On the number of moduli of certain algebraic
surfaces of general type

By Eiji HORIKAWA

Introduction. We let S denote an irreducible hypersurface of degree n=2rin
the projective 3-space P® over the field of complex numbers, defined by the equa-
tion

(1) g%+ Agh+ Bh2=0

where g, h, A, and B are homogeneous polynomials of degree r, s, r-—s, and 2(r—s),
respectively, with two positive integers » and s, r>s. Let 4 denote the curve on S
defined by the equations g=h=0. Then 4 is contained in the singular locus of S.

We say that S is generic if the following conditions are satisfied:

1) S has only ordinary singularities, and is non-singular outside of 4.

2} 4 is non-singular.

3) The normalization X of S is a non-singular algebraic surface of general
type.

We note that S satisfies the conditions 1) and 2), provided that g, &, A, and
B are general homogeneous polynomials. 38) is equivalent to the inequality n>s+4
{cf. Lemma 38).

In [4], Kodaira studied families of surfaces with ordinary singularities in P°.
In particular, he proved that a generic hypersurface S defined by (1) belongs to
an effectively parametrized maximal family ¢ of surfaces S,,t € M,, with ordinary
singularities in P® whose characteristic system on each S, is complete (see [4],
Theorem 8 and §5.4). The number of effective parameters of the family CF, which
we denote by p(S), is given by

2(8)=Clr) + C(s) + C(2r —28) — C(r - 23) — 2,

(m+8)(m-+2)(m+1)/6 for m>0

where C(’In)={ 0 for m<0.

On the other hand, Kodaira-Spencer [5] defined the concept of the number of
moduli m(X) of a compact complex manifold X. m(X) is defined only if there
exists an effectively parametrized complete family {X}iew of deformations of X.
In this case, we define m(X)=dim M. The purpose of this paper is to prove the
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following

MAIN THEOREM. Let S be @ generic hypersurface in P* defined by the equa-
tion (1), X the normalization of S. Then the number of meduli m(X) of X is
defined, and equals

dim HI(X’ @X) :,{"(S) —15“457.»4“1

where Oy denotes the sheaf of germs of holomorphic vector fields on X, and 6,44,
18 Kronecker’s delta.

The difference between m(X) and p(S) is the contribution of the number of
parameters on which the natural holomorphic map f: X—P? depends.

For (r,$)==(3,1), S is one of examples of M. Noether [6]. In this case, X is
a minimal algebraic surface with geometric genus p,=4, irregularity ¢=0, and
the Chern number ¢=6. Hence, we have

m(X)=88=10(p,+1)-2c}

with p,=p,—g¢. By the Riemann-Roch theorem, it follows that H2%(X,0)=0. In
general dim H*(X,0y) is very large.

1. Preliminaries.

Let W denote the projective 3-space P? and let p:V—W be the monoidal
transformation with center at 4. Then X can be identified with the proper trans-
form of S. Let f:X—W be the restriction of p to X. The same letter f will
denote the induced holomorphic map X—S. We set d=f"1(4).

Let E be a hyperplane of W and let E=f*E. We employ the same symbols
E and E in order to denote the restrictions of E and E to S, 4, and J, respec-
tively.

We cover W by a finite number of coordinate neighborhoods W, i€l We
set

J={el: ANW, is not empty},
J'={el: ANW, is empty}.

We may assume that the associate line bundle [E] is trivial on each Wi,
Let {ei;} denote a system of transition functions for [E]. Then g, %, 4, and Bare
represented, respectively, by collections {g}, {ki, {4, and {Bj} of holomorphic
functions satisfying g:=ei;g; on W,nW,, ete.
For each 7€ J, p~!(W;) is covered by two open subsets
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Ui={(z, ;) € W:XC: hi(z)u;=g:(2)},
Vi={(z,v) € W.xC: g:z)vi=hi(2)}.

Moreover, X is defined by the equations

W+ A2)us+ Biz)=0  on U,

2
(2) 1+ A(z)v;+ Bi(z)vi=0  on V..

We note that (2, %;) ¢ U, coincides with (z,2,) € V; if and only if w,=1/v;. It fol-
lows that XN p~4(W,) is contained in U,.

For each i1¢J/, ie., W:N4=, we set U;=p~{W,). Then X is contained in
the union of U;, 1¢ L

LEMMA 1. 4 is linearly equivalent to sk on X.

PROOF. On each XN U, i¢J, 4 is defined by the equation k;=0. On the other
hand, for each 7 ¢ J’, neither g; nor h; vanishes on SN W,. Hence we can take

h;=0 as a local equation of 4 on XN U, for any i¢ L Q.ED.
LEMMA 2. We have dim HY(X, Dx(E))=4+0,.,+; and HY(X, Ox(mE))=0 for any
tnteger m.

