On the number of moduli of certain algebraic surfaces of general type

By Eiji HORIKAWA

Introduction. We let S denote an irreducible hypersurface of degree n=2r in the projective 3-space P^3 over the field of complex numbers, defined by the equation

(1)
$$g^2 + Agh + Bh^2 = 0$$

where g, h, A, and B are homogeneous polynomials of degree r, s, r-s, and 2(r-s), respectively, with two positive integers r and s, r>s. Let Δ denote the curve on S defined by the equations g=h=0. Then Δ is contained in the singular locus of S.

We say that S is generic if the following conditions are satisfied:

- 1) S has only ordinary singularities, and is non-singular outside of Δ .
- 2) A is non-singular.
- 3) The normalization X of S is a non-singular algebraic surface of general type.

We note that S satisfies the conditions 1) and 2), provided that g, h, A, and B are general homogeneous polynomials. 3) is equivalent to the inequality n>s+4 (cf. Lemma 3).

In [4], Kodaira studied families of surfaces with ordinary singularities in P^3 . In particular, he proved that a generic hypersurface S defined by (1) belongs to an effectively parametrized maximal family \mathcal{F} of surfaces $S_t, t \in M_1$, with ordinary singularities in P^3 whose characteristic system on each S_t is complete (see [4], Theorem 8 and § 5.4). The number of effective parameters of the family \mathcal{F} , which we denote by $\mu(S)$, is given by

$$\mu(S) = C(r) + C(s) + C(2r-2s) - C(r-2s) - 2$$

where
$$C(m) = \begin{cases} (m+3)(m+2)(m+1)/6 & \text{for } m \ge 0 \\ 0 & \text{for } m < 0. \end{cases}$$

On the other hand, Kodaira-Spencer [5] defined the concept of the number of moduli m(X) of a compact complex manifold X. m(X) is defined only if there exists an effectively parametrized complete family $\{X_t\}_{t\in M}$ of deformations of X. In this case, we define $m(X) = \dim M$. The purpose of this paper is to prove the

following

MAIN THEOREM. Let S be a generic hypersurface in P^3 defined by the equation (1), X the normalization of S. Then the number of moduli m(X) of X is defined, and equals

$$\dim H^1(X, \Theta_X) = \mu(S) - 15 - 4\delta_{r,s+1}$$

where Θ_X denotes the sheaf of germs of holomorphic vector fields on X, and $\delta_{\tau,*+1}$ is Kronecker's delta.

The difference between m(X) and $\mu(S)$ is the contribution of the number of parameters on which the natural holomorphic map $f: X \rightarrow P^3$ depends.

For (r,s)=(3,1), S is one of examples of M. Noether [6]. In this case, X is a minimal algebraic surface with geometric genus $p_g=4$, irregularity q=0, and the Chern number $c_1^2=6$. Hence, we have

$$m(X) = 38 = 10(p_a + 1) - 2c_1^2$$

with $p_a = p_g - q$. By the Riemann-Roch theorem, it follows that $H^2(X, \Theta_X) = 0$. In general dim $H^2(X, \Theta_X)$ is very large.

1. Preliminaries.

Let W denote the projective 3-space P^3 , and let $p: V \to W$ be the monoidal transformation with center at Δ . Then X can be identified with the proper transform of S. Let $f: X \to W$ be the restriction of p to X. The same letter f will denote the induced holomorphic map $X \to S$. We set $\tilde{\Delta} = f^{-1}(\Delta)$.

Let E be a hyperplane of W and let $\widehat{E}=f^*E$. We employ the same symbols E and \widehat{E} in order to denote the restrictions of E and \widehat{E} to S, Δ , and $\widehat{\Delta}$, respectively.

We cover W by a finite number of coordinate neighborhoods W_i , $i \in I$. We set

$$J=\{i \in I: \Delta \cap W_i \text{ is not empty}\},\ J'=\{i \in I: \Delta \cap W_i \text{ is empty}\}.$$

We may assume that the associate line bundle [E] is trivial on each W_i . Let $\{e_{ij}\}$ denote a system of transition functions for [E]. Then g, h, A, and B are represented, respectively, by collections $\{g_i\}$, $\{h_i\}$, $\{A_i\}$, and $\{B_i\}$ of holomorphic functions satisfying $g_i = e_{ij}^r g_j$ on $W_i \cap W_j$, etc.

For each $i \in J$, $p^{-1}(W_i)$ is covered by two open subsets

$$U_i = \{(z, u_i) \in W_i \times C: h_i(z)u_i = g_i(z)\},\$$

 $V_i = \{(z, v_i) \in W_i \times C: g_i(z)v_i = h_i(z)\}.$

Moreover, X is defined by the equations

(2)
$$u_i^2 + A_i(z)u_i + B_i(z) = 0 \quad \text{on } U_i, \\ 1 + A_i(z)v_i + B_i(z)v_i^2 = 0 \quad \text{on } V_i.$$

We note that $(z, u_i) \in U_i$ coincides with $(z, v_i) \in V_i$ if and only if $u_i = 1/v_i$. It follows that $X \cap p^{-1}(W_i)$ is contained in U_i .

