)]e € k*}, and (Urb)a:{al(tl)az(t2)]ti €k}
ZG,,(uZ) = U,H, U U,HIT(;(Uru)d'
where U'={ T a,(t)|t;€ b}, H' ={(e,e? %, e %1, %) e € k*}, and (U, )o=las(t)|E € K}

11,4 [

ZGo(ua) = U”Hg U U”Hz'rb( Ufb)a,
where U’={as(n) Tl ai(t;)lnp=0 or 1,t;€k}.
$£3,4,8,7
ZGq(ud)=ZGq(u3)‘
Now we define the “parabolic” subgroups P,, P, of G, as follows:

P¢=Ba U Barﬂ(Ufg)d’
Pb:BUU Barb( Urb)ﬂ'

Then Z; (u)C P, and Zg,{uy), Zg,(Us) < B.
Ze uINUsS Ze (u;)C Py (i=7,9).
For the other u,, i.e. 1=5,6,8,10,11,...,18,
Zg (w;)C Us.

REMARK. It is known that the number of the unipotent elements in G, is g*.
Hence it is possible to prove Theorem 2.1 directly without the calculations of
H'e, Z| Z°).
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Table 1L
rep. element %; 1 Zg,{us)] iy Ui
up=1 g¥#(g*—1)(g°+ D{g®~1}g"2+1) 1
U= agp(l} q*{g?~-1){(g*+1) X3
Ag=ayo(l) q2(g*-1) A
us=ag(1jay(1) 2914{g?—D){g*+1) Z10
us=ag(l) 2g1{g?-1){g*+1) T1o
us=a7(1)ag(1) gt T
‘us“as(l)a?(l) q' Z1s
= ag(1)ag(l) 6q'? Ty
=ag(1)ag(1)as(1) 2q2 21
=a(1)ag(1)as(l) 3¢ gy OF Ty

um“‘az(l)aa(l) 2¢® T28
U =az(1ag(1ag(l) 4¢8 Tos
e =0(1)a,(1as(1)as(l) 4¢® To8
ugg=az{1)ag(l) 2¢¢ T2g
uye=az(1)ag(l)es(1) 2q¢ . T2
wys==ay{1jog(l) 4q* L34
wis=ay(Hay(l)ag(l) 4¢¢ Taz
ur=ay(ljag(1)as(1l) 4g* T
u=ay(lag(ljas(L)as(l) 4g* Tge

* If X®+ X+1 is an irreducible polynomial in k[X], then us~=1, while if
X84+ X4 1 is reducible, then ug~ayn.

§3. Semisimple classes

For the determination of the semisimple classes, the program showed in [§2,
(2.1)] is also valid in this case, but much simpler way exists: the ealeulation of
Hi(g, W).

(3.1) Each element of W acts canonically on P,=a§¢Za and on V=R®,P,. W
acts on V faithfully as the orthogonal transformations. Let ¢ be this representa-
tion of Winto O(V). ¢ acts also on V and we write the corresponding element in
GL(V) as ¢*. It is well known that o*=gr where € O(V). r is expressed rela-
tive to a basis {e;, ¢, €;,¢,} as follows:

1 1 0 0
o 1f1 -1 0 o
vzio o 1 1
0 0 1 -1
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It is easily verified that ¢{o{w))=re(w)r? for all we W.
Now we recall the definition of H{o, W). H'(os, W) is the equivalence classes
of W under the equivalence relation =; for a,bc W, a=b holds if and only if for

Table II1.
rep. element w; Joilg)=det (g- I-w;7) | Zw{wir)|
1
1 . 16
= —1)2
wy i {q2~1) (W)
1
1
1 4
Wo= 41
: 1 I (Zox Z))
1
1
1 - 8
= -1){g*—+v2¢+1
ws 1 (g*—1){¢g g+1) (ZoX ZJ)
-1
1
L W= 1 (02“1)(Q’+ﬁQ+1) 8
-1 (ZzX Z)
1
1
W= -1 gt+1 16
-1 (Zix Zy)
1
1
W= -1 1 (2= 2 q+1)? 96
-1
-1
wy= 1 X (¢*++v Zg+1)8 96
1
1
l 2
w=)| {g*+1) ; 48
-1 ‘
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Table III. {Continued)

rep. element w; o lg)=det {g-T— 1) | Zw(wT)|
1
-1 6
Wo= ¢*—qg*+1
) 1 (Z:)
1
1
1 — — 12
W= —vV2¢+qt—v2q+1
10 1 q Ftq q (Zo)
1
1
1 — — 12
wWy= ¢+v 2+ +vEg+1
aREs! (Z:a)
1

some c€ W, a=cbo(c) holds. a=b is clearly equivalent to
plalr=gplc) 'o(b)zelc).

