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I. Introduction

The Ree group 2F,(g), where ¢=2*+1 (n0), is simple if ¢>2 (R. Ree, [5)),
while 2F,(2) is not simple but its derived subgroup 2Fy(2)’ is simple (J. Tits, [10]).
D. Parrott has characterized 2F,(2)’ in [3] and %F,(q) in [4] from the structure of
the centralizer of a central involution. The purpose of this paper is to extend
the theorem of D. Parrott in {4] to the odd order extensions of 2F(q).

Let I” be a finite field with g=2"*! elements. Every automorphism ¢ of I’
canonically induces the automorphism of 2F,(g) and the semi-direct produet of {¢}
and 2F,(q) is an odd order extension of 2F,(g). Let C, be the centralizer of a
central involution in 2F,(g). Then our characterization is given by the following
theorem:

THEOREM. Let G be a finite group of even order and let = be a central involu-
tion of G. Suppose that Cglr) has the following properties:

(i) Cglz) contains a normal subgroup C of odd index p which is isomorphic

to C, for some q.

(ii) O(Celr))=1.

Then if g>2, one of the following cases holds:

(1) O(G) is a non-identity normal subgroup of G.

(2) O(G)=1 and there exists a non-identity subgroup E of Z(C) such that EG.

(3) G=(o)*Fi(g), where o€ Aut (I") and KKad|=0p.

And if q=2, then G=0(G)C or G=2F,(2).

COROLLARY. If G is a finite simple group which satisfies the hypotheses of
the theorem, then ¢>2 and G=*F,(q).

This theorem really extends the theorem of [4] (see [4, Lemma 1]).

The method used to prove the theorem is quite similar to those used by G.
Thomas in [8] and M. E. Harris in [2] for the characterization of G.(2"). We will
omit the proofs if we can find nearly the same proofs of corresponding results of
G,(2") in [8] or in [2]. But, since this work first has been done separately from
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the work of D. Parrott, the proof does not depend heavily on [4].V
If R is a group, R* stands for the set of non-identity elements in E. L(K)
and Z/(R) denote the characteristic subgroups of E defined as follows:

Li(Ry=R, L{(R)=[L,,(R),R} for 1>1,
Z\(R)=Z(R), Z\RIZ,(R)=Z(R)|Z;-(R)  for i>1.

I'* denotes the multiplicative group of non-zero elements in I". The other nota-
tion will be standard. In particular a¥=y'zy and [z, yJ==2"'y 'xy for the elements
z,y of a group.

II. The group 2Fy{g)

The structures and properties of 2F,(q) can be found in {5]. In this section,
however, we discuss these properties and explain briefly the notation we use
later. ‘

(2.1) Let G be the group 2F,(g), then G has a BN-pair. B is a semi-direct
product of U and H, where U is a Sylow 2-subgroup of G and normal in B and
H=I*xI'*. NQOB=H and N/H= W={r,, r,>, where r;=r=(r;r,)8=1, and hence
W is a dihedral group of order 16.

|Gl=¢"*(q—1)(g*+1){g*—1)(¢°+1),
[Ul=¢"* and |H|=(¢g~1)%

Two parabolic subgroups of G are useful; they are
PIZBUBHU;Ug and szBUB}'gUs,
where U, are subgroups of U defined in (2.2) below.

(2.2) Any element u of U can be written uniquely in the form:
u= ] ay(£)) (&;eT),

where the product can be taken in any order and «; (1=1,...,12) is an injective
mapping from " into U; moreover for i#1,4,5,6, «; is an additive homomorphism.

1 The author had proved the theorem in the form of D. Parrott in [4] in May, 1973 and
announced the result at the symposium held at Matsue on Aug., 1973. Soon after the
symposium, he extended the result to the present form. After the publication of [4],
he has changed the original paper to the present form: he has improved the proof of
section V and omitted the proof in the case of ¢=2.
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For this notation «;, the reader may consult [5] p. 407. We will write the image
of a; by U; and we define the subgroups U; (i=1,...,12) of U as follows:

12
w= I U,
3=4

Another notation concerning U which is very useful in understanding the argu-
ments in the proof can be found in [9] p.210-05. Let %,,9; (i==1,..., +4) be
the subgroups of G defined as follows; X,=U;, X.=U,, Xs= U, X,=Us, D=U, U,
De=UsU,, D= UsUsz, De=U,Us, X_;=%° and P_; =Y, where wy=(r11.)! and =1,
2,3,4. Then (X, X_,>=SL(2,q) and <9:, D-.>=2B,(q), where 2B,(q) denotes the Suzuki
group. 7; (i==1 or 2) induces a permutation on {X;{i==1,..., x4} and on {¥;|i=
+1,..., £4} respectively. Roughly speaking, the action of », (resp. 7,) is obtained
from Fig. 1, if we consider that », (resp. r,) is a reflection defined by »/(D)=9-,
(resp. 7.(%,)=%_)). To be exact, ri=a;()a_(1)a;(1)}, r,=as{l)a_s(1)as(l) and 7»;
acts on «;’s according to the formula:

a,-(f)’iza,i(j,(‘&),

where r;(j) is obtained from the following table and r;(—7)=—7r.{39).

J 1 2 4 8 5 12 6 1.1 3 7T 9 10
r(J) -1 -1 6 1 5 12 4 8 7 3 10 9
12 7) 4 g8 1 2 6 11 5 12 -3 9 1T 10

(2.3) Although the commutator relations of a,’s are calculated in [4], partly
in [5] and {10}, for convenience’ sake, we will mention here all commutator relations
of a;’s, where 6 denotes the integer 2":

[aa(8), as(n)]=ay(En)as(E20+ 920 s (§704 ) s (G0 + 22+ ) yp (§40H 92 04),
[a(8), auln)]= ( 770)ae(§270) s (§2° 1)t (§72041)

(52@+1 2041) gy, (£20+220+1) 1, (£20+12042)
[(§), as(n)]= 0’7(
[e1{8), as(n)]=ay(§ )a“(520+2 Ja(§27417%),
[a1(§), as(n)]= a1o(§2°n) 11 (€4 9) @y (£7%),
[e;(€), arelp)]=ans{én),
[@2(€), as(n) )= s (£7*%)ae(En)an(E20n) aa(E72 0+ e (€57 720 )y (£50+ 177041,
[az(8), as(9)]= aq(En)as1 (E20727* ey (§92047),
[@2(8), as(n)]=asp(§7)an (§%0n)a1a(€7%9),
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[as(€), as(n)l=an(§7),

[as(§), as(n)]=as(67),

[as(£), ers(7) == as(€°n) e (§7%7) 12 (677 1),
[as(§), ar(n)]= (%) aso(§77),

[as(8), an()]=ase(én),

LA M 1=as(é7),

[aul8), ar(n)]= 1o (67 n) s (§7°0) @12 (£27+17),

R

sy Qg

)

)

[ay(8), ar(n)]=ara(é7),

&), as(n)]=a10(é7),

), en(n) (
).%(Oﬂ"a’xz(er)
), s(n) (
), i)

f "}
i
K
I
S 3

fa7 §), aslp)l=ay,(éy)  and

(
(
fa’s(
(
{ :
(8, asln) =y 00 (€27 + £72), Fig. 1

where j(7)=2,8,12 or 11 corresponding to i=1,4,5 or 6 respectively. All the other
commutators [a;(£), a,(n)] are equal to 1.