For each $i \in J'$, i.e., $W_i \cap \Delta = \emptyset$, we set $U_i = p^{-1}(W_i)$. Then X is contained in the union of U_i , $i \in I$.

LEMMA 1. $\tilde{\Delta}$ is linearly equivalent to $s\tilde{E}$ on X.

PROOF. On each $X \cap U_i$, $i \in J$, \tilde{J} is defined by the equation $h_i = 0$. On the other hand, for each $i \in J'$, neither g_i nor h_i vanishes on $S \cap W_i$. Hence we can take $h_i = 0$ as a local equation of \tilde{J} on $X \cap U_i$ for any $i \in I$. Q.E.D.

LEMMA 2. We have dim $H^0(X, \mathcal{O}_X(\tilde{E})) = 4 + \delta_{r,s+1}$ and $H^1(X, \mathcal{O}_X(m\tilde{E})) = 0$ for any integer m.

PROOF. We recall that

$$H^q(X, \mathcal{O}_X(m\tilde{E}-\tilde{\Delta})) \cong H^q(S, \mathcal{O}_S(mE-\Delta))$$
 for $q=0, 1, 2$

where $\mathcal{O}_S(mE-\Delta)$ denotes the sheaf of germs of holomorphic sections of m[E] on S which vanish on Δ (see [4]), and that the canonical bundle K of X is given by $[(n-4)\tilde{E}-\tilde{\Delta}]$.

First, we shall prove the second assertion. By the Serre duality, we have

$$\dim H^{1}(X, \mathcal{O}_{X}(m\tilde{E})) = \dim H^{1}(X, \mathcal{O}_{X}((n-4-m)\tilde{E}-\tilde{\Delta}))$$

$$= \dim H^{1}(S, \mathcal{O}_{S}((n-4-m)E-\Delta)).$$

Hence it suffices to prove $H^1(S, \mathcal{O}_S(mE-\Delta))=0$ for any integer m.

In view of two exact sequences

$$0 \to \mathcal{O}_{W}((m-n)E) \to \mathcal{O}_{W}(mE-\Delta) \to \mathcal{O}_{S}(mE-\Delta) \to 0,$$

$$0 \to \mathcal{O}_{W}(mE-\Delta) \to \mathcal{O}_{W}(mE) \to \mathcal{O}_{A}(mE) \to 0,$$

we only have to show that the restriction map

$$(3) H^{0}(W, \mathcal{O}_{W}(mE)) \rightarrow H^{0}(\Delta, \mathcal{O}_{\Delta}(mE))$$

is surjective.

Let S_1 be the hypersurface in W defined by the equation g=0. Then we have

 $H^{1}(S_{1}, \mathcal{O}_{S_{1}}(mE))=0$ for any integer m. From the following two exact sequences

$$\begin{array}{l} 0 \rightarrow \mathcal{O}_{S_1}((m-s)E) \rightarrow \mathcal{O}_{S_1}(mE) \rightarrow \mathcal{O}_{A}(mE) \rightarrow 0, \\ 0 \rightarrow \mathcal{O}_{W}((m-r)E) \rightarrow \mathcal{O}_{W}(mE) \rightarrow \mathcal{O}_{S_1}(mE) \rightarrow 0, \end{array}$$

we infer that the restriction map (3) is surjective. This proves the second assertion.

In order to prove the first assertion, we consider the following commutative diagram

$$0 \rightarrow H^{0}(S, \mathcal{O}_{S}(E-\Delta)) \rightarrow H^{0}(S, \mathcal{O}_{S}(E)) \rightarrow H^{0}(A, \mathcal{O}_{\Delta}(E)) \rightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \rightarrow H^{0}(X, \mathcal{O}_{X}(\tilde{E}-\tilde{\Delta})) \rightarrow H^{0}(X, \mathcal{O}_{X}(\tilde{E})) \rightarrow H^{0}(\tilde{A}, \mathcal{O}_{\tilde{A}}(\tilde{E}))$$

with two exact rows. Since we have $H^1(S, \mathcal{O}_S(E)) = 0$, we get $0 = H^1(S, \mathcal{O}_S(E - \Delta)) = H^1(X, \mathcal{O}_X(\tilde{E} - \tilde{\Delta}))$. It follows that the last horizontal map $H^0(X, \mathcal{O}_X(E)) \to H^0(\tilde{\Delta}, \mathcal{O}_{\tilde{\Delta}}(E))$ is surjective. Since the first vertical map is bijective and since we have $\dim H^0(S, \mathcal{O}_S(E)) = 4$, it suffices to show

(4)
$$\dim H^0((\tilde{\Delta}, \mathcal{O}_{\tilde{\Delta}}(\tilde{E}))) = \dim H^0((\Delta, \mathcal{O}_{\Delta}(E))) + \delta_{\tau, s+1}.$$