In the sequence we identify the element of W with an element of O(V) through
the isomorphism ¢. Then if we set W=(W,s), we have W=WU W+ since r2=1
and = normalizes W. The argument above shows that the mapping from W to
Wrz: wi——wr induces the bijection between H'(¢, W) and the classes of Wr under
conjugations of W.

THEOREM 3.1. |HYo, W)| =11 and the representative elements are given in
Table III.

PPOoOF. We shall calculate the classes of Wr under conjugations of W. The
characteristic polynomial f,.(q)= det(q-I—w,r) are all different for i=1,...,11.
Hence any of the two in {w;r|t=1,...,11} are not conjugate under W. On the
other hand, the calculations of |Zy(w;r)| shows that:

5 (W1 /| Zpwe)| =1152=| W),

and this proves the theorem.

Theorem 3.1 completes the classification of the maximal tori of G,: that is, let
T be a maximal torus of G stabilized by ¢, then T, is conjugate in G to one of
the subgroups T(z) (¢=1,...,11) of H, where T(i)={h¢c H|h=":h} ([4), II, 1.3.).
We will write explicitly the elements of T(3):
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T(1)={{e, 621)0 s €2, €2 & 1)} (Z, 2—1)2

T(2)={(e"*1k%, efk1=0, 0x=1=0, 1-0g=0) == Z s .

T(3)={le, e\ 1, 7)) ZZ 2 X Z (v T ety

T(4)={(e,e?, 8,0 N =Z 2y X Zig24v Tasn,

T(5)={(r, 77", 8,6 ") = Zys,

T(6)={{r, 17" 1 15 N ZitovT0sn)s

T(T)=((6,,0,", 0, 8, " N=(Zsvs0n)’,

T(8)={(ry, ko, (£1£2)?, (k16Z ) }z(lﬁn) s

T(9)={lp, p‘403+20—1’ o0, p“’a"‘”z*‘)}zz(qhqzﬂ),

T(10)={(2, 20%=<*, 3201 24631} = 7 4 /5 3402 v/ gany,

T(L1) = {7, g, 2043, 4P 0)} = 2o T 4024 T aans
where eqﬁ‘q__:sg"'-l:egz—l:l, IC°2+IIIC?2+X-‘:‘-IC22+I‘—“1, rq2—«/‘§“q+x:7,ghs/‘2‘q+l:),ge—s/“z“quz1’
5,24“«/‘2””1z5g2+¢?q+1:agz+v‘é“q+x__:1’ pqd_qzﬂzl’ A4V E 3+t Egri =1 and

pe VT e and Z,=Z/nZz.

(3.2) Every semlsmple element of G, is conjugate to an element of U T() in G.
If 8,,8,€G,, £, t,€ UT( ) and s$~t (1=1,2), then 815752 if and only it t,~t2 (This
is an immediate consequence of Prop 1.1, Prop.1.2 and the unigueness of Bruhat
decomposition.): so that, in order to classify the semisimple elements in G,, we
have only to classify the elements of Ql T(7) under conjugation by W. The repre-
sentative elements of semisimple classes in G, can be taken from the elements in
‘g T(7) in the sense written above.

THEOREM 3.2. The representative elements of the semisimple classes of G,
mn U T(i), the number of classes and the orders of their centralizers are given
n Table IV.

ProoF. The representative elements and the number of classes are obtained
immediately, so that the problem left is to calculate the orders of centralizers.
Since later we shall determine the unipotent classes in the centralizers, now we
examine the structure of the centralizers in detail.