Moreover a;(8)ai(n)=a;(E+7)a;,{E9%) for i=1,4,5 or 6.
(2.4) Every element h of H can be written with two parameters ¢, and &,:
h=h(e,, e,), where ¢,ecl'%.
The action of H on U is given by:

hoy(8)h 1 =ay(e2¥8),
&8),

hag(§)h = a6l Y65 '8),

20 -1 —2041
1 €2 &))

)

)

)

)

) H
Wizl ~'es ~'8),
) :
)

)

)

)

)

And r, and r; act on H as follows:

hien e2)1=h(er, ;') and
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ey, &) 2=hieter, cie; "),

IiI. Some properties of C, and preliminary lemmas

(3.1) Z=Z{U)=U,,. Every element z contained in Z! is an involution and its
centralizer in 2F}(g) is isomorphic to C, and we identify C, with the centralizer
of z in 2Fy(g). Then Z(C)=Z and

Cq: UKU UKTlUng,
where K={he Hlh=h(1,¢)}. Thus |C,|=¢"2(g—1)(¢*+1).
(32) OZ(CV)2D=H3 and C.,/DEZBz(q). In fact U1U2KU UxUzKT;UlUg (Esz(q))
is a complement of D in C,. Any two distinct Sylow 2-subgroups of C, intersect
in D, since any two distinet Sylow 2-subgroups of 2B,(g) intersect trivially.

The following propositions (3.3)~(3.7) are easily verified using the properties
in §11.

(8.3) Every involution contained in U is conjugate in I/ to one of the follow-
ing elements:

(1) aul)anlé), £,#0, (¢®)
(i) as(Es)an(én), £s#0, (¢%)
(iii)  aslén), (¢°)
(iv) as(e)an(én), §a 70, (@°)
(v) alé), (@)
(Vi) el (¢*°)
(vii)  anlén), {g"")
(viil)  a@p2{612), (g"?)

where the powers of ¢ in the parentheses denote the order of the centralizer in
U of the element on the same row.

(8.4) Every involution contained in C, is eonjugate in C, to one of the follow-
ing elements:

as{lag(n), a(l), ap(l), aull), aplé).

(8.5) If A is a maximal elementary abelian subgroup in U, then A is conju-
gate in U to one of the following subgroups:

Vi=U, UvaUn U, 2= UsUsUerUm
W= U7 Ug Um Un U12 and X= 113.
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Each of these has order ¢° and only W and X are normal in U.

(3.6) We define two other important subgroups of U, M=U, U, and Y=
UnUs. Then Y=2Z(M) and M is a normal subgroup of U. Moreover, if M, is a
subgroup of U of order ¢!' whose center has order ¢, then M=2M, Therefore
M char U.

(8.7) U and M have the following upper central series:

Z\U)=2, Z,\U)=Y, ZU)=U,, Z(U)=U, Zj(U)=1U,
ZyU) =5, ZAU)=U,1,, and ZyUj=U.

Z\(M)=Y, Z(M)=W,, Z)M)=W,

ZJ{M)= U1, and Z{M)=M.

The following two propositions are well known, but we write them here for later
use.

(8.8) Let u and v be two imvolutions in a finite group G. If u is not conju-
gate to v in G, then there is a third involution w such that

(1) w commutes with both w and v, and

(i) wu i8 conjugate in G to either u or v.

(8.9) (M. Suzuki, [6]) Let G be a finite not 2-closed (TI)-group in which a
Sylow 2-subgroup S contains more than one involution. Then:

(i) G contains a subgroup J of odd order which normalizes S and acts
transitively on Z(S)%, and moreover,

(ii) if S is abelian of order v, then G contains ¢ normal subgroup of odd
index, which 18 isomorphic to SL(2,7).

IV. The structure of Cg;(z)

We assume throughout the remainder of this paper that G iz a finite group
which satisfies the hypotheses in the theorem stated in §I. The subgroup C of
Celr) is identified with C, and letters Z, U, K, D, V,, Vo, W, X, Y and M retain the
meanings given to them in §II and §III.

In this section, analyzing Cg(r) we obtain a complement A to C in Cglz).

Similar arguments used in [2, Lemmas 3.1 and 3.2] yield:

4.1) CCe(Z2)<1Cslz), O(Cs(2))=1 and 7€ Z.
4.2) If N is a subgroup of Cslr) and contains C, then O¥(N)=C, so that we
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have especially:
C=0%(Ce(2))<INg(Z).

4.3) Ce(D)=Z and Co(X)=UX.

PrOOF. The proof of [2, Lemma 3.3] yields that Cy(D)=Z.

As X=[D,D], X<|C4r) and hence C;(X)<]Cslr). Hence O(Csz(X))=1, and
Ce(X)=UsX is a normal Sylow 2-subgroup of C4(X). Let R be a complement to
Cc(X) in Cz(X). Then by definition R centralizes X and moreover R centralizes
UsX/X. In fact, if as(€)'=as(£’) (mod X) where y€ R, then (as(€)?)¥=ay(820+1)v=
(6294} and @,(8')2=ay,(§/2+); however, the mapping &—&2+1 from I' to I" is
bijective, so [R, U;X/X]=1. Hence, as {E|=o0dd, R centralizes U;X and we obtain
Ce(X)=U; XX R. Then R=0(C¢(X))=1 so that Cz{X)=U;X.

Cs{z) operates on C/D=B,(q) by conjugation. This implies that there is a
homomorphism ¢ from Cy;(r) to Aut(®B,(g)). Aut(®B,(g)) is a semi-direct product
of Int(*B,(q)) and Aut(l’), where the elements of Aut(l") are the automorphisms
of 2B;(g) induced from the automorphisms of the field I'. Let A*=¢'(Aut (.
Then A*>D, A*NC=D and Cy(r)=A*C so that [A*: D]=p=o0dd. Hence Schur-
Zassenhaus theorem yields that there is a complement A of D in A*. Further-
more, the proof of [2, Lemma 3.7] is also valid in this case and after replacing A
by a conjugate in A*, we have:

(4.4) There is a subgroup A of Cslr) such that |Al=p, Csr)=CA, CNnA=1
and ACNg(K). Hence AK 1is a subgroup of Cylr) of order (g—1)p. Moreover
there exists a homomorphism y: A*—~Aut (") such that if f is an element in A¥*,
then

a;(§) =ay§r) (mod D)
Jor all ¢, where i=+1 or x2.