For this purpose, let F be the line bundle on Δ induced by (r-s)[E], F^* its completion, $q:F^*\to \Delta$ the natural projection, and let Δ_0 and Δ_∞ denote, respectively, the 0-section and the ∞ -section of q. In view of (2), $\tilde{\Delta}$ is a divisor on F^* which is linearly equivalent to $2\Delta_0$. Moreover, $\tilde{\Delta}$ does not meet Δ_∞ . Hence we have the following exact sequence:

$$0 \to \mathcal{O}_{\mathbb{P}^{\sharp}}(q^*E - 2\Delta_0 + \Delta_{\infty}) \to \mathcal{O}_{\mathbb{P}^{\sharp}}(q^*E + \Delta_{\infty}) \to \mathcal{O}_{\tilde{A}}(\tilde{E}) \to 0.$$

On the other hand, we have $q^*F = [\Delta_0] - [\Delta_\infty]$. Hence we get

$$H^{\nu}(F^{\sharp},\mathcal{O}_{F^{\sharp}}(q^{*}E-2\mathcal{A}_{0}+\mathcal{A}_{\infty}))=H^{\nu}(F^{\sharp},\mathcal{O}_{F^{\sharp}}(q^{*}E-2q^{*}F-\mathcal{A}_{\infty}))=0$$

for $\nu=0,1$, and

$$H^0(F^{\sharp}, \mathcal{O}_{F^{\sharp}}(q^*E + \Delta_{\infty})) \cong H^0(A, \mathcal{O}_A(E)) \oplus H^0(A, \mathcal{O}_A(E - F))$$

(see [8], Propositions 2.1 and 2.2). This proves the equality (4).

REMARK. In the case r=s+1, the complete linear system |E| embeds X in P^4 as a complete intersection of a quadric hypersurface and a hypersurface of degree r.

LEMMA 3. (i) We have n>s+4.

- (ii) The canonical bundle K of X is ample. In particular X is minimal.
- (iii) X has the following numerical characters:

$$p_{g} = {2r-1 \choose 3} - \frac{1}{2}rs(3r-s-4),$$

$$q = 0,$$

$$c_{i}^{2} = 2r(2r-s-4)^{2}.$$

PROOF. By Lemma 1, we have $K=(n-s-4)[\tilde{E}]$. Since we have assumed that X is of general type, it follows that n>s+4. Then, since $f:X\to S$ is finite, K is ample. The assertion (iii) follows from Lemma 2 and a classical formula for p_a (see [4], [9]).

2. Relation between deformations of S and X.

First we recall some results about characteristic systems of families of surfaces with ordinary singularities (see [4]). Let S be a surface of degree n in $W=P^s$ with ordinary singularities. We cover W by a finite number of coordinate neighborhoods W_i , and let (x_i, y_i, z_i) be a system of local coordinates on each W_i . We may assume that S is defined, on each W_i , by an equation $\phi_i=0$, where ϕ_i is one of the following form:

$(5)_0$	$\phi_i = 1$,
(5),	$\phi_i = z_i$
$(5)_d$	$\phi_i = y_i z_i$
(5),	$\phi_i = x_i y_i z_i,$
$(5)_c$	$\phi_i = x_i y_i^2 - 4z .$

In the last case, we call the point c_i : $x_i = y_i = z_i = 0$ a cuspidal point of S. Let Δ denote the double curve of S, and let $\mathcal{O}(nE - \Delta)$ denote the subsheaf of $\mathcal{O}(nE)$ consisting of germs of those holomorphic sections which vanish on Δ . Moreover let $\mathcal{O}(nE - \Delta - \sum c_i')$ denote the subsheaf of $\mathcal{O}(nE - \Delta)$ consisting of germs of those holomorphic sections ψ of [nE] which vanishes on Δ and satisfy

$$\left(\frac{\partial \psi_i}{\partial y_i}\right)(c_i) = 0$$
,

at each cuspidal point. We let $\mathcal{O}_S(nE-\Delta-\sum c_1')$ denote the restriction of $\mathcal{O}(nE-\Delta-\sum c_1')$ to S.

Let $\{S_t\}_{t\in M}$ be a family of surfaces of degree n in W with ordinary singularities such that $S=S_0$ for $0\in M$. We let $T_0(M)$ denote the tangent space of M at 0. Then we have a characteristic map

$$\sigma: T_0(M) \to H^0(S, \mathcal{O}_S(nE - \Delta - \sum c_i)).$$

If S_t is defined respectively by the equations $\Phi(t)=0$, then, for any $\partial/\partial t \in T_0(M)$, $\sigma(\partial/\partial t)$ is given by the restriction of $\partial \Phi(t)/\partial t|_{t=0}$ to S (see [4]).

