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Introduction

In this paper we determine the structure of every polarized variety (V, L) such
that dim HY(V, Oy(L))=dim V+d(V, L). Here by a polarized variety is meant a
pair (V, L) consisting of an irreducible reduced compact complex space V and an
ample (not necessarily very ample) line bundle L on V, and d(V, L) is the Chern
number (¢,(L))*{V}, where n=dimV (we remark that if L is the bundle attached
to a hyperplane section of a subvariety V in a projective space, then d(V, L) is
the degree of V). Our results seem to be natural generalizations of those of
Nagata [14] and Swinnerton-Dyer [16].

In Section 1 we shall introduce the concept of 4-genus of (V, L), which is de-
fined to be 4(V, L)=n+d(V, L}—dim HV, L), and shall state the key lemma:
dim Bs|L|<d(V, L), where Bs|L] denotes the set of base points of |L]. Section 6
is devoted to the proof of this inequality. In Section 2 we shall establish theo-
rems characterizing projective spaces and hyperquadries, which are quite analo-
gous to those of Kobayashi-Ochiai [10]. In Section 3 we shall study the structure
of polarized manifolds of 4-genus zero. In Section 4 we shall give a structure
theorem for singular polarized varieties of 4-genus zero. Section 5 is devoted to
the study of (global) deformations of such polarized varieties.

The theory of 4-genus itself has a much wider range of applications (see [1],
{21, [3] and forthcoming papers of the present author). For example, it furnishes
us with a somewhat systematic method for characterizing several types of polar-
ized varieties such as

a) complete intersections in projective spaces with 4-genera<s3,

b) projective fiber bundles over P!,

¢) two-sheeted cyclic branched coverings of P® or hyperquadrics, ete.
Moreover, using this method, we can determine the structure of some kinds of
polarized manifolds such as

d) polarized K8-surfaces (M, L) with d(M, L)<8,
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e) polarized K3-surfaces (M, L) with not very ample L,

f) polarized surfaces (M, L) such that L=K, and d(M, L)=ci<2p,—3, etec.
In this article, however, we shall deal only with the simplest cases. Nevertheless
the results are very fundamental since they will play an essential role at various
stages of the applications mentioned above.

Notation, Convention and Terminology

Basically we employ a notation analogous to that of EGA [4], and [5]. A variety
is an irreducible reduced complex analytic space, and is assumed to be compact
unless otherwise explicitly stated. A non-singular variety is called a manifold. We
don’t diseriminate a vector bundle from the locally free sheaf associated with it.

Let < be an analytic coherent sheaf on an analytic space S.

Sing (5): The set of singular points of S, which turns out to be an analytic sub-
set of S

R¥(S, F):=dim H?(S, &), which is finite if S is compact, then

218, F):= T (~17W(S, F), where n=dim 3.

h”(S)::h”(g Is), where I is the trivial line bundle of S.

Py(F): The projective fiber space Proj( §OSk§ ) over S (see EGA II).

H(¢F): The tautological (ample) line bundle on Ps(SF).

We remark that if E is a vector space with (ay, -+, a,) being a coordinate system
of its dual space, then P(E) is in a canonical one-one correspondence with the set
of ratios {{ap: ++- :a,)}. Then H,=H(E) turns out to be the line bundle on P,=P"
defined by a hyperplane.

Qc(8): The monoidal transform of S with center C,

{Z}: The homology class associated with an analytic cycle Z.

{4)]: The line bundle associated with a linear system A of Cartier divisors on S
BsA: The set of base points of A.

~ pa: The rational mapping associated with A4, which turns out to be a morphism if
BsA=.

|L|: The complete linear system of Cartier divisors associated with a line bundle
L on S

Ly, Az The pull back of L, 4 to a space T by a given morphism T— S.

We use additive notation for tensor products of line bundles, and use multiplicative
notation for cup products of their Chern classes.

Ky: The eanonical line bundle of & manifold M.
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biM): The i-th Betti number of M.

¢i(M): The i-th Chern class of M.

We often use an abbreviated form of this notation, e.g., L instead of L., H"(<f)
instead of H?(S, ¢f), when there is no danger of confusion.

§1. A4-genera of polarized varieties

DEFINITION 1.1. We call a pair (V, L) consisting of a variety V and a line
bundle L on V a prepolarized variety. (V, L) is said to be isomorphic to (V7, L")
if there is a biholomorphic morphism f: V— V” such that L=f*L’. A prepolarized
variety (V, L) is called a polarized variety if L is ample.