4.5} If q=2, then p=1.

PrROOF. By the construction of A*, A*CNg(U) so that ACNg(U). Therefore
A normalizes Z, Y, Uy, Uy, X=1, Uy, Us, W,=Z,(U)ND and D (cf. (3.7) and (4.7)
below). Since Z, Y/Z, /Y, Us/Usg, X/U;, Uy/ X, U, /U5 and DJU, are groups of order
2, A centralizes these groups. Moreover using (2.3) we can easily conclude that A
also centralizes 1I,/Ul;. Therefore, since |A)=p=o0dd, A must centralize D and this
implies that A=1, since Ce(D)=2Z (cf. (4.3)).

Therefore in the case ¢g=2, the theorem in [4] can be applied and hence the
conclusion of the theorem in §1 is obtained. Henceforth we assume that ¢>2.
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From the proofs of [8, (5.4) and (5.5)] we can also conclude that:

(4.6) Two elements of Y are conjugate in G if and only if they are conjugate
m N(;(M}.

(4.7 W and X are normal in NU).

The proofs of {2, 3.10 and 3.11] yield:

(4.8) If q>2 and M is a simple subnormal subgroups of C, then M is abelian.
{4.9) If Ng(M) is not 2-closed, then N(M)/M is a (TI)-group.

(4.10) Celaw(l)) 48 a Sylow 2-subgroup of Cylay(l)) and hence a,(l) is not
conjugate to any element in Z.

Proo¥. Let T=Cglay(l)), then T=U,1,. If T is not a Sylow 2-subgroup of
Celaio(1)), then there is an element g€ Cglay,(1)) such that g€ Ng(T)—T and g%¢ T.
Since Ly{T)=Z, gc Ng(Z). Then as ¢ is central and C=0%{C4(2))<INs(Z) (cf. (4.2)),
we obtain that g¢ C and hence ge 7% But this is a contradiction.

V. Non-simple cases

In this section we treat the case when Ni(M) is 2-closed and we conclude that
if Ng(M) is 2-closed, then the conclusion (1) or (2) of the theorem holds,
We now assume that Ng(M) is 2-closed. Then

(6.1) Ng(M)=Ns{U).
From (4.6) we can conclude that:

(6.2) No element in Y—Z is conjugate to any element of Z.

(5.3) No element in Uy—Y 1is conjugate to any element in Z.

Proor. In order to prove (5.3), it is sufficient to prove that a,,(1) is not
conjugate to z for any z¢ Z, since every element in U,— Y is conjugate to ayo(l)
in C. However this fact has been proved in (4.10).

(6.4) Colas(1)) is @ Sylow 2-subgroup of Cslas(1)). Therefore as(1) is not con-
Jugate to z for any z¢€ Z5,

PrOOF. We let T=Cilay(1)), then T=Cyla;(1)=UU,UW=U,UU,V: and
Z(T)=U,Y. Notice that for any element z¢ U, Y—Y, 2 is conjugate to as(1)in C
and for any element y¢ Y—Z, y is conjugate to ay,(1).

Assume that C(e(1)) is not a Sylow 2-subgroup of Cgley{1)). Then by the
Sylow’s theorem, we obtain an element be¢ Cgla;{1)) such that be Ng(T)— T and
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b’e T. We claim that be Ng(Z); since, if be Ng(Z), then from (4.2) beC and
hence be T. Therefore from (5.2) we have Z'cZyU(U,Y—Y) and there must
exist an element z€ Z such that z is conjugate to e;{1). Hence (U;Y-Y)PCZU
(U,Y~-Y), which implies that (Y—2Z)*=Y—Z. Therefore b normalizes{Y—-2)=Y
and hence Z by virtue of (5.2). But this is a contradiction.

(5.5) as(l)aso{€) t8 mot conjugate to z for any z< Z.

PROOF. Let T,=Celas(l)ap(8))=Cylas(Day(8))=UUsUsVy. Then y(Ty)=V,=
U,U1,,. Suppose that ay(l)a;,(8) is conjugate to z for some z€ Z. Then there is
an element bé Cslaz(1)ais(8)) such that be No(T))— T and b*e T,. Therefore b¢
Ng(V.). We claim that (Uillyy—U,,)t# Usllyg—U,yo; otherwise, since (Uil o~y =
Ully,, (Udl)t=Ul, and (5.2), (5.3) and (5.4) imply that Z*=2Z and hence b€
C=0%(N,(Z)), which contradicts be¢ T;. Hence a.(1) is conjugate to some involu-
tion in U,,U(Vi—Ull,). But ay(1) is not conjugate to x € Uye; since |Cylx)|=g"
while the order of 7T, a Sylow 2-subgroup of Cglay{1)) (cf. (5.4)), is ¢® Further-
more, if y¢ V,— Usll,, then |Cyly)l=0¢® but Cy(y) is not isomorphic to T= Cylas(1));
in faet, [2,(T)|>q° while |2,(Cy(y))|=¢® Therefore a,(1) is neither conjugate to
z nor y, which is a contradiction.

{(5.6) For every element g€ G, we have Z°NNG(Z)C Z.
Proo¥. This is an immediate consequence of (3.4}, (5.2), (5.3) and (5.5).

(5.7) If Ng(M) is 2-closed and q>2, then either the conclusion (1) or (2) of
the theorem holds.

PROOF. We may assume that O(G)=1, since otherwise conclusion (1} holds.
Let §={(¢ and A={SNCe(r)>. Then clearly % is a non-identity subgroup of Z
and strongly closed in Ng(¥%), sinee Ng(H)D> Ce(¥) and Colr) 2 CA)D>O¥(CelH)) =C.
Hence we can use the theorem of D. Goldschmidt [1] and we can verify that the
argument used in [2, p. 300] is also valid in this case, if we only notice the fol-
lowing fact: ’

(5.7.1) Let H be a mazimal subgroup of *B.(q), where q>2, then [*By(q): Hlz
¢ +1.

This is an immediate consequence of Suzuki [7, Theorem 5].

