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1. Introduction

Transitive permutation groups of degree p, where p is a prime number such
that q=1/2(p—1) is also a prime number, were considered by N.Ito in his series
of articles ([6], [6], {7] and others). In this note we consider primitive permutation
groups of degree 2p, where p is a prime number which satisfies the assumption
of N.Ito’s problem. We determine such permutation groups under the additional
assumption that there exist no non-solvable transitive permutation groups of de-
gree p except the symmetric or the alternating group of degree p.

THEOREM. Let G be a primitive permutation group on 2, |2]=2p=4¢+2,
where p and q are prime numbers. Assume p>23. If there exist no non-solv-
able transitive permutation groups of degree p except A, and S,, then G=A,, or
S:,. Here A, and S, are the alternating and the symmetric groups of degree n.

On transitive permutation groups of degree p=2g+1, N. Ito has considered the
case that r=1/2(¢g—1) is also a prime in [5]. Recently this case has been settled
by P.M. Neumann. In his paper [10] it is stated that if G is an insoluble transi-
tive group of permutations of degree p=2¢+1=4r+3, where p>23 and p, q, »
are all primes, then G=A, or S,. From this result we obtain the following
corollary.

COROLLARY. Let G be a primitive permutation group of degree 2p=4q-+2=8r
+6, where p, q, v are all primes, then G=4,,, S,, or My, Aut(My,), where M,
and Aut(M,) are the Mathiew group of degree 22 and its automorphism group.

The notation to be used is standard (cf. Wielandt [14]).

The author thanks Dr. E. Bannai suggesting the present formulation of Theo-
rem. OQur original one is that of Corollary.

2. Preliminaries.

Throughout this section we assume that G is a permutation group on £ satis-
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fying the assumption of Theorem.

LEMMA 1. Let N be a minimal normal subgroup of G. Then N is simple and
doubly transitive.

PROOF. Since G is primitive of degree 2p, by Wielandt [14], § 81, G is doubly
transitive or 2p=st+1 for some integer s. But 2p=4¢+2 yields 4g={(s—1)(s+1).
Therefore ¢=2, this is not the case. Thus G is doubly transitive. Then N is
3/2-fold transitive since N can not be regular normal from p+#2. Hence N is a
primitive or a Frobenius group by Theorem 10.4 in Wielandt [14], and the mini-
mality of N implies that N is primitive. Therefore N is doubly transitive as
well as G. Next we show that N is simple. Let P be a Sylow p-subgroup of G.
If |P|=p? then G contains a cycle of degree p. So we have G2A4,, by a theo-
rem of Jordan (c¢f. Wielandt [14], 13.9). Hence we may assume that P is eyclic
of order p. Then p divides the order of N to the first power, which yields N
simple, since N is minimal normal.

Hence from the first we may take G simple and P of order p. Then P is self-
centralizing and Ng(P)/P is eyclic of order 2, q or 2¢(=p—1). If |Ng(P): P|=2,
then G=PSL(2, 1), where [=2p—1, by the result of N.Ito [4]. Since ! is a prime
power such that 2p=I+1 and 4¢=I[—1, we have immediately that {=9. There-
fore we may also assume that |[Ng(P):Pl=q or 2¢. Let I'y and I, be the orbits
of P. Let @ be a Sylow g-subgroup of Ng(P). Then @ is cyclic of order ¢ and
has four orbits of length q on 2. Put them 4,, 4., 4, and 4,. @ leaves just
two elements of £ fixed, say 1 and 2. Then we may take I',={1}U4,U4; and
Iy=12Vuds,Ud,. Let H be the subgroup of G which has Iy and I', as its system
of imprimitivity.

LEMMA 2. @ is a Sylow q-subgroup of G.

Proor. Otherwise G contains an element of order ¢ and degree 2¢ or 3g, which
implies G2 A4,;, by Theorem 13.10 in Wielandt [14], since ¢>5. This is a contra-
diction.

LEMMA 3. H is solvable and has I'y and 'y as its orbits, and Nyx(Q)=Cr@).

ProorF. Assume H not solvable. Then the commutator subgroup H’ has I'; and
I, as its orbits. Hence the restriction of H’ on I'; (i=1 or 2) is a non-solvable
transitive permutation group of degree p. Therefore by the assumption of Theo-
rem H’'2A,. Since all the subgroups of A, of index p are conjugate, any ele-
ment of H’ has a same permutation structure on I’y and I';. Then G contains
an element of degree 6. Since p>23, we have G2 A;, by a theorem of Bochert
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{cf. Wielandt [14], §15). Thus H is solvable. Since H’ has I'; as its orbit, P<{H'.
Hence Ny(P)=H. If x is an element of H of order t exchanging 7", and I,
then x consists of one 2-cycle and 2p—2/t t-cycles since no elements of H fix
more than two points on 2. But z is also an automorphism of P, so t divides
p—1. This implies that = is an odd permutation. The last assertion follows from
H=Ny{P) immediately.