DEFINITION 1.2. Expanding the Hilbert polypomial x(V, tL)V into the following

form Enjxi(V, L)Y/t with n=dimV and tfflzﬁl(t+a), we define the following
i=0 a=9
two invariants of a prepolarized variety (V, L): d(V, L)=X,(V, L) and ¢g(V, L)=1-

X'n'—l(V, L)'
REMARK. The Riemann-Roch Theorem states that d(V, L)=L"={c,(L)){V}.
Moreover, if V is non-singular, 2¢(V, L)—2=(K,+(n—1)L)L"*"*.

PRrROPOSITION 1.3. Let (V, L) be a prepolarized variety and let D be an irre-
ducible reduced member of |L|. Then %D, Lp)=x,+(V, L) for r=0. In particu-
lar, d(D, Lp)=d(V, L) and ¢(D, Lp)=g(V, L).

PROOF. The exact sequence 0 — Oy((t—1)L) = Oy (L) = Op(tLp) — 0 yields the
equality x(D, tL)=x(V, tL)—x(V, (t—1)L). Our conclusion follows from this after
some elementary calculations.

DEFINITION 1.4. The 4-genus of a prepolarized variety (V, L) is defined to be
dimV+4-d(V, L)—kr*V, L), and is denoted by 4(V, L).

ProrosiTION 1.5. Let (V, L) and D beasin Proposition 1.8. Then 0£4(V, L)~
A(D, Lp) kM V)ShY D) +h{V, —L). Moreover, the following conditions are equiva-
lent to each other: a) 4(D, Lp)=4(V, L), b) H*(V, L)-> HYD, Lp) i3 surjective,
¢) |Lip=|Lp).

PRrOOF. The exact sequence 0 — (Jy — Oy(L) — Op(L) =0 yields the long exact
sequence 0 — HY(V)— HYV, L)— HYD, L)-» H(V). The equivalence of a), b) and
c) follows from this since dim Coker (H*(V, L)~»H®D, L)}=4(V, L)—4(D, L). More-
over we have 0 4(V, L)—4(D, L)Sh}{V). The remaining inequality is obtained

1 Using the desingulization theory of Hironaka, we can show that x(V, tL) is a polynomial
in t for any (possibly non-algebraie) prepolarized variety (V, L).
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similarly from the exact sequence 0y (—L)— Oy~ )p—0.

DEFINITION 1.6. We say that a line bundle L on a variety V is fully gener-
ating if the canonical homomorphism m,:HYV, tLYQHV, L} — H*(V, (t+1)L) is
surjective for every t=1.

PROPOSITION 1.7. Let (V, L) and D be as in Proposition 1.3. Suppose in addi-
tion that HYV, L) H%D, Lp) is surjective and that Ly is fully generating.
Then a) v HV, tL)— HD, tLp) i3 surjective for any t=1, and b) L itself is
Jully generating.

PrROOF. We use the following commutative diagram:

HYV, tLY@ HYV, L) r—‘Qiil%!"’(D, tLYRQHYD, L)

’
/’)' l""t l"':

HYV, tL) ~———> HYV, (t+1)L) e, H(D, (t+1)L)

The dotted arrow is defined by ar>a®3s, where d¢ HYV, L) is the defining sec-
tion of D. We show a) by induction on ¢t. Assuming a) for t=Fk, we infer that
r@r, is surjective. Hence the composition mio(r,@r)) =71, 0m, is also surjec-
tive, and so is 7,4 . Moreover, combined with the exactness of the lower row,
this yields the surjectivity of m,, too.

CoROLLARY 1.8. Let V, L and D be as above. Then L is very ample if L is
ample. Ifin addition h*(D, tL)=0 for p>0, t=t,€ Z, then h*(V, tL)=0 for p>0,
t=t,—1.

PROOF. The very ampleness is obvious. The long exact sequence associated
with the exact sequence 0->()y((t—~1)L)—>Oy(tL)>()p(tL)—0 proves h*(V, (t—1)L)=
RV, tL) for p>0, t=t, since 7, is surjective for t€ Z. Repeating such arguments
we obtain A"V, tL)=h?(V, IL) for p>0, t,1=t,—1, and the latter vanishes for
1>0.

Now we state a key result of our theory. A proof of it will be given in the
last section.

THEOREM 1.9. Let A be a linear system of effective Cartier divisors on a va-
riety V. If [A4] is ample, the following inequality holds: dim BsA<d4(V, [4])+
{dim|4|—dim 4), where dim & is defined to be —1.