Therefore we can derive conclusion (2) and thus we have completed the proof
in the case when Ng(M) is 2-closed.
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VI, Structure of Ny(M)

For the rest of this paper we will assume that Ng(M)/M is a not-2-closed (T7)-
group. The purpose of this section is to prove that N {M)=Q-A, where Q@=PF,
(see (2.1)), QN A=1 and N {M)D>@ under the assumption ¢>2.

(6.1) There is a normal subgroup L of odd index in Nz(M) such that L)/ M=
SL(2,q) (cf. (8.9)). Let H* be a complement to U in Ng(U) such that H*DAK
and let J=LNH*. Then N, (Ui=JU, J<H* and J is a cyclic group of order
g—1 and acts regularly on (U/M)*.

(6.2) J mormalizes exactly one other Sylow 2-subgroup S, in L, and hence H*
also normalizes S;. Since Y=2(M), clearly Z,=Z(S,)CY.

{6.3) There 18 an element r in L such that H*=H* Ur=S8, J'=J, r*e M
and 7 inverts every elements of J. For v, there 18 a unique element a2} in U}
such that (rag(d))®€ M (cf. [8, (6.5)]).

(6.4) H* normalizes Z, Z and C so that K=Cn H*<H*.
PROOF. Since H*CNy(U), H*=H* normalizes Z=Z(U) and Z~ so that K<JH*
is derived from (4.2).

(6.5) Let R be an elementary abelian subgroup of order q which is normalized

(i) If R is contained in Y, but not in Z, then R=U,,.

(ii) If R is contained in U, but not in Y, then R=U,,.

(iii} If R is contained in U, but not in Uy, then R=U, if ¢>8, and R=
{asle)an(Ee)ie € '} for some £, if g=8.

(iv) If R is contained in X, but not in U, then R=U, if ¢>8, and R=
{osle)aso(Get)le€ I} for some €I, if g=8.

{v) If R is contained in W, but not in U,, then R={a,le)an{fe)lec I’} for
some §€ I if ¢>8, and R=loy{e)ay(pet)ani(§e)|s € I} for some &, pel’, if
g=8.

{(vi) If R is contained tn U, but not in M, then R={as(c)as(8e)lc€ '} for some
¢el if ¢>8, and B={ale)as(e)an{ne’)|e € '} for some &,pe " if q=8.

{vii) If R is contained in M, but not in MN D=1, then B={a(c*®)a,{Ee)ay;(7e)]
e} for some &,9€ .

This is proved by arguments similar to those used in [8, (6.10) and (6.11)].

Cases (i)~{v) are obtained immediately and in case (vi) RCV; and in case (vii)
RcV, are proved first. We must be careful about the fact that both mappings
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e—e7?* and ¢! from I' to I" are not additive homomorphism unless g=8.
We omit the proof of (6.5), but we remark here that if = is an element of H¥*,
then Ut satisfies the condition of (i), U% of (i), US of (iii), Ui of (iv), U? of (v),
Us of (vi) and U; of (vii) respectively.

(6.6) H* normalizes U Z and there is an element z in U,Z such that H¥w*=
H¥  where w=r,.

PROOF. Since U;Z=Cy(K), the first assertion is clear. K normalizes exactly
two Sylow 2-subgroups of C, i.e. U and U*=(U,U,)*D, so that H* also normalizes
these two subgroups. As K*=K and w?=1, we have:

H*wg UG(U)nNg(UW)nNG(K)
=H*UNH*U"NNgK)
=H*DN Ng(K)=H*NpK)=H*U,Z.

Therefore we obtain the desired result.

COROLLARY (6.6.1) U, (8<i<12) is normalized by H*.
PROOF. By (6.5), H* normalizes U,, and U,, and hence H* also normalizes
W *=U, and Ui “=U,, by virtue of (6.6.1). This result is essential only if
g=38; since if ¢>8, this result has already been proved in [(6.5) (iii) and (iv)].
(6.7) Let h be an element in H*. Then there are constants Py, T+, 6« depend-

ing on h and we have:
U?={{
{ag(e)ars(d:16%)aro(Bre)ans (7162*Y) Je € I} if q=8.
U2={{a;(e)ag(62826+1)ag(ﬂge)ISG ry if ¢>8
{o(e)as(026+ )y (Boe)trs(72€?) e € '} if q=8.
Ui= {oi(e)ap (05620 ) ayo(Bse?) any (13e?*) [e € I').

agle)aro(Breany (7,64 ) e e I} if ¢>8

PROOF. Ug is contained in Us—Uy, since Uy=Z,(U) and U,=Z(U). Let z be
a non-identity element in U? and let z= ‘ljs a;(€;). Then & or £,=0, since (U})?C U,,.
Buat (6.6) implies that the case &0 and &,=0 cannot happen. Therefore &;=0
and &+0. Since X normalizes U; and acts regularly on U}, we have:

Us={z*|kc K}U L}
={ae(e)ar(§1620 ) aa(€a5™ 20 axg (§ o™ ) rro{E 106 ) 11 (12824 ) ara(612) | e € ).

But UsU,,=(U,Uy)* is a subgroup, so we have §,=§£,=£,=0 if ¢=8, and more-
over £,=0 if ¢>>8, which completes the proof of Ui. U?and U? can also be treated
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in the same way, using Us and U?}; hence we omit.
Recall that yx: A*—Aut (") (ef. (4.4)).
(6.8) KerynA=1.
ProOF. Let feKerxNA. Then f centralizes U,U,D/D and hence from (6.7)

we have:

a’l(f)!=a1(5)alo(ﬁf)au(7’5)-

Moreover (6.6.1) implies that for € I” there is an element 5, € I" such that:

ag(n)f =ay{n;).
Then ‘

[2,(8), aa(n)! 1= 1(6%071) s (62 19) s (6797,

and on the other hand, we have:
[, (8), as(n)} =am(f”ﬂyau("sz177)"0’12(57720),-

Therefore by (6.6) we have ay(£27) = a1(£21), ani(§2* 1) =ay,(§20+19,) and ay,(€n?)
=a(f71). If t=ap(fy), set £=£w~%. Then the last equation implies that n=n,
for every yeI'. Hence we have a,(§)' =a,(§) for all £eI", where =9,10,11 or
12. Moreover, from the commutator relation [a,(8), as(7)] and (6.6.1) we have also
ag(8) =ay(§) for all £€ T, so that fe Cy(X)=U,X (cf. (4.3). But U,XNA=1 and
hence f=1.

COROLLARY (6.8.1) C,(K)=1.

PrROOF. Let fe Cu(K). Since ay(1)f=ay(l) (mod D) and K acts transitively
on U}, f centralizes U,D/D. Hence fc KerynA=1.

6.9) JNK=1 and hence JK=Jx K.