PrROOF. We recall that
HQ(X, @X(mE—Z))EHq(SsOS(ME—A)) f()r q=0) 1’2

where Os{mE—4) denotes the sheaf of germs of holomorphic sections of m[E] on
S which vanish on 4 (see [4]), and that the canonical bundle K of X is given by
[(n—4)E—4].
First, we shall prove the second assertion. By the Serre duality, we have
dim HY(X, Ox(mE))=dim HYX, Ox((n—4—m)E - 1))
=dim HY(S, Os{(n—4-m)E— 4)).
Hence it suffices to prove H!(S, Os(mE—4))=0 for any integer m.
In view of two exact sequences
0-Or ((m—n)E)>Op(mE~4)—Os(mE—4)-0,
0— Op(mE—4) - Op(mE) — OsmE) -0,

we only have to show that the restriction map
(8) HYW, Ow(mE))—~H4,0 4 mE))

is surjective.
Let S; be the hypersurface in W defined by the equation g=0. Then we have
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HY(S,,Os,(mE))=0 for any integer m. From the following two exact sequences

0-0s,((m—3) E)>s (mE)~( s(mE) -0,
Ou’OW((’m“T)E)—’GW(ME)—’QSI(’ME)“’O,

we infer that the restriction map (8) is surjective. This proves the second asser-
tion.
In order to prove the first assertion, we consider the following commutative

diagram

0—>H*(S, Os(E~ 4)) =H"S, Os(E)) ~H*4, O 4(E))-0

i \ )

0->HX, Ox(E—-2)—H(X, Ox(E)—~H4, O3(E))
with two exact rows. Since we have HY(S, (Ds(E))=0, we get 0=H(S, Os(E— 4))
=HYX,Ox(li~4)). It follows that the last horizontal map H°(X,Ox(E)—~HJ,
Oi(E)) is surjective. Since the first vertical map is bijective and since we have
dim HS, Os(E))=4, it suffices to show

(4) dim H°((4, O3(E))=dim H(4, O 4(E))+5,.4s1.

For this purpose, let F be the line bundle on 4 induced by (r—s)[E], F* its
completion, q:F*-4 the natural projection, and let 4, and 4. denote, respectively,
the 0-section and the co-section of ¢. In view of (2}, 4 is a divisor on F# which
is linearly equivalent to 24,. Moreover, 4 does not meet 4.. Hence we have the
following exact sequence:

0O pilq* E— 24+ 4) =0 il 0* E+ 4) > (O3(E) 0.
On the other hand, we have ¢*F'=[4,]—[4.]. Hence we get
H(FY Opalq*E~24y+ 42)) = H*(F*?, O o(q*E—2¢* F— 4)) =0
for v=0,1, and
HYFY, Oplq*E+ o) =H (4,0 4(E))DH 4, D4 E~-F))

(see [8], Propositions 2.1 and 2.2). This proves the equality (4).

REMARK. In the case r=s+1, the complete linear system |E| embeds X in
P* as a complete intersection of a quadric hypersurface and a hypersurface of de-
gree 7.

LEMMA 8. (i) We have n>s+4.
(ii) The canonical bundle K of X is ample. In particular X is minimal.
(i) X has the following numerical characters:
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_f2r—-1N_1 .
Py < 3 ) 2?‘3(37‘ s—4),

g=0,
cf=2r(2r—s—4)2.

PROOF. By Lemma 1, we have K=(n—s—4)[E]. Since we have assumed
that X is of general type, it follows that n>s+4. Then, since f: XS is finite,
K is ample. The assertion (iii) follows from Lemma 2 and a classical formula for
Pa (see [4], [9]).

2. Relation between deformations of S and X.

First we recall some results about characteristic systems of families of surfaces
with ordinary singularities (see [4]). Let S be a surface of degree n in W=p*
with ordinary singularities. We cover W by a finite number of coordinate neigh-
borhoods W;, and let (x;,¥i,2:) be a system of local coordinates on each W.. We
may assume that S is defined, on each W;, by an equation ¢;=0, where ¢; is one
of the following form:

(8o $i=1,

(5), $:i=2;,

{5)s =Yk,

(5) Pi=T Y%,
(5). ¢i=93iy?—42 .