LEMMA 4. G, does not contain a normal subgroup whose order is prime to
q. Especially N+ C,,, where N=Ng(@Q) and C=Cy(Q).

PRrROOF. Suppose false and let L be a normal subgroup of G, whose order is
prime to q. Let K=LQ. Then K is a primitive permutation group on Q-{1},
since 14¢ does not divide 1+44g, if ¢»3. First we assume that K is not doubly
transitive on 2—-1. If K, has an orbit of length ¢, then L, acts trivially on that
orbit, since |L,| is prime to ¢q. This implies L.=1 by Theorem 18.2 in Wielandt
[14], that is, L is regular normal and K is a primitive Frobenius group. Hence
[L|=2p—~1=4q+1 and |L}| is a prime power. It follows that |L|=9, since p and
q are prime. This is not the case. If K, has an orbit of length 2¢, then again
by Theorem 18.2 in Wielandt [14] all the orbits of L, on 2—{1, 2} are of length 2.
Then L, is an elementary abelian 2-group which fixes just one point 2 of 2--{1}.
Therefore Np(L,)&L,=C(L,). Since L, is a Sylow 2-subgroup of L, L has a
normal 2-complement, which is regular normal in G;. Therefore this case is re-
duced to the preceding case. Next we assume that K is doubly transitive on
2—{1}. Then all the orbits of L, on 2—{1, 2} are of length 4. Hence L, is solva-
ble and K, is solvable too. If K, has an abelian normal subgroup which is not
semiregular on £2—(1, 2}, then by the theorem of O’Nan [11] we have that
PSL{n, ) S K< PI'L(n, 1) for some integer n>3 and some prime power [ in their
usval doubly-transitive representations. But a stabilizer in PSL(x, !) is not solva-
ble, if n23 and the degree of its doubly-transitive representation is more than 13,
while K, is solvable and 2p>13 by the assumption of Theorem. Therefore any
normal subgroup of K, which is abelian s semi-regular on 2—{1,2}. If L, is
divisible by 3, then a Sylow 3-subgroup of L, is also a Sylow 3-subgroup of K,.
Let T be a Sylow 3-subgroup of K, and let F(T) be the fixed points of T on
Q2-{1}. Then T has just one fixed point in each orbit of L, of length 4. There-
fore F(T) consists of ¢g+1 points. By Witt’s lemma (cf. Wielandt [14], 9.4) N(T)
is doubly transitive on F(T). Since K has a normal g-complement, so does Ng(T).
This implies that Ng(T) is sharply doubly transitive on F(T'). Hence g+1 is a
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power of 2 and a Sylow 2-subgroup of Ng(7T) is regular on F(T). Since the de-
gree of K, |2]--1, is odd, a Sylow 2-subgroup of Ng(T) is contained in K; and
also in L; for some point ¢ of 2—{1}. Hence ¢+1<4, which is a contradiction.
Therefore |L,| is prime to 3 and L, is a Sylow 2-subgroup of K. If L, is abelian,
N (L,y=C.{L,), which implies that L has a normal 2-complement. This does not
occur. So Li<]K; and it is of order 4. Then C.,(Li)=L! by Wielandt [14] 4.4,
since the non-trivial orbits of L, are of length 4. Therefore L, is a dihedral
group of order 8. But any element of order 4 in L, consists of ¢ 4-cycles, which
is an odd permutation. Thus G, can not contain a normal subgroup whose order
is prime to q. Since @ fixes just two points on 2, N,=N,,, which by Burnside’s
transfer argument gives the last assertion.

3. Proof of Theorem.

Let G be as in Theorem. In this section we assume that @ is a Sylow ¢-sub-
group of G and derive a contradiction by showing that H is not solvable or that
G, has a normal subgroup whose order is prime to q. Now we consider N as a
permutation group on {1, 2; 4,, 4,, 45, 4,}. Then the kernel of this permuta-
tion representation is @, since otherwise there exists an element of N—C which
is contained in H. By Lemma 3 this does not occur. Since G is simple, we
easily see that N consists of even permutations on {1, 2; 4,, 4,, 4;, 4,}. Hence
Ci./Q% A, and the following 6 cases are possible for the image of the permutation
representation of C,, on {4y, 4,, 4s, 4.}:

(I) A,

(I} ZyXZ,,

(IIT) 2,

(IV) Z, and the orbits of C; are {4, 4,} and {4, 4.},
(V) Z, and the orbits of C,, are {4;, 4;} and {4,, 4},
(V) 1.