PROOF. Let heJNK. Then h=h"" centralizes Z and Z*. By (6.5) (i), we
have Zr=Uy, since r¢ Ng(M), Y=2Z(M) and Z+#Z". However, K acts transitively
on Ut, so that h=1,

We define a subgroup H of H* as follows:

H=JxK.

Then H is an abelian subgroup of (g—1)2.
The proofs of [2, Lemma 5.18 and 5.18.1] yield:

(6.10) JNGCelr)=JNAK=1.
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COROLLARY (6.10.1) J 45 regular on Z% and H*=Cy(r)J=(AK)J=A-H,

where ANH=1,

COROLLARY (6.10.2) If Z, is a conjugate of Z such that ZN Z,#1, then Z=2Z,.
Proor. Set Z,=2Z¢ and let 2z, be a non-identity element in Zn Z?, then z,=2¢
where z¢ Z%. Since z, is eonjugate to 7 and Cglz,)2C, we have O¥(Cq4{2,))=C and
by the same reason, 0¥(Cs{z))=C, which imply that C=C* and hence Z=2%7 as

Z=Z(C).
Thus according to (6.10.1) we may assume that:
T:am(l).
(6.11) Let fc A. Then for all ¢€ " we have:

a; (&) =a,(8’), 1=1,2,8,9,10,11,12,
ag & fzaa 5' as('zfél);

(&) (&
0'4(5)’:6(4(5')&'9(2.{51)
as(8) =as(§)aral8' 27 +6202))
as(8) = ag(6)ar(2,87)
(&) =ar(§) 1 (4,87)

where A, is a constant depending on f and &' =£u0),
PrOOF. Like the arguments used in (6.8), by using the commutator

[e1(8), as(p) = a10(8209) a1 (820 1)1y (67%°) and the fact that a,(1) =ay,(l),
prove easily that:

affY =a;(¢') where 8<i<12.

As for ei(§)f (i£7), from (6.5), (6.6) and (6.7) we have at once, using
commutator relations:

a1(£) = aq(§")ag( 218 ) ery1 (287),
ag(§) =ag(§’)as( 46" ) 1o 187 )ary (46 120+1),
as(§) = ag(€)an(P(8)),
ay(§) =a (8 )as(A€"204 ) ay( 21§ ) sy (46672),
a3(8) = as(§’)as( 268 )aso( 210E™4),
ay(§) = ap(§")ar(21:8 Y ers (A126) and
a{§) =ay(§")aro{ A1af ¥ ans (216 704Y), for all (e,

where 2;’s are constants depending on f and 4, =i,=1;=2,=0 if ¢>8.
q=8, we have [ay(§)/, ar(n)/ 1=an(2€'7"), where »'=p*; however, [a(¢),
1/=1 so that 2,=0 in any case.

relation
we can

suitable

Ag for
ar(n)) =
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Thus, if we continue the calculations using commutator relations in this way,
we can prove (6.11) with a little patience but without much difficulty. We omit
the details.

COROLLARY (6.11.1} Cy(Z)=C.

COROLLARY (6.11.2) C,(J)=1 and Cy+(K)=Cu(J)=H.
COROLLARY (6.11.3) r¢c N4 (H).

(6.12) r?=1.

Proor. Since r2¢ M and r ¢ Ng(H), it follows that [H,r2lCHNM=1 so that
12 ¢ Cy(H)C Cy(K)=U;Z. However, J acts regularly on Z* and every element z
in U;Z—Z has order 4 and z2¢ Z, hence it follows that Cy,z(J)=1. Therefore
ri=1,

(6.13) Un=U,. For all k=h(1,¢)c K, [kk", UMIM)=1, [k, U =1 and
(6~13-1) k'a,z(f)k"'=alz(s$)

and
(6.13.2) an(e) —alz 25 fO’r all £€ P

where 2 is a constant in I' defined in (6.3). Since J operates regulary on Ul=

(UR)Y, there exists geJ such that a,(8)7=ay, (1) Jor all ¢eI’. Then we may

replace r by t=gr. In particular, =1, t inverts every element in J and
{tas(1))®e M. Moreover

(613.3) an(E)‘=a12(f) fO?‘ all 56 r.

PrROOF. UpL=U,, is proved in the proof of (6.9). Therefore [K*, U,l=[K, ULl =
[K,Z=1. [kk, U;M/M]=1 and (6.18.1) are proved essentially in [8, (6.15)], if we
only note using the commutator relation [a,(8), @ (1)]=a:,(€). And (6.13.2) is proved
in [8, (6.16)}. The other assertions are obvious (cf. [8, {6.18)]).

(6.14) Let J be a generator of J, then there is a generator o of I'* and the
Jollowing equations hold for all £cI:

a(§) = a,(wk),
() = ap(0*9+8),
as(8) = ay(0™%) agly %),

(
)
&)
a ) =ado§)a(ro™E),
(é)
(&)

as(8)i = ag(w ¥+ )y (PP 201 + yat-2E29),

ag{§) = aglw®®18) ay{r i 1E),
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aq(€) = ar{@?®8)ay (ro?t),
as(§V =aglw™?18),

)

(£
a(8) = ag(0*¢),
(€ =ay,(8),

o () = ay,(0f),
(€)Y =a(07§),

where y is a constant depending on j.
ProoF. J operates regularly on U?, so if we let
au(l)=ay(w),
then » must be a generator of I'%, and with the aid of the action of K on U, we
have:

() =an{wf)  for all el
Then
ap8) =an(E)i=ay(£) "
=ay(w™E) = ap(0™E).
Now we will prove under the assumption ¢>8. (The case when g=8 is a little
more complicated but quite the same.) Then from (6.7) we can write

asl8) = agle)ar(Bre)an(re?®t)  for some ecl.
Then
(ag(E))2 =y, (e204Y),
On the other hand
(@sl8)2) = a1 (E20F1) =y, (E+Y),

so that e=w?-1¢. Then:

(g8 e(£2)) = (&1 + €2 0y (€,62 )7
= a0 (€1 + &) arso (B0 M€+ E2))any (710(8, + 2)20 4 4 wE £
and

as(§1) aa(8s) = ag{w?? &1+ 82)) o Fro?? " HE 1 &3) e (110( w“‘i“ezoﬂ)‘f‘wfxf:a)-

Therefore we have p;(£,48,)0% =p,(6¥ " 4-£2*) for all £,&,¢". Arranging the
equation, we have:

nEYe+£67)=0 for all &,&€rl.