COROLLARY 1.10. A(V, L)20 for any polarized variety (V, L). Moreover, if
MV, Ly=0, then Bs|L|=@.
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§2. Characterization of projective spaces and hyperquadrics

THEOREM 2.1. For an n-dimensional polarized variety (V, L) the following
conditions are equivalent to each other:
a) (V, L)=(P~, H), where H is the hyperplane section,
b) d(V, L)=1 and 4(V, L)=0,
b) d(V,L)=1 and Bs|L|=1,
¢} V is non-singular and Ky+ (n+1)L=0,
¢’) V is non-singular and —c,(Ky+nL) is representable by a closed (1, 1)-form
which 1s positive almost everywhere on V,
¢”) 'V is non-singular, d(V, L}=1 and g(V, L)Z0,
d) V is normal and there exists a member D€ |L| such that (D, Ly=(P"", H).
Proor. It is clear that a) implies all the other conditions. The implication
¢)—c’) is also clear. From ¢’) we infer that A®(V, tL)=0 except for p=0, t=0
or p=n, t<—(n+1) using the vanishing theorem of Kodaira [11]. So the poly-
nomial x(t)=yx(V, tL), which is of degree », is equal to zero for —n<t<—1 and
1(0)=1. Therefore z(t)=(1/n!)ﬁ1(t+j), from which the condition c¢”) follows im-
mediately. Moreover, b) is also Jv—a,lid since k% V, L)=x(1)=n+1. From c”) we obtain
similarly x{t)=0 for —n<t<—1. Hence AV, Ky+(n+1)L)=h"(V, —(n-+1)L)%0
or, equivalently, x(—(n+1))%0, because otherwise ()} would vanish identically.
This implies ¢) since (Ky+(n+1)L)L" <0 and L is ample. From b) we obtain
b’) using Corollary 1.10. b’) gives rise to a finite morphism p==p;1,: V— P¥. Let-
ting W=p(V) we have degW=1 and hence W=P*. Applying Zariski’s Main
Theorem we obtain V=W, the condition a). Finally we show that d) implies b).
In fact, we can apply Proposition 1.5 since HYV, —L}=0 (see Mumford [13],
Theorem 2).

THEOREM 2.2. For an n-dimensional polarized variety (V, L) the following con-
ditions are equivalent to each other:
a) V is isomorphic to a hyperquadric in P™*!
by d(V, L)=2 and 4{V, L)=0.
If V is non-singular, each of the following is also equivalent to a) and b):
¢) Ky+nL=0,
¢) d{V, L)=2 and g(V, L)<0.

We prove only ¢’) — ¢} since the implications ¢} = b) <> a} —¢’) are obtained by a
similar method to that in Theorem 2.1. If ¢) is false, RV, Ky+nL)=h*V, —nL)=0
since (Ky+nL)L**<0. Then x{t)=0 for —n<ts—1 and so %(¢) has the form

and L i3 the hyperplane section,
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(a/n’)f (t+7), «€ Z. By definition this means that a= d(V, Ly=2 and g{V, L)=—
ence7( +{n+1L)L**=0. Since L is positive, Ky+(n+1)L=0 if rV, Kv+
(n+1L)>0. This contradicts

RV, Ky+n+1)L)=h"V, —(n+ L) =(-1)"x(—(n+1))=2.

§3. The non-singular case

LEMMA 3.1. Let (C, L) be a polarized curve with 4(C, L)=0. Then C=P".

PrROOF. Letting 7:C—C be the normalization of C, we have 4(C, L)<0. There-
fore C=p' and |L|,=|L.|. Since L, is very ample, this implies C=cC.

Throughout this section let (M, L) be a polarized manifold with 4(M, L)y=
dim M=n and d(}, L)=d.

THEOREM 3.2. g(M, L)=0, k?(M, tL)=0 for p>0, t=0 and L is very ample and
18 fully generating.

We prove this theorem by induction on n. When n=1, the assertion follows
from the above lemma. When n=2, a general member D of |L| is non-singular
since Bs|L|=. Applying Proposition 1.5 we have 0<4(D, L)<4(M, L)=0. There-
fore ¢(D, L)=0, R?(D,tL)=0 for p>0, t=0 and Lp is fully generating. So
g(M, L)=g(D, L)=0 and the other conclusions follow from Proposition 1.7 and
Corollary 1.8.

To establish a structure theorem for such polarized manifolds, we need the fol-
lowing lemmata.