Let s be a semisimple element contained in G, and s?t, te T(z). Then

Z6,(8)= Zo(t) N G w;o)

where G(w,0)={gc G|g="ig). Z(t) are calculated by means of [1], §2.
Case 1. t=t; (§=38,6,8,10,11,12,18,14, 15,16 or 17).
In this case ¢ is a regular element, hence contained in a unigue maximal torus
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1 89y 21 +u|Nr\elm8 GIN.\(I«SQI@{N.\«I«E% Nﬁk .:;f%i Au a1y .«.T.h ag)=3a
1 oy T+ (3-eb)sb 2! ‘0 -4 ="
v %—2blz T (3500 -4 )=
1 oy (T+b3g p+:b){1—~2D) (b p+:b) anwsm (o0 "¢ 1-a? 8} ="
14 oy (T+BHT~2D)(1+D g A +ib)ib bz \IJsW (00T TI=%
1 "y (1+57 A—3b)(1—4b) bz \Tﬂsasz fo-d L y_gg2 5} =%
y oy (L+1B){T ~b)(1 +b g A —cb)sb bz \Tms\w (-t LT D=1
1 vy T—sb NNINE%W. {0-Yo—19 “gm1~¥g% ‘9162 ‘¥144°) =%
¢ sty (T =D} {1 +;D).D ANINEW 1Y (g pur ¥ guy¥ ¥) =9
g Sty (T14+gb) (1 —4D)sh 1 T#0 ‘[=¢® (g® @ 5 @ ‘@) =N
I N:\ N: INBV Awlwszl&Dvwﬁlﬂ Sﬁhwvﬂuw naﬁmﬁﬁﬁm Pibnw aNm .nlbmw anmv”nw
p by (1 —+B) (1 ~4b)zb asz (9 “sroe® “1-ga ) =%
¥ 9y (L ++D)5(1 —zb)sb ags.m (-0 2T D=1
61 oy (T +2D) (1 —eb) (1 +9D) (T —D)szh I 1 O i
Fu oy I9ZI[BIJUDD JO IAPIO [ S98SB[D JO I3qUINU 9y} 4 quawoa|d ‘dax
(24) (1%) 1 P 1 q 1

"Al °l9®L
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H of G and Zy(t)=H. Clearly Z,(t)NG(w;a)=1T().
Case 2. t=t; {7=1,7 or 9).
Z(t)=S,(4, k)% S,
where S is a torus contained in H and dim S=2.
Za(t) NGlw,e)=2Bu(q) X S(3),

where 2R;{g) denotes a Suzuki group of order ¢*{g*—1)(¢*+1) and S(i) is a cyclic
group of odd order g?—1,g2—+2¢+1 or ¢*++/2¢+1 according to i=1,7 or 9.
Case 3. t=t; (j=2 or b).
‘We examine the case where t=1%, (for the notations used here and in Case 4
see [1], §2):
to=(e, £2971, 6204 ) and Glw,0)=G.,
Of ={1+2-8+4, 1-4},
W= Lrise g XK =(Z)5,
Zg(t)= U U*Hn,U%,
we Wy
Zult ) NGo=(U".H, U (U H,(r142-34471-0 (U5,
where (%), ={as(t) | € K}.
The case where t=#; can be dealt with in the same way.
Case 4. t=t,c T(2).
First we assume that #=1 (mod 8), then t={w,1, 0,0 "); hence
OF =12, 1+2+3—4, 1-3, 3+4, 144},
W,=6;xX&,,
(Wiue={we Wolw="2"w}={1, rip4-sT1+:d =2z,
(T ogo = (22821240 4(8)Z 1z 404820181254 (517 ) 211 a(6T oy € Fit, sy 5048171 =0),
(H)wo=T(2).
Hence |(Uy)wyol =03=¢® and |(H)uw|=12~1=¢*~1.

Zf;(t) n G(wzo') = (ﬁx)wzd T(2) U (ﬁz)wza T(2) (7'1+2+a—47'1+4)(17x)w2«1:
and we have
| Zz(t) NGlw,o) | =112 - 1) (1+1¥)=¢%¢* ~ 1){g°+1).