On the other hand, the normalizations X_t of S_t describe a family $\mathfrak{X} = \{X_t\}_{t \in M}$ of deformations of $X = X_0$ and $f: X \to W$ extends to a holomorphic map $\Psi: \mathfrak{X} \to W \times M$ over M. Let Θ_X and Θ_W denote, respectively, the sheaves of germs of holomorphic vector fields on X and W, and let $\mathcal{T}_{X/W}$ denote the cokernel of the canonical homomorphism $F: \Theta_X \to f^*\Theta_W$. Then, we have a characteristic map

$$\tau: T_0(M) \rightarrow H^0(X, \mathcal{G}_{X/W})$$

(see [3], § 1).

LEMMA 4. There is a canonical isomorphism

$$f: \mathcal{O}_S(nE-\Delta-\sum c_i)\to f_*\mathcal{I}_{X/W}$$

which induces an isomorphism

$$f: H^{0}(S, \mathcal{O}_{S}(nE-\Delta-\sum c_{i}^{\prime})) \rightarrow H^{0}(X, \mathcal{J}_{X/W})$$

such that $-\tau = f \circ \sigma$.

PROOF. Let Θ_S denote the dual of the sheaf of germs of 1-differentials Ω_S^1 on S (see [2]). Then we have an exact sequence

$$0 \rightarrow \Theta_S \rightarrow \Theta_{W \mid S} \xrightarrow{Q} \mathcal{O}_S(nE - \Delta - \sum c_i') \rightarrow 0$$
,

where Q sends $\eta \in \Gamma(U, \Theta_{W|S})$ to $\{\eta \cdot \phi_i\}$ for any open set U. Since $f: X \to S$ is finite, we get an exact sequence

$$0 \to f_*\Theta_X \xrightarrow{f_{\bullet}F} f_* f^*\Theta_W \xrightarrow{f_{\bullet}P} f_* \mathcal{I}_{X/W} \to 0.$$

Moreover, there exists a canonical homomorphism

$$f^*: \Theta_{W \mid S} \rightarrow f_* f^* \Theta_{W}$$
.

We shall prove that f^* induces a desired isomorphism.

We start with a lemma.

LEMMA 5. Let U be an open set in X, and let $\tau = \tau_1 \partial/\partial x_i + \tau_2 \partial/\partial y_i + \tau_3 \partial/\partial z_i$ be an element of $\Gamma(U \cap f^{-1}(W_i), f^*\Theta_W)$. We set

$$\tau \cdot \phi_i = \tau_1 \frac{\partial \phi_i}{\partial x_i}(f) + \tau_2 \frac{\partial \phi_i}{\partial u_i}(f) + \tau_3 \frac{\partial \phi_i}{\partial z_i}(f).$$

Then, we have $P\tau=0$ if and only if $\tau\cdot\phi_i=0$, where P denotes the natural projec-

tion $f^*\Theta_{\overline{w}} \to \mathcal{I}_{x/\overline{w}}$.

PROOF. We shall check the equivalence in each case in which ϕ_i is of the form $(5)_t$, $(5)_t$, $(5)_t$, or $(5)_t$.

If ϕ_i is of the form (5), then the equivalence is clear. If ϕ_i is of the form (5), then $f^{-1}(W_i)$ is a disjoint union of two open subsets

$$U_i = \{(x_i, y_i) \in C^2 : (x_i, y_i, 0) \in W_i\},\$$

$$V_i = \{(x_i, z_i) \in C^2 : (x_i, 0, z_i) \in W_i\}.$$

On $U \cap U_i$, the following three conditions $P_{\tau}=0$, $\tau_3=0$, and $\tau \cdot \phi=0$ are equivalent to each other. Similarly, $P_{\tau}=0$ if and only if $\tau \cdot \phi=0$ on $U \cap V_i$.

The case (5)_t is quite similar to the case (5)_t. If ϕ_i is of the form (5)_c, then

$$f^{-1}(W_i) = \left\{ (u, v) \in C^2 : \left(u^2, v, \frac{uv}{2} \right) \in W_i \right\},$$

and f is given by $x=u^2$, y=v, and z=uv/2. Let $F: \Theta_X \to f^*\Theta_W$ be the canonical homomorphism. We have

$$F\left(\frac{\partial}{\partial u}\right) = 2u\frac{\partial}{\partial x} + \frac{v}{2}\frac{\partial}{\partial z},$$

$$F\left(\frac{\partial}{\partial v}\right) = \frac{\partial}{\partial y} + \frac{u}{2}\frac{\partial}{\partial z}.$$

While we have

$$\tau \cdot \phi = \tau_1 v^2 + 2\tau_2 u^2 v - 4\tau_3 u v$$
.

It is easy to check that $F(\partial/\partial u)\cdot\phi=F(\partial/\partial v)\cdot\phi=0$. Conversely, if $\tau\cdot\phi=0$ then τ_1/u is holomorphic and $\tau_1v/u+2\tau_2u-4\tau_3=0$. From (6), we get $\tau=(\tau_1/2u)F(\partial/\partial u)+\tau_2F(\partial/\partial v)$. This proves the assertion.