In the last case, we call the point ¢;: z,=y;=2,=0 a cuspidal point of S. Let 4
denote the double curve of S, and let O)(nE—4) denote the subsheaf of OnE)
consisting of germs of those holomorphic sections which vanish on 4. Moreover
let OnE—4—3¢) denote the subsheaf of O(nE—4) consisting of germs of those
holomorphice sections ¢ of [#E} which vanishes on 4 and satisfy

at each cuspidal point. We let OsnE—~4-% ¢) denote the restriction of O(nE~
4-3¢) to S.

Let {Siicu be a family of surfaces of degree n in W with ordinary singulari-
ties such that S=S, for 0e¢ M. We let To(M) denote theJtangent space of M at
0. Then we have a characteristic map
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o: ToM)—=HS,OsnE—~4-3¢1)).

If S. is defined respectively by the equations &(t)=0, then, for any djate T,(M),
o(d/ot) is given by the restriction of a®(t)/ot],-, to S (see [4]).

On the other hand, the normalizations X, of S, describe a family ¥ ={X}ien
of deformations of X=X, and f: X— W extends to a holomorphic map ¥: ¥ —Wx
Mover M. Let 6y and Oy denote, respectively, the sheaves of germs of holomor-
phic vector fields on X and W, and let & x/» denote the cokernel of the canonical
homomorphism F: @y—f*0y. Then, we have a characteristic map

T TQ(M)“’HD(-X;Q‘X/W)
(see [3], §1).

LEMMA 4. There is a canonical isomorphism
f: OstnE— 4= ) ~>fT xiw
which induces an isomorphism
7 HYS, OsmE—~4-5 c)—>HX, T xw)
such that —rv=feo.
PROOF. Let 8 denote the dual of the sheaf of germs of 1-differentials Q% on
S (see [2]). Then we have an exact sequence
0050y 15+ Os(nB— 4~ £ )0,
where @ sends p¢ I'(U, Ogi5) to {9-¢,} for any openset U. Since f: X—Sis finite,
we get an exact sequence
0-£48x 5> fu F*Ow 2> £, T zjw—0.
Moreover, there exists a canonical homomorphism
F*: Bwis—>fu f*Bp.

We shall prove that f* induces a desired isomorphism.
We start with a lemma.

LEMMA 6. Let U be an open set in X, and let r=r,8/0m;+140/0y;+140/02, be
an element of T(UNFYW,), f*8y). We set

r-¢a=r1%?l(f)+r23¢i"—(f)+rrag‘¥(f).
T oy 0z;

Then, we have Pr=0 if and only if t-$,=0, where P denotes the natural projec-
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tion f*Op—Y x/w.

PROOF. We shall check the équivalence in each case in which ¢; is of the
form (5),, (8)4, (5): or (5)..

If ¢, is of the form (5),, then the equivalence is clear. If ¢, is of the form
(6)4, then f~YW,) is a disjoint union of two open subsets

Ui:{(xityi)e sz (23,', Yis 0) € Wi})
Vﬁz{(xi)zé) €C2: (mivoyzi)é Wi}'
On UnU;, the following three conditions Pr=0, r3=0, and r-¢=0 are equivalent

to each other. Similarly, Pr=0 if and only if z-¢=0 on UNV,.
The case (5), is quite similar to the case (5);. If ¢; is of the form (5),, then

FUW)= {(u, v) e C2: (uﬁ, ?, —%1)—> € W,},

and fis given by z=u? y=v, and z=uv/2. Let F: @y—f*6y be the canonical
homomorphism. We have

( ) 2u**+'2— Ez‘

a % 9
61;) ay K] 2 9z
While we have
- =1, +2r,uv —druv.
It is easy to check that F(9/ou)-¢=F(8/ov)-¢=0. Conversely, if -¢=0 then r,/u is
holomorphic and r,9/u+2r,u—4r;=0. From (6), we get ¢=(r,/2u)F(8/ou) -+, F(a/0v).
This proves the assertion.

PROOF OF LEMMA 4. Let o0=0,0/0x;+ 0,0/0y,+ 040/02; be an element of I'(U,
Bwis) for some open subset U of S. Then,

; 09, 99,
Zi‘ az T af‘
is a holomerphic funection on UN W; which vanishes on 4. Moreover, we may as-
sume that ¢,=ef;6; on WiNW;. It follows that ¢-¢,=efjo-¢; on UNW,nW;.
The image Qo is represented by the collection {s-,}.
Clearly, we have (f*cr)-¢.-=f*(a-¢.-). Hence f*: Op— fo f*6y induces a
homomorphism 85— f,8;. Consequently f* induces a homomorphism

f: OsmE—-d~3 = Fiul xiw-
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From Lemma 5 we infer readily that f is injective. We now prove that f
is surjective. Let Pr be an element of I{f~YW.), G xiw) with z==2,(8/02,)+,(6/3y.)
+24(0/02;) in I'(fYW,), f*Ow). We shall check that Pr is in the image of f in
each case (5),~(5),.