This is impossible, unless y,=0; so that
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(€)= ag( 0?0 ey By 8.
In the same way, from (6.6) we have:
a5(§) = aglw 18 )ana(p()),
where ¢ i3 an additive homomorphism from I to I". Then
ay(§Y =[ag(1), ae(§)V

=[agl@ 20 )ay,(p(1)), ag(@®? 18 ) a0 8107 1E))
= ayo(§).

And from the commutator relation [as(1), a(&)]=ap(8), [ae(1), asl&)l=ay,(£) and by
(6.5) (iii) and (v), we have:

a1(£) = oy (w8 ety (Bow?) and ay(E) =ag(w™?¢).
Then from [a4(1), as(&)|=a1,(€), we have:
aalé) = ag(w™20718),

Thus we can continue the calculation using commutator relations and we can
complete the proof without difficulty. We omit the details.

(6.15) We may assume that H* normalizes U, where index i ranges from 1
to 12, and then if j is a generator of J, 7 acts on U; as follows:

011(5)’=a’1(w$) (8 =y (?0+18),
ay(8) = aylw™2 Y =a(w™ 1¢),
a's(&)’=as(w“""“$) ag(8) = ag(w??718),
() = e, (0*8), as(§) = aglw™"1E),
(&) = ay{w™?8), ap(EY =ay,(8),
an() =ay(wé), () =ara(w™E).

And of fc A, then:

(6.15.1) ai§) =ay(§r?)
Jor all ¢eI', where i=1,...,12,

Proor. Let Hi= (H*), where u=as(r(l+020*)-1), and let J,=HiNL=
(H¥*OLpF=J% A;=4 ji=3* and t,;=1i*. Then it is an immediate consequence of
(6.14) that J, normalizes all U; (i=1,...,12) and j, acts on U,; according to the
formula in (6.15). Since Cy(K)=U,Z, H} also contains K and is a complement of
U in Ng(M).

In order to prove (6.15.1), we first determine the constant 2, in (6.11). As
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J<H*, fYf=4 for some integer a and then a(§)¥ =ay(£)/#*. From (6.11) and
{6.14), we have:

a7(£) =y (0?08 oy (A0 28 + 7 0" *0E),
and

"-1'7(5)”“:a?(“’?&')“n(ff’(mz+0)§—l(ﬂ+ vt s F0,0°7Y) +2/8' @),
where o =¥, §' =81 ¢ =91 and o, =w*. Therefore
wl:wa’ and 2}‘(0)28""‘0)“:7’(0:‘*']’((0?+a)§—10)+ e +wlwu-!)’

where 0 +w+(, since w is a generator of I',
Then an easy computation shows:

(&) M v =ay(8r)
for all +=1,...,12.
Thus A4,=A* normalizes all U; (i=1,...,12) and hence so does Hi=A4,J,K.
It is readily verified that H3:, A, J1, 4, and ¢, satisfy all the properties of H*,
A,J,j and t which have been proved so far.
Henceforth we will write H*, A4,J,7,t instead of HY, Ay, J,,7 and £,.

(6.16) Let t be an tnvolution defined as r in (6.3) and adjusted properly in
(6.13) and (6.15). Then t acts on M as follows:

(ar{8) ()t =ay(8)asln), ar(8) =ay(8),
(as(8)asa(n)t =as(§)an(n), ayol8) = ay0(E)

for all &,nel; and (tas(1))=1.

PROOF. Since H* normalizes all U, (i=1,...,12), Ui is also normalized by H*.
Therefore we can apply (6.5) and, since the action of J on U is known, much
stronger results are easily obtained. Thus using the characteristic subgroups of
M (see (3.7)) and ap,(p)t=ay(y) (see (6.13)), we can prove (6.16) by arguments simi-
lar to those used in (6.11) or {6.14). But the proof is tedious and rather straight-
forward, so we omit the proof of the action of t on M. For the other assertion,
see the proof of {8, (6.18)].

(6.17) N M)=H*UUH*UtU,. And if we set Q=HUUHULU,, then Q i3 a
normal subgroup of Ng(M) and Ng(M)=QA where QNA=1. Moreover Q=P,
where P, is a parabolic subgroup of 2F,(q) corresponding to r,.

ProoF. This is an immediate consequence of {6.15) and (6.16) (cf. [8, (6.18)]).
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Henceforth we identify H=JXx K with “torus” H of 2F,(q) defined in (2.1).
Now we conclude this section with the following two propositions. First the
proof of |2, 5.14] yields:

{6.18) [4, <, wHl=1.

(6.19) we Ng(H*)NNg(H).

ProoF. We have already shown that H**==H* for some z€ UsU,. Since
H=C,+(K) and wz normalizes K, it follows that H»*=H. It is easily checked from
the action of H and w on D that Cgwz)=Cx(UU,)=Cy{U;)={hle,L}lee I'*}.
Moreover from the structure of 2B,(g), we have {a;(1)w)*=1 and hence:

{ag()w2)P = (ay(1)1)P28 =20 =2,

Therefore C,(U.) centralizes z, so that z¢€ Cy2(Cu(Us))=1, ie. 2=1.

VII. ldentification of G

(7.1) G has exactly two classes of involutions.

ProoF. Since the structure of N (M) has been determined in section VI, it is
clear from (3.4) that G has at most two classes of involutions and every involution in
G is conjugate to either ay(l) or a,{l). However ay(l)»¢¢ai;(1) has been proved
in (4.10).

From now on the invelution which is conjugate to = is called central or a
central involution and the one which is conjugate to ay(l) is called non-central or
a non-central involution.

(7.2) Ng(M)= Nz W)=Ng(Y).
Proor. This follows immediately from (8.7), Co(Y)=C(Y)N Cglr)=M and the
fact that every central involution in W is contained in Y.

(7.8) No involution in Cyla(1))— Y is conjugate in Cglayn(1)) to an involution
of Y.

PROOF. Set z=uay,(l) and T=Cy{x)=U,Ull;. Every central involutionin 7-Y
is conjugate in Cglx) to u=as(1)as(E)ay, (620+2) for some £€ . Now we will consider
two cases.

Case 1. £=0. Then u**c Z and an argument similar to that used in the
proof of [8, (8.3)] yield that Cy(x) N Cs{u) is 2-closed with T=U,UsUsX as its unique
Sylow 2-subgroups. On the other hand, every involution contained in Y is conju-
gate in Cglx) to = and Cglx)N Celr)=Cr(x)A=TA. T is not isomorphic to T}, since
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for instance [T{=¢'" but [7i|=q®. Therefore « is not conjugate to r in Cy(x), and
hence to any involution in Y.

Case 2. £+0. In this case, u****¢ Z where v=a,(£"*"")a,(¢~1) and the same
argument as in Case 1 can also be applied.

(1.4)  Colaye(l)) is contained in Ng(M).