Case {1). There is an element of N which exchanges 1 and 2 by Witt’s lemma.
Let us denote this element . Then in this case we may assume that

x=(1, 2){4y, 43),
since N consists of even permutations. There is an element y of C,, with the
following eycle structure

y=(4,, 4d5){4s, 4.} .
Then
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xy:(lr 2)(dh Ah 427 dﬁ) .

Hence zy is contained in H and exchanges I'; and I’,. This contradicts Lemma 3.
Case (1I). From Lemma 4 N,,#C,;. Hence Ny;/Q=A,. By Witt’s lemma
[N:Nyp|=2. If N/Q is not faithful on {4,, 4,, 4,5, 4,}, then N contains an odd
permutation. So N/Q is faithful on {4,, 4, 45, 4.} and N/Q=S,. This yields
N'|Q@=A,, but N'CC,,, which is a contradiction.
Case (III). Since C,,<]N,,, noticing that a Sylow 3-subgroup of A, is self-nor-
malizing, it is obtained that N;,=C,,. Thus this case does not hold by Lemma 4.
Case (IV). Let ye C,;—@, then y has the following cycle structure.

y=(4,, 4:)(ds, 4,) .
Let ze Ni,— ;. Since z normalizes C,,, we may assume that
2=(4,, 45)(4s, 4,) .
Let z€ N—N,,. Since z normalizes C,,, we have the following two possibilities:

x::(l) 2)(Ah AZ)
or
il’,':(l, 2)(‘41’ AS; A21 A() .

But the latter contradicts Lemma 3. If the former holds, then
xyz:(ly 2)(Aly AS; AZ; A-i) .

Thus this case does not hold by Lemma 3 anyhow.
Case (V). Let z€ Nj,—Cy,. Since z normalizes C;, we have

z=(4y, 4:)(ds, 4,)
or
2=(d4,, 4)(ds, 45) .
Let ye C;—@Q. Then y has the following cycle structure
y=(d,, 4:)(4,, 4,) .
Hence z or yz is contained in Ny(Q)—Cg(Q). This contradicts Lemma 3.

Case (VI). Since N/C is cyclie, Ny,/Q=2Z,, Z, or Z,. But the last case does
not hold, since N does not contain an odd permutation. If N,;/Q=Z,, then we
may assume that an element z of N;,—@ has the following cycle structure.

z2=(4y, 4s, 4y) .

Let = be an element of N which exchanges 1 and 2. Since z normalizes N;;, we
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may assume
z=(1, 2}, 4,) .
Then
:cz:c‘lz'l—%(d,, 4y, 43) .

This ean not oceur, since the commutator [z, z] belongs to C,. Hence we have
Ny /Q@=2Z,, also N/Q=Z,. Then by Lemma 4 and Frattini argument it is ob-
tained that G, is simple and Suzuki’s method ([13]) of induced characters can be
used to show that G, has only one class of involutions. Therefore any involution
of G has at most two fixed points. Then we have a contradiction by Hering (3]
or hy a similar argument in Nagao [9] (x), since C;,=Q. Thus we have completed
the proof of Theorem.

4. Proof of Corollary.

By the result of P. M. Neumann [10] we may take p=11 or 23. From the
proof of Theorem we may also assume that H is not solvable. Then we have
H'=PSL{2, 11), M,, (p=11) or M,; (p=23). Referring to Hall [2] or Sims [12] it
can be obtained that G=M,, if H’=PSL(2, 11) and that the case H'=~M,, does
not occur. Therefore we assume that H'=M,;. Then G is triply transitive by
Manning [8]. If G is not 4-ply transitive, then G, must fix one more point other
than 1, 2 and 3. Hence G,, is imprimitive and G,, has 22 blocks of length 2. If
G, acts on these blocks unfaithfully, then the kernel is elementary abelian 2-
group. Hence as in L.emma 4 we have a contradiction by applying the result of
O’Nan [11] or Glauberman [1]. Consequently G, acts faithfully on these blocks.
This implies that G,; acts on them as Aut (M), since H,, acts on them as M,,.
Then (G..)’=H,;, and by Witt’s lemma |Ng(H,;):H,;]=4. Therefore |C;(Hy)| =2,
since |Aut(M,):My|=2. But the non-identity element of Cy(H,,) consists of 23
transpositions, which can not hold, since G does not contain an odd permutation.
Hence G is 4-ply transitive. Then G contains a eycle of degree 43 and a theorem
of Jordan (Theorem 18.9 in Wielandt [14]) gives a contradiction. Thus the asser-
tion of Corollary holds.
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