The case where #=—1 (mod 3) are settled in the same way and in this case
t=(0, 01, 1,0): hence &7 =(3, 14+2+£3-4, 1-2, 2+4, 1+4} and

{ WZ)-,F’ {1, T14ee-T1sd =2, ete.
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(8.3) In order to determine the remaining classes, it is sufficient to determine the
unipotent classes in the group Z;{f)NG(w,o), where t€ T(7). In Case 1 or Case 3
in the proof of Theorem 3.2, the unipotent classes are obtained immediately: in
former case only one class exists, i.e. unit element and in latter ecase two classes.
In Case 2 we have only to determine the unipotent classes of 2B,(q), but this is
easily determined and well known.

Now let us determine the unipotent classes of Z= Z;,,n(t), t=(w,1,0,»™") and
g=1 (mod 3).

Every unipotent element is conjugate in Z to an element of (U,)s,, so that

it is sufficient to classify the elements of (I vw,e under conjugation by Z. From
the proof of Case 4 in Theorem 8.2, every element % in (Ux)wza can be written
uniquely in the form:

! 20 261 29
U=T5(81)%1-243-4(8) ) T1+243-4(82)T1-3(8] }Zaval8] )Tials, )

where s, € Fpz,8,+8,+5 =0 (hence s, € Fp).

First let us consider the case where 3,=0. Then if 8,=0 u~1 and if s,+#0,
U~T4oe3-4(1)0144(1) by the conjugation of an element in T(2).

Next we consider the case where s,%0. It is known that by the conjugation
of the elements in T(2) s, can take all values in {5;e%x'~%}. Let » be a generator

of Fj:, then we can write
gmpUte g pd-bb

where a, b are integers. Then efxl-0=gt+rh0atd-va-0b  The greatest common divisor
of ({+1)¢ and ({-1)(1—¢) is 3, so that s, can take one and only one value in {1,
7,7, As for s, by conjugation under an element of (U¥)u,, s, can take one and
only one value in {z;, 7, 75}, where r; is a fixed element in F., which satisfy r".+
7;+5'=0. Hence if 5,0, then » is conjugate to

xz(77'-)$1~2+3_4(7)“)371+z+s-4(T;)$1—3(720)$3+4(7720!)%H(‘t‘io)

for some 7 (1=1,2 or 3).

The case where t=(0v"!,w 1, 1,w), 6=~1 (mod 3), ean be dealt with in the same
way, so we omit.

The orders of the centralizers of these classes can be easily calculated.

The whole number of conjugacy classes in G, is obtained by é fixXm;, where
m; is the number of unipotent classes in Zg o (t;), (£;€ T(¢)) and }: is the number
of classes of ;. Thus we have proved the following theorem.
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Table V.
rep. element order of centralizer

tizy (121 +2(1) g4g%—1)
tiz1-2(1)z2{1)2:(1) 2¢%(¢*—1)

41z 1 -o(1)22(1)2142(1) 29¥¢*-1)

32Ty +9-344(1)21-4(1) ¢*g*-1)
tatirotg-a{l}zie (1) q8g®+1)

1424, (1)24,(1 -’51+2+s—4(70)3«',9,(1)56;32(1)351“(736) 3g4

taay ()T ap (D)2 14243-4(T1)2 5, (720)25,(720) 214 4(25") 3¢

taTay (702 ay (1) 214243 -4(72) 25 (790)2 4, (790)214.4(7F) 3¢*

If 6=1 (mod. 3), a1=2, a,=1-2+3—4, /1=1-8, F,=3+4.
If 9=—1 (mod. 3), a;=38, a;=1+2-3—-4, 5;=2+4, f=1-2.

ts2 4243~ 4(1)T144(1) q¥q*+1)
trx3(1)T142(1) (2= 2¢+1)
ta1-2(1)xa(1)24(1) 2¢%q*—v 2g+1)
tr1-o(1)z2(1)214(1) 2¢%(¢>~+ 2¢+1)
tox1(1)Z142(1) g2+ v 2q+1)
toy—o(1)z2(1)22(1) 20%(g>+v 2q+1)
tyxi~o(L)xo{1)z142(1) 202(g*+v 2q+1)

{#) The number of classes represented by ¢;z is the same number of #; written in

Table IV.

THEOREM 3.3. The remaining class representatives and the orders of their
centralizers are given in Table V. And the total number of conjugacy classes in

G, is ¢*+4¢2+17.
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