PrOOF. We will use the same notation z, T and T, as in (7.3). Let g be an
element of Cg(x) and let y=a4(l); then ¥ is a central involution contained in T— Y.
Then from (7.3) it follows that y? is not conjugate to r in C,(x), so that there
exists an involution e in Cz(x) such that [z, el=[y% e]=1 and er is conjugate to
either = or y* in Cg(x}). Therefore e is contained in both T and T%, since T [resp.
T1lis a unique Sylow 2-subgroup of Cg¢(z) N Cs(z) (resp. Cs(x)N Cs(y*)]. At this point
we consider two cases.

Assume first that er is conjugate to = in Cz{z). Since ere T, it follows from
(7.3) that ez¢ Y and hence ec Y. It is known from (7.8) that no central involu-
tionsin 7\~ Y can be conjugate in C.(z) to an element of Y: therefore it follows
also that ec Y7 and hence e# "¢ Y. There is an element h of Ny{(M)NC,(x) such
that e"™¢ Z. Then, as ec ¥, we can conclude that Yo %< 0¥(Celz))=C, where
z=e" "¢ Z and hence Y? (N Colz)=TA. Since TA is 2-closed, Y* "< T, and
from (7.3) we have Y =7, ie. g-'h¢ Ng(Y)=Ng(M), so that ge Ny(M).

Next consider the case when er is conjugate to 7. Then by (7.3) erc T—-Y
and hence e€ T— Y also. Since e¢r is a central involution and ec¢ T— 7, it follows
from the classification of involutions of T—Y that either ¢ is a central involution
or a non-central involution such that e=a,(&, Ha, ) (6:#0). If e is central, then
e is conjugate in Cz(z) N Nz{M) to one of the followmg element:

Uy = og(1)
Us = ag{1)ay(&)ary, (£20+42) for some &¢I,

If e¥=wu, for some k'€ Cy(z)N Ng(M), then u, ¢ T, since ec T9. It is easily veri-
fied that X is the unique maximal elementary abelian subgroup of T, which con-
tains every central involution of 7,. Therefore wu,¢ X and moreover Xo*'¢
Ce(z)N Cgluy) and hence from the proof of (7.3) it follows that X**'CT,. Then
the uniqueness property of X mentioned above implies X=X%" and so from (7.3)
we obtain Y=Y and hence g¢ Ng(M). If ¢""=u, for some 1" in Cy(z) NN (M),
then by the same discussions used above we have that D27T,2X and T,oD X"
where T; is the unique Sylow 2-subgroup of C;(z)NCglu,). The uniqueness pro-
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perty of X in T, mentioned above is also true in D. Therefore X=X and
hence g¢ Ny{(M).
Thus we have proved:

(1.4.1) For every element g in Celx), we can construct an involution e which
i8 contained in both T and T?; g is contained in Nz (M), unless e is a non-central
involution of the form

e:az(fz)ﬁm(f.‘) {£:#0)

with the condition that er is a central involution.

Now to complete the proof, assume that there is an element g in Cg(x)— N ().
Then the involution e obtained in the above argument must be of the form e=
ay(E)ar(E7)a,(Ey2) Where £,#0 and 1=£,,+&; %201 gsince we can replace g by gv
for any » in T=Cg{x)NC, if necessary. Then ec @N T where Q=1U,U;,. Hence
¢ cQNTY, since Q'=Q. Aste Cylx)NNy(M), gt is also contained in Celzx)— Ng (M)
and for gt we can construct a non-central involution e’ such that e’ =a,(7,) ﬁa,»(r;,»)
(7,#0) and ¢’ c QN T?. Then: -

[et, e]:a1o(52772)0‘11(57772+§2?§9)ax2(‘ )

and hence [e!,¢’] is non-central. On the other hand, every non-central involution
in T is contained in either Vor X and [VUX, VUX]cZ This is a contradie-
tion. Thus we have proved (7.4).

COROLLARY (7.4.2) C;la)=Cylz)- A where Colz)=JTUJTtU,=0%(Cs(x)).

COROLLARY (7.4.3) For every element &’ in W,—Y, Cs(z')C Ng(M).

Proor. Since 2’ i3 conjugate to z in Ng(M), this can be immediately derived
from (7.4).

(1.5) Ne(D)=NglZ)=UH*y UH*wU,U,,
PROOF. Since UCC<N,(Z), it follows that

Ne(Z)=Nqg(U)- C=H*UY UH*wU,U,,

which is contained in Ng(D). On the other hand, as Z(D)=2Z, we have Ng{Z)2
Ng(D).

(1.6) Let Z, be a congugate of Z. Then either Z,CM or Z NN Mi=1; and
either Z,C D, Z,CN4(D)— Dt or Z,NNg(D)=1.
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PROOF. If Z,NM=+1, then one of the following four cases must occur,

(1) Z,NZ+1,

(ii) ZnY+#1 and Z,NZ=1,

(iii) ZiNX+1 and ZNY=1,

(iv) Z,NnM+#1 and Z,NnX=1.

In each case we can prove that Z,=2, Z,C Y, Z,cX and Z,CM respectively., In
fact, we can use (6.10.2) to prove Z=2Z, in case (i) and the other cases can be
proved easily by reducing to case {i) or to the preceding case (see the proof of
{7.8)).

Suppose that Z,NM=1 and Z,NNy(M)#1. Let 2’ be a non-identity element
in Z;NN(M) and P be a Sylow 2-subgroup of Ng(M) such that P32’. Then P'=U
for some v in Ng(M) and POM. Since Z,NM=1, z’° must be contained in U-M,
which contradicts the fact that every central involution in U is contained in M.
Therefore, if Z,NM=1, then Z,NN;(M)=1.

By the same argument for M, we can prove that if Z, N D+#1, then Z,cD. Next
suppose that Z,ND=1 and Z,NNg(D)#1. Let z” be a non-identity element in
Z,N Ng(D) and P, be a Sylow 2-subgroup of N;(D) such that P,32”. If P,=U, then
Z,NM+1 and hence Z,c Mc U. Thus we have Z,c U~ D*C Ny(D)—~D* as Z,n D=1.
And if P,#U, then from (7.5) it follows that there exists an element v in U,U,
such that P{“=U; and hence by the preceding argument we have Zc U—D* so
that Z,C N;(D)~D? as vw € Ng(D).

(1.7) Every conjugate Z; of Z centralizes at least one conjugate of Z con-
tained in M.

PROOF. Assume first that Z,c Ng(D). Then Z, centralizes Z, since N (D))=
Ne(Z),0¥(Ne(Z))=C and Z(C)=2Z.