PROOF OF LEMMA 4. Let $\sigma = \sigma_1 \partial/\partial x_i + \sigma_2 \partial/\partial y_i + \sigma_3 \partial/\partial z_i$ be an element of $\Gamma(U, \Theta_{W|S})$ for some open subset U of S. Then,

$$\sigma \cdot \phi_i = \sigma_1 \frac{\partial \phi_i}{\partial x_i} + \sigma_2 \frac{\partial \phi_i}{\partial y_i} + \sigma_3 \frac{\partial \phi_i}{\partial z_i}$$

is a holomorphic function on $U \cap W_i$ which vanishes on Δ . Moreover, we may assume that $\phi_i = e_{ij}^n \phi_j$ on $W_i \cap W_j$. It follows that $\sigma \cdot \phi_i = e_{ij}^n \sigma \cdot \phi_j$ on $U \cap W_i \cap W_j$. The image $Q\sigma$ is represented by the collection $\{\sigma \cdot \phi_i\}$.

Clearly, we have $(f^*\sigma)\cdot\phi_i=f^*(\sigma\cdot\phi_i)$. Hence $f^*\colon \Theta_W\to f_*f^*\Theta_W$ induces a homomorphism $\Theta_S\to f_*\Theta_X$. Consequently f^* induces a homomorphism

$$f: \mathcal{O}_{\mathcal{B}}(nE-\Delta-\sum c_i) \to f_* \mathcal{I}_{X/W}$$

From Lemma 5 we infer readily that f is injective. We now prove that f is surjective. Let $P\tau$ be an element of $\Gamma(f^{-1}(W_i), \mathcal{T}_{X/W})$ with $\tau = \tau_1(\partial/\partial x_i) + \tau_2(\partial/\partial y_i) + \tau_3(\partial/\partial z_i)$ in $\Gamma(f^{-1}(W_i), f^*\Theta_W)$. We shall check that $P\tau$ is in the image of f in each case $(5)_s$ - $(5)_c$.

If ϕ_i is of the form $(5)_a$, there is nothing to prove. If ϕ_i is of the form $(5)_d$, we define holomorphic functions τ_2' and τ_3' on W_i by $\tau_2' = \tau_{2|V_i}$, and $\tau_3' = \tau_{3|U_i}$. Then, we have $P\tau = P(\tau_3'(\partial/\partial z_i))$ on U_i and $P\tau = P(\tau_2'(\partial/\partial z_i))$ on V_i . Setting $\sigma = \tau_2'(\partial/\partial y_i) + \tau_3'(\partial/\partial z_i) \in \Gamma(W_i, \Theta_{W|S})$, we have $P\tau = P(f^*\sigma)$.

If ϕ_i is of the form $(5)_i$, the proof is quite analogous to the above.

If ϕ_i is of the form $(5)_c$, we write $\tau_1 = \sigma_1 + u\sigma'$ and $\tau_3 = \sigma_3 + u\sigma'_3$ with $\sigma_1, \sigma'_1, \sigma_3, \sigma'_3 \in \Gamma(W_i, \mathcal{O}_S)$. In view of (6), we may assume that $\sigma'_1 = \tau_2 = 0$. It follows that $P\tau = P(f^*\sigma)$ with

$$\sigma = \sigma_1 \frac{\partial}{\partial x_i} + 2\sigma_3' \frac{\partial}{\partial y_i} + \sigma_3 \frac{\partial}{\partial z_i}.$$

In fact, we have $(\tau - f^*\sigma) \cdot \phi_i = -4\sigma_3' u^2 v + 4(\tau_3 - \sigma_3) uv = 0$. Hence the assertion follows from Lemma 5.

Next we shall prove the second assertion of Lemma 4. Let $\mathcal{G} = \{S_i\}_{i \in M}$ be a family of surfaces in W with ordinary singularities, which contains $S = S_0$, $0 \in M$. Then we may assume that $\mathcal{G} \subset W \times M$ is defined, on each $W_i \times M$, by the equation

$$\Phi_i(x_i, y_i, z_i, t) = 0$$

such that $\Phi_i(x_i, y_i, z_i, 0) = \phi_i(x_i, y_i, z_i)$. Moreover, we can find holomorphic functions X_i , Y_i , and Z_i of x_i , y_i , z_i , t such that

For any tangent vector $\partial/\partial t \in T_0(M)$, we have

$$\frac{\partial \Phi_{i}}{\partial t} = \frac{\partial \phi_{i}}{\partial x_{i}} \frac{\partial X_{i}}{\partial t} + \frac{\partial \phi_{i}}{\partial y_{i}} \frac{\partial Y_{i}}{\partial t} + \frac{\partial \phi_{i}}{\partial z_{i}} \frac{\partial Z_{i}}{\partial t},$$

by (7). This implies the equality

(8)
$$\sigma\left(\frac{\partial}{\partial t}\right) = Q\left(\frac{\partial X_i}{\partial t} \frac{\partial}{\partial x_i} + \frac{\partial Y_i}{\partial t} \frac{\partial}{\partial y_i} + \frac{\partial Z_i}{\partial t} \frac{\partial}{\partial z_i}\right).$$