If ¢, is of the form (5),, there is nothing to prove. If ¢, is of the form (5),,
we define holomorphic functions 7z and 5 on W; by z2=t,y,, and ri=tgy,. Then,
we have Pr=P(c}(8/dz,)) on U; and Pr=P(z}(3/6z,)) on V,. Setting o=r3(0/y:)+
t3(0/02;) € I'(W,, O1s), We have Pr=P(f*0).

If ¢, is of the form (5),, the proof is quite analogous to the above.

If ¢, is of the form (5),, we write r;=0,+u¢ and ry=g3+uos with a,, o}, a3,
o3¢ I'(Wi,Js). In view of (6), we may assume that ol =z,=0. It follows that
Pr=P{ f*s) with
*aff+20§w?-+ 031

=0 8Y: 0z

In fact, we have (z—f*0)-d;= —doiuv+4(rs—o5)uv=0. Hence the assertion follows
from Lemma 5.

Next we shall prove the second assertion of Lemma 4. Let §F={S};cx be a
family of surfaces in W with ordinary singularities, which contains S=S,, 0¢ M.
Then we may assume that FC Wx M is defined, on each W;xM, by the equa-
tion

D2, i, 2, 1) =0

such that &,(z,, ¥:,2;,0)=¢(x;, ¥:,2,). Moreover, we can find holomorphic functions
X, Y, and Z; of z,,y,, 2,1t such that

Xijewo™5;, Yiieo=1v,, Zii—o=2;,
(7) Dz, ¥, 20, 1) =0 X, ¥, Z5).
For any tangent veetor 8/ot € To(M), we have

od: 8 aX,.+ 9%, aY;+a¢; YA
ot ox; ot oy, ot | 9z ot '’

by (7). This implies the equality

0\ (2% 8 oY 0 0% 9
(8) "(at)”Q< ot ox, ' ot oy, | ot oz /)

On the other hand, let ¥ ={X.}icx be the family of normalizations X, of S..
We may assume that ¥ is covered by a finite number of coordinate neighborhoods
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Us such that XN ;= U;=f-}(W,) and each ¢J; is biholomorphically equivalent to
Uix M={(;,t): ;e U,te M}. Moreover f: X— W extends to a holomorphic map
¥: X->WxM over M. ¥ is defined, on each qJ;, by the equations

=T, y=TiC,t, =Tt

where ¥{ are holomorphie functions on QJ;. By definition =(3/at) is given by

) or: 8 Wt o Wl @
9 I \op(Li ¢ 0% ¢ | 0% O
(9) r(at) P( ot a:v;+6t ay;+at az.~>'

We note that ¥/ satisfy the equations
(10) P X¥ 1), YT ,t), Z{¥,,8)=0.

From (10}, we obtain

LI A AL IVE, T AL NG 0 Y AN
am,.(f)< at ot )+ P (f)< at | at >+ oz (f)( ot ot )“0'

In view of the equalities (8), (9), and Lemma 5, it follows that —z(8/6t)=
fo(a/at). This proves the second assertion.

REMARK. The first half of Lemma 4 has been obtained by J. Wahl [7].

3. Vanishing of obstructions.

Let S be a surface in W defined by the equation (1), and let X be its nor-
malization. Our purpose of this section is to prove the following lemma.

LEMMA 6. The coboundary map

6: HUX, T x)w)~HY X, Ox)
18 surjective.

Proor. Let {U} be a finite open covering of X. We may assume that [£]
is trivial on each U, and we let {e;;} denote a system of transition functions of
(E]. We can find fie HYX,(O(E))(2=0,1,2,3) such that f: X—W is defined by
2—(f%2),...,f%z)) ¢ W. We represent each f* by a collection { f f} of holomorphic
funetions on U; which satisfy f{=e,, ] on U;nU,.

Let o be a cohomology class in HY(X,8y) which is represented by a 1-cocycle
{p:;} on the nerve of the covering {U;}. We take a system of coordinates (¢},
on each U;, and write {p;;} explicitly in the form p;;=3. 0{;8/8({. For any holo-
morphic function & on an open subset of U;NU;, we set p;;-h=3. pi;0h/0(:, and
also p;;-log h=(p;;-R)/h if h is non-vanishing.
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We easily see that {p;,-loge;} is a 2-cocycle with coefficients in (9. Setting

&;,:det (“%‘é’“‘), div p;;=zﬂ: aa‘zzzi’

we have div py~div p;;—div pj,=p,-logs; on U;nUNT,.

By Lemma 1, we ecan find non-vanishing holomorphic functions y; on U; such
that

B=rileny;
on U;NU;, with m=n—s—4. It follows that &;=(div pi;+ p;-log 7;)/m satisfy
fik-{:.‘;‘“f,’k:ﬂjk‘bgeij on U;N U,-ﬂ U,.

It follows that {&,;f? —pi;-f1} are l-cocycles with coefficients in (94(E). By
Lemma 2, these are cohomologous to 0, so we can find holomorphic functions 7 on
U,; such that

T: uT suf P fg
on U;NU;. We claim that this implies Fo=0 in HY{X, f*O).

In fact, let (w*)=(w® w', w? w®) be a system of homogeneous coordinates on W.
We set W,={we W: w*+0} and wi=wYw® on W,. We have

—-—a—;«,-== —l;; »—@T for A#a,
6’M)p ,9 aWa

) 7} 0 7}
wh =T (wg) x);a Bwa + dwh

on W,NWs. On the other hand, fis defined by w'=/%/f% on U;Nf~(W,). Hence
we have

Foy=-te S (1% F=foi 1)

(f3)R isa azb.;
Setting
— 1 a R
Via™ (f:y)z = ( !tG f| 71 wa

we get Fp;;=n0,~7,, on U;NU;N/ Y W,). Moreover, with the aid of (11), we
infer readily that the collections {9iz}q=o.....s represent holomorphic sections of f*8y
over U;. This proves our claim, completing the proof of Lemma 8.
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4. Proof of the Main Theorem.

By the result of Kodaira cited in Introduction, we have a family & of sur-
faces S,, t¢ M, in W with ordinary singularities containing S=8,, 0¢ M, such
that the characteristic map

o1 T(M)~HS,OsnE—~4-% i)
is bijective.
Let _‘X’I:{X,}m,,l be the family of the normalizations X, of S,. By virtue of
Lemma 4, the characteristic map

o To(M)-HX, gx,’w)

is bijective. In view of Proposition 1.4 in [3], Lemma 6 implies that the infinitesimal
deformation map
p: To(M)—>HYX,04)

is surjective. From X7y, we can derive a family ¥ ={X}icy of deformations of
X=X, 06 M, such that p: ToM)>H' X, 0y is bijective.

By Lemma 8, K is ample. So we have HYX,0,)=0 (see [1]). It follows that
the family ¥ is effectively parametrized at each point ¢ of M, provided that ¢ is
sufficiently near 0. This proves that the number of moduli m(X) of X is defined
and equals dim H(X, 8).

We now caleulate m(X). For this purpose, we note the following exact se-
quence 0—>H X, f*@p)>H X, x/w)—>H' X, @x)—0. This follows from Lemma 6
and the vanishing of H%(X,0x). Furthermore, we have a standard exact sequence
0—-Ox—~x(E)—f*0y—0. With the aid of Lemmas 2 and 3, we obtain

dim HX, f*@y) =15+45,.,4:.
Thus we conclude
m(X)=dim HY(X, Bx)=p(S)—15—46, 441,
where #(S) is the number of effective parameters of the family .
It remains to caleulate u#(S). By a result of Kodaira ([4), Theorem 4 and
§5.4), we get an exact sequence

0—HW, Ow(nE—24))->H W, Ow(nE~4— 5 ci))>H(4, J15)~0

where J], denotes the sheaf of germs of sections of the normal bundle of 4 in
W. We have
dim H°(4, J14)=C{r)+ Cls)— Clr —5)—2
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where C(m)=(m+3)}{m+2)(m+1)/6 (see [4], §5.4), and
dim HAW, Ow(nE—4— )=u(S)+1.

Letting S, denote the hypersurface defined by the equation g=0, we get two exact
sequences

0-Opln—r)E—- )= Op(nE—-24)-s,(nE~24)-0,
0-0Owl(n—27)E)=Ow((n—7)E— 4)—s,((n—r)E— 4)-0.

With the aid of isomorphisms s, (nE—24)=(s,((2r—2s)E) and Os,(n—7)E—4)=
Os,((r—8)E), we readily infer that

dim HY(W, Ow(nE~24))= C2r—2s)— Clr—2s)+ Clr—s)+1,
where we set Clm)=0 for m<0. Thus we conclude that
2(S)=Clr)+ Cls)+ C2r —2s)— Clr—2s) —2.

This completes the proof of the Main Theorem.
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