Next assume that Ng;(D)NZ,=1. Let 2 be an element in Z,, then z is not
conjugate to z=a,,(1) in G. Hence there exists an involution e such that {e,z]=
Te,x]=1 so that ec Cylx)C Ng(M). (cf. (7.4).)

If e is central and Z, is a conjugate of Z such that Z,ve, then [Z,, Z,]=1 and
Z,CM by (7.6), which proves the assertion.

If e is non-central, then one of the following seven cases must oceur:

Case (i). e€U;,— Y. Then from (7.4.3) we have z¢€ Cgle)c Ng(M) and hence
from (7.6) z€ Mc N¢(D). But this contradicts the assumption that Z, N\ N,;(D)=1 so
that this case cannot happen.

Case (ii). eeU,—Uy,. Then e*c1l,,— Y for some properly chosen element % in
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UU, and so 22#¢ Cyle**)C Ny{M). Hence 2z*¢€¢ MCNg{(D) so that z¢ Ng(D) as
uw ¢ Ng(D). But this is again a contradiction and hence this case does not occur.

Case (iii). e€ Uy—U,. Then eeU,—U,, for some u in U,U,. But this is
clearly impossible from case (ii).

Case (iv}. ec¢U,~U;. Then ec W and et ¢ U,— U, for someve U,. From the
discussions in case (ii), it follows that z** € Ng(D) and hence by the argument of
the case when Z,NNy{D)+#1 we have that Z} centralizes Z so that Z, centralizes
ZvcY~—2Z.

Case (v). ec¢U;—1U,. Then e*¢ W—-1, for some u¢ U,U,. Hence from case
(iv) we obtain that Z1” centralizes Z, which is a conjugate of Z and contained in
Y- Z. Therefore Z; centralizes Z;”“-1 which is contained in X-Y.

Case (vi). ecU,~U,. Then evt€ Uy—1, for some v¢ U,. Therefore from cases
(ii) and (iii) it follows that 2"t ¢ N¢(D) and hence the argument in case (iv) implies
that Z, centralizes Zt"c Y- Z.

Case (vil). ec Ng(M)—U. Then e ¢ Ul;—U, for some v¢ U,;. Hence we obtain
from case {v) that Z}’ centralizes a conjugate Z, of Z contained in X—Y and
hence Z, centralizes Z7 which is contained in M.

Thus we have completed the proof of (7.7).

{(1.8) G is the disjoint union of the following 16 double cosets of B where
B=Ny(U)=H*U:

B, BwU U, BtU,, BwtU,U,Us, BtwU,U,U,, BwtwUUUU,U,,,
BtwtU, U, U Uy, Blwt)2U U U UgUy Uy,  B{tw)2UL UL U U U Uy,
Blwt)wU, U, UV, Bitw)4tUU,V,, Bwt)lPU,UUUX,
Biw) U U, U U W, Blwt)*wM, B(itw)tD, Bwt)U.

Each of these double cosets has form Bwl, where @ is in the set I={1,t,w,...,
(wt)¥} and Us. is a complement to BNB® in B.

Proor. We prove that G can be expressed as the union of these 16 subsets
of G. Then nearly the same arguments as in the proofs of [8, (9.4) and (9.5)] yield
that these subsets are really double cosets of the form BwU. and the sum is dis-
joint.

Taking an arbitrary element g in G, we consider Zv.

Suppose first that Zc M.

If ZnZv+#1, then Z=2Z7 and hence g€ No(Z)=BUBwU,U, (cf. (1.5)).
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If 220 Y=+1 and Z?N Z=1, then there exists an element v in U, such that
ZetNZ#1. Therefore g€ BtU;UBwtU,UsU,=BtU,U BwtU,U,Us,.
If Z2NX+1 and Z?NY=1, then Zo**N Y1 for some ue U,U,. Thus

gé BtWU7U1UzUB?UtheUquUlUg.

If Z2NM+#1 and Z°NX=1, then there exists an element v in U, such that
ZtNX+1. Hence

g€ BtwtU, U, Uy U, U Blwt)* U U, U, U, U Us.

Next suppose that Z?NU=1 and Z°C N4(D)—D* Then there exists an ele-

ment % in U,U, such that Zo**NM+1 and Z*NX=1. Hence
g€ B(tw)* U Us Uy U, U U, U Biwt) w U Uy, Uy U Uy UL UL U,

Finally suppose that Z?N Ny{(D)=1. Then from (7.7) Z° centralizes a conjugate
Z, of Z contained in M. Z¢ does not centralize Z, since C;(Z)=C=0%{N;(D)) and
Z'NNg(D)=1.

If Zv centralizes Z,C Y—Z, then Z¢* centralizes Z where v is an element in
U, and hence Z¢*C C—M?*, which implies that ZstC N (D)—D* and ZnU=1.
Hence

g € B(tw)zt UIO US Ul2 U9 U4 UB U3 U B(wt)aUGUH U]D US U12U9 Ud U8U8 .

If Z° centralizes Z,c X—Y, then Z%» centralizes Z{1“c Y— Z for some u¢ U, U,
and Z* N Ng(D)=1 as uwe Ng(D). Hence

ge B(t’&())aUgUg;UmUngUu UqU}UzU B(wt)st.

If Z* centralizes Z,c M—X, then Z¢* centralizes Z;'c X—Y for some ve U,
and we can prove that ZsNNg(D)=1. In fact, suppose on the contrary that
Z" N\ Ng(D)+#1, then Z7*C CNCe(Z1") S DC Ng(M) and hence Z7¢ M as vt € No(M)
and clearly this is a contradiction. Consequently applying the above argument,
we have

g€ Bltw)tDU Bwt)*U.
Thus all the possible conditions which are satisfied by Z¢ have been considered,

Therefore we have completed the proof of (7.8).
The proof of [8, (9.6) and (10.1)] yield:

(19 If we OI={1,t,w,...,(wt)'} then each element of BwlU., can be written
uniquely in the form bou where be B and € U.. Hence
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IGl=p¢"*9—1)(¢"+1){g* ~1)(¢°+1).

(7.10) (wt}*=1 and hence II=<{w,t) is a dihedral group of order 16.
Let By=H-U and G,= EJ” B,wU,. Then:

(711) (i) G, is a normal subgroup of G and G,=2F,(q).

(i1) G=AG, and ANGy=1 s0 that [G: Gsl=p.

(i} A operates on G, faithfully and every element of A acts on G, as an
automorphism induced from the automorphism of I.

ProoF. Since the structure of G, has been uniquely determined and |Gy|=
2F{q)], it is easy to verify directly that G, is isomorphic to 2F.(q) by the corre-
spondence of £ to r,. The other assertion is clear from section VI and (7.8).
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