On the other hand, let $\mathfrak{X} = \{X_i\}_{i \in M}$ be the family of normalizations X_i of S_i . We may assume that \mathfrak{X} is covered by a finite number of coordinate neighborhoods

 U_i such that $X_0 \cap U_i = U_i = f^{-1}(W_i)$ and each U_i is biholomorphically equivalent to $U_i \times M = \{(\zeta_i, t): \zeta_i \in U_i, t \in M\}$. Moreover $f: X \to W$ extends to a holomorphic map $\Psi: \mathcal{X} \to W \times M$ over M. Ψ is defined, on each U_i , by the equations

$$x_i = \Psi_i^1(\zeta_i, t), \qquad y_i = \Psi_i^2(\zeta_i, t), \qquad z_i = \Psi_i^3(\zeta_i, t)$$

where Ψ_i^2 are holomorphic functions on U_i . By definition $\tau(\partial/\partial t)$ is given by

$$\tau\left(\frac{\partial}{\partial t}\right) = P\left(\frac{\partial \Psi_{i}^{1}}{\partial t} \frac{\partial}{\partial x_{i}} + \frac{\partial \Psi^{2}}{\partial t} \frac{\partial}{\partial y_{i}} + \frac{\partial \Psi_{i}^{3}}{\partial t} \frac{\partial}{\partial z_{i}}\right).$$

We note that Ψ_i^2 satisfy the equations

$$\phi_i(X_i(\Psi_i,t), Y_i(\Psi_i,t), Z_i(\Psi_i,t)) = 0.$$

From (10), we obtain

$$\frac{\partial \phi_{i}}{\partial x_{i}}(f) \left(\frac{\partial \Psi_{i}^{1}}{\partial t} + \frac{\partial X_{i}}{\partial t} \right) + \frac{\partial \phi_{i}}{\partial y_{i}}(f) \left(\frac{\partial \Psi_{i}}{\partial t} + \frac{\partial Y_{i}}{\partial t} \right) + \frac{\partial \phi_{i}}{\partial z_{i}}(f) \left(\frac{\partial \Psi_{i}^{3}}{\partial t} + \frac{\partial Z_{i}}{\partial t} \right) = 0.$$

In view of the equalities (8), (9), and Lemma 5, it follows that $-\tau(\partial/\partial t) = f\sigma(\partial/\partial t)$. This proves the second assertion.

REMARK. The first half of Lemma 4 has been obtained by J. Wahl [7].

3. Vanishing of obstructions.

Let S be a surface in W defined by the equation (1), and let X be its normalization. Our purpose of this section is to prove the following lemma.

LEMMA 6. The coboundary map

$$\delta: H^0(X, \mathcal{T}_{Y/W}) \rightarrow H^1(X, \Theta_Y)$$

is surjective.

PROOF. Let $\{U_i\}$ be a finite open covering of X. We may assume that $[\tilde{E}]$ is trivial on each U_i , and we let $\{e_{ij}\}$ denote a system of transition functions of $[\tilde{E}]$. We can find $f^{\lambda} \in H^0(X, \mathcal{O}(\tilde{E}))(\lambda=0,1,2,3)$ such that $f: X \to W$ is defined by $z \to (f^0(z), \ldots, f^3(z)) \in W$. We represent each f^{λ} by a collection $\{f_i^{\lambda}\}$ of holomorphic functions on U_i which satisfy $f_i^{\lambda} = e_{ij} f_j^{\lambda}$ on $U_i \cap U_j$.

Let ρ be a cohomology class in $H^1(X, \Theta_X)$ which is represented by a 1-cocycle $\{\rho_{ij}\}$ on the nerve of the covering $\{U_i\}$. We take a system of coordinates (ζ_i^1, ζ_i^2) on each U_i , and write $\{\rho_{ij}\}$ explicitly in the form $\rho_{ij} = \sum_{\alpha} \rho_{ij}^{\alpha} \partial/\partial \zeta_i^{\alpha}$. For any holomorphic function h on an open subset of $U_i \cap U_j$, we set $\rho_{ij} \cdot h = \sum_{\alpha} \rho_{ij}^{\alpha} \partial h/\partial \zeta_i$, and also $\rho_{ij} \cdot \log h = (\rho_{ij} \cdot h)/h$ if h is non-vanishing.

We easily see that $\{\rho_{jk} \cdot \log e_{ij}\}$ is a 2-cocycle with coefficients in $\mathcal{O}_{\mathcal{X}}$. Setting

$$\kappa_{ij} = \det\left(\frac{\partial \zeta_j^{\beta}}{\partial \zeta_i^{\alpha}}\right), \quad \text{div } \rho_{ij} = \sum_{\alpha} \frac{\partial \rho_{ij}^{\alpha}}{\partial \zeta_i^{\alpha}},$$

we have div ρ_{ik} – div ρ_{ij} – div ρ_{jk} = ρ_{jk} · log κ_{ij} on $U_i \cap U_j \cap U_k$.