LEMMA 3.83. R(M, Ky+nL)=d-1.
PROOF. We use induction on n since the result is obvious for n=1. For n=2,
with D being a non-singular member of |L|, we have the exact sequence

HY(M, Ky+(n—1)L)—»HM, Ky+nL)—>HD, Ky+nL)>H"M, Ky+(n—1)L) .

Since (Ky+(n—1)L)L""'=2g—2<0 we infer HY(M, Ky+(n—1)L)=0, while HY{M,
Ky+(n—1)L)=0 (see Kodaira [11]). Hence

(M, Ku+uLl)=h(D, Ky+nL)=hD, Kp+(n—1)L)=d—1,
where K, denotes the canonical bundle of D.

LEMMA 3.4. dim Bs{Ky+nLj<n—1 if d=23.
PROOF. For m=1 everything is clear. For n=2 letting D be as above we have
lKu+nLlD=[Ku+(n—1)Lpl and
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dim Bs|Ky+nL|<1+ dim (Bs|Ky+nL]N D)=1+ dim Bs|Kp+(n—1)Lp| .
Thus we can prove the lemma by induction on n.

LEMMA 3.5. Ifn=2 and d=3, then (Ky+2L)*=0 except for the case in which
(M, L)={(P?, 2H).

PROOF. The above lemma yields (K, +2L)*20, which implies that KZ=ci>8.
On the other hand ¢i+¢,=123(M)=12 and c:=2+b,=3 (see Kodaira [12]}). Combin-
ing these we have ci=8 or 9. (Ky+2L)2=0 if ¢=8. If ¢i=9, then b,=1 and the
quotient of H(M; Z)=H M, OF) by its torsion subgroup is a cyclic group. Let-
ting Fe HM, OF) be a representative element of its integral buse such that
FL>0, we infer readily that L=2F and K, =-3F. Hence Theorem 2.1 proves
(M, F)={p®, H).

LEMMA 3.6. If nz3 and d=3, then (Ky+nL)*L*?=0.

PROOF. We may assume that n=3, since the induection on n works for n=4.
By D denoting a non-singular member of |L{, it suffices to show that (D, L)%
(P?,2H). Assume (D, L)=(P? 2H). Then Lefschetz’s hyperplane section theorem
asserts that Hy(D; Z)— H,(M; Z) is surjective, while H.(D; Z)=Z. Therefore
Hy,\D; Z)=H,(M; Z) and

H\M, Oy)=H*M; Z)=H¥D; Z)=H\D, O%) .
So H is the restriction of a line bundle on M, which is also denoted by H, by

abuse of notation. Then L=2H, Ky+L=Kp=-—8H and consequently Ky ——~5H.
This contradicts Theorem 2.1, ¢’).

LeMMA 3.7. If d=23 and (Ky+nL)’L" =0, then Bs|Ky+nL|=®, and
W=p(M) is a curve, where p=p ryens|.

PrROOF. With the help of Lemma 3.4 we can choose two members D,, D, of
[Ky+nL| such that dim (D,ND,)<n—1. If D\ND,%=@, then (Ky+nL)PL" =
LD, D;}>0 since L is ample. Hence D,ND,=% and consequently dimW=1.

THEOREM 3.8. Ifd=3, then there is a vector bundle E on P! such that (M, L)~
(P(E), H(E)) except the case (M, L)=(P?, 2H). Moreover, E i3 a direct sum of
line bundles of positive degrees.

PROOF. Assume (M, L) (P? 2H). Then from preceding lemmata we infer that
P=pixy+nL IS 2 morphism onto a curve WcPS™% Letting w=degW and X be
a general fiber of p, we have d—2=(Ky+nL)L"*=wL*'Xzw. On the other
hand, 02 4(W, H,)s1+w—(d—1)=w—(d—2). Combining these inequalities we get
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w=d~2, L"*X=1 and 4(W, H,) =0, which implies W=P! (see Lemma 3.1). Any
fiber Y of p is irreducible and reduced since L"'Y=L""'X=1. Therefore Theo-
rem 2.1, ¥') proves that (Y, L)=(P3’, Hs). Combined with H*P!, O*)=0, this
implies the existence of a vector bundle £ on W= pP? such that (M, L)=(P(E), HE)).
Moreover, E is a direct sum of line bundles (see Grothendieck [6]), each one of
which is ample since so i3 K (see Hartshorne [7], Propositions (2.2) and (3.2)).

REMARK. This theorem, combined with Theorems 2.1 and 2.2, gives a complete
enumeration of polarized manifolds with 4-genera zero.