By Lemma 1, we can find non-vanishing holomorphic functions γ_i on U_i such that

$$\kappa_{ij} = \gamma_i^{-1} e_{ij}^m \gamma_j$$

on $U_i \cap U_j$, with m=n-s-4. It follows that $\xi_{ij} = (\text{div } \rho_{ij} + \rho_{ij} \cdot \log \gamma_i)/m$ satisfy

$$\xi_{ik} - \xi_{ij} - \xi_{jk} = \rho_{jk} \cdot \log e_{ij}$$
 on $U_i \cap U_j \cap U_k$.

It follows that $\{\xi_{ij}f_i^{\lambda}-\rho_{ij}\cdot f_i^{\lambda}\}$ are 1-cocycles with coefficients in $\mathcal{O}_{X}(\tilde{E})$. By Lemma 2, these are cohomologous to 0, so we can find holomorphic functions τ_i^{λ} on U_i such that

$$\tau_{i}^{\lambda} - e_{ij}\tau_{i}^{\lambda} = \xi_{ij}f_{i}^{\lambda} - \rho_{ij} \cdot f_{i}^{\lambda}$$

on $U_i \cap U_i$. We claim that this implies $F_{\rho} = 0$ in $H^1(X, f^*\theta_w)$.

In fact, let $(w^{\alpha})=(w^0,w^1,w^2,w^3)$ be a system of homogeneous coordinates on W. We set $W_{\alpha}=\{w\in W\colon w^{\alpha}\neq 0\}$ and $w_{\alpha}^{\lambda}=w^{\lambda}/w^{\alpha}$ on W_{α} . We have

(11)
$$\frac{\partial}{\partial w_{\beta}^{\lambda}} = \frac{1}{w_{\beta}^{\alpha}} \frac{\partial}{\partial w_{\alpha}^{\lambda}} \qquad \text{for } \lambda \neq \alpha,$$

$$\frac{\partial}{\partial w_{\beta}^{\alpha}} = -\frac{1}{(w_{\beta}^{\alpha})^{2}} \left(\sum_{\lambda \neq \alpha} w_{\beta}^{\lambda} \frac{\partial}{\partial w_{\alpha}^{\lambda}} + \frac{\partial}{\partial w_{\alpha}^{\beta}} \right),$$

on $W_{\alpha} \cap W_{\beta}$. On the other hand, f is defined by $w_{\alpha}^{\lambda} = f_{i}^{\lambda}/f_{i}^{\alpha}$ on $U_{i} \cap f^{-1}(W_{\alpha})$. Hence we have

$$F\rho_{ij} = \frac{1}{(f^{\alpha}_{i})^{2}} \sum_{\lambda \neq \alpha} (f^{\alpha}_{i}\rho_{ij} \cdot f^{\lambda} - f^{\lambda}o_{ij} \cdot f^{\alpha}) \frac{\partial}{\partial w^{\lambda}_{\alpha}}.$$

Setting

$$\eta_{i\alpha} = \frac{1}{(f_i^{\alpha})^2} \sum_{\lambda \neq \alpha} (f_i^{\lambda} \tau_i^{\alpha} - f_i^{\alpha} \tau_i^{\lambda}) \frac{\partial}{\partial w_{\alpha}^{\lambda}},$$

we get $F\rho_{ij}=\eta_{i\alpha}-\eta_{j\alpha}$ on $U_i\cap U_j\cap f^{-1}(W_\alpha)$. Moreover, with the aid of (11), we infer readily that the collections $\{\eta_{i\alpha}\}_{\alpha=0,\dots,s}$ represent holomorphic sections of $f^*\theta_w$ over U_i . This proves our claim, completing the proof of Lemma 6.

4. Proof of the Main Theorem.

By the result of Kodaira cited in Introduction, we have a family \mathcal{F} of surfaces S_t , $t \in M_1$ in W with ordinary singularities containing $S = S_0$, $0 \in M_1$, such that the characteristic map

$$\sigma: T_0(M_1) \to H^0(S, \mathcal{O}_S(nE-\Delta-\sum \mathfrak{c}_i))$$

is bijective.

Let $\mathcal{X}_1 = \{X_t\}_{t \in M_1}$ be the family of the normalizations X_t of S_t . By virtue of Lemma 4, the characteristic map

$$\tau: T_0(M_1) \rightarrow H^0(X, \mathcal{G}_{X/W})$$

is bijective. In view of Proposition 1.4 in [3], Lemma 6 implies that the infinitesimal deformation map

$$\rho: T_0(M_1) \rightarrow H^1(X, \Theta_X)$$

is surjective. From \mathfrak{X}_1 , we can derive a family $\mathfrak{X} = \{X_i\}_{i \in M}$ of deformations of $X = X_0$, $0 \in M$, such that $\rho: T_0(M) \to H^1(X, \Theta_X)$ is bijective.

By Lemma 3, K is ample. So we have $H^0(X, \Theta_X) = 0$ (see [1]). It follows that the family \mathcal{X} is effectively parametrized at each point t of M, provided that t is sufficiently near 0. This proves that the number of moduli m(X) of X is defined and equals dim $H^1(X, \Theta_X)$.

We now calculate m(X). For this purpose, we note the following exact sequence $0 \to H^0(X, f^*\theta_W) \to H^0(X, \mathcal{T}_{X/W}) \to H^1(X, \Theta_X) \to 0$. This follows from Lemma 6 and the vanishing of $H^0(X, \Theta_X)$. Furthermore, we have a standard exact sequence $0 \to \mathcal{O}_X \to \mathcal{O}_X(\tilde{E})^4 \to f^*\Theta_W \to 0$. With the aid of Lemmas 2 and 3, we obtain

$$\dim H^0(X, f^*\Theta_W) = 15 + 4\delta_{r, s+1}$$

Thus we conclude

$$m(X) = \dim H^1(X, \Theta_X) = \mu(S) - 15 - 4\delta_{r,s+1}$$

where $\mu(S)$ is the number of effective parameters of the family \mathcal{G} .

It remains to calculate $\mu(S)$. By a result of Kodaira ([4], Theorem 4 and § 5.4), we get an exact sequence

$$0 \rightarrow H^0(W, \mathcal{O}_W(nE-2\Delta)) \rightarrow H^0(W, \mathcal{O}_W(nE-\Delta-\sum c_i')) \rightarrow H^0(\Delta, \mathcal{N}_A) \rightarrow 0$$

where $\mathcal{N}_{\mathcal{A}}$ denotes the sheaf of germs of sections of the normal bundle of \mathcal{A} in W. We have

$$\dim H^0(\Delta, \mathcal{J}_{\Delta}) = C(r) + C(s) - C(r-s) - 2$$

where C(m) = (m+3)(m+2)(m+1)/6 (see [4], § 5.4), and

$$\dim H^0(W, \mathcal{C})_{\overline{w}}(nE-\Delta-\sum c_i))=\mu(S)+1.$$

Letting S_1 denote the hypersurface defined by the equation g=0, we get two exact sequences

$$\begin{array}{ll} 0 \rightarrow \mathcal{O}_{W}((n-r)E-\varDelta) \rightarrow \mathcal{O}_{W}(nE-2\varDelta) \rightarrow \mathcal{O}_{S_{1}}(nE-2\varDelta) \rightarrow 0, \\ 0 \rightarrow \mathcal{O}_{W}((n-2r)E) \rightarrow \mathcal{O}_{W}((n-r)E-\varDelta) \rightarrow \mathcal{O}_{S_{1}}((n-r)E-\varDelta) \rightarrow 0. \end{array}$$

With the aid of isomorphisms $\mathcal{O}_{s_1}(nE-2\Delta)\cong\mathcal{O}_{s_1}((2r-2s)E)$ and $\mathcal{O}_{s_1}((n-r)E-\Delta)\cong\mathcal{O}_{s_1}((r-s)E)$, we readily infer that

$$\dim H^0(W, \mathcal{O}_W(nE-2\Delta)) = C(2r-2s) - C(r-2s) + C(r-s) + 1,$$

where we set C(m)=0 for m<0. Thus we conclude that

$$\mu(S) = C(r) + C(s) + C(2r-2s) - C(r-2s) - 2$$
.

This completes the proof of the Main Theorem.

References

- Akizuki, Y. and S. Nakano, Note on Kodaira-Spencer's proof of Lefschetz theorems, Proc. Japan Acad., 30 (1954), 266-272.
- [2] Grothendieck, A., Techniques de construction en géométrie analytique, Séminaire H. Cartan, 13 (1960/61).
- [3] Horikawa, E., On deformations of holomorphic maps I, J. Math. Soc. Japan, 25 (1973), 372-396.
- [4] Kodaira, K., On characteristic systems of families of surfaces with ordinary singularities in a projective space, Amer. J. Math., 87 (1965), 227-255.
- [5] Kodaira, K. and D. C. Spencer, On deformations of complex analytic structures I, II, Ann. of Math., 67 (1958), 328-466.
- [6] Noether, M., Anzahl der Moduln einer Classe algebraischer Flächen, Sitz. Königlich Preuss. Akad. Wiss. zu Berlin, erster Halbband, 1888, 123-127.
- [7] Wahl, J., Deformations of branched covers and equisingularity, Thesis, Harvard Univ. Cambridge, Mass., 1971.
- [8] Wavrik, J., Deformations of branch coverings of complex manifolds, Amer. J. Math., 90 (1968), 926-960.
- [9] Zariski, O., Algebraic Surfaces, Springer, Berlin, 1953.

(Received July 25, 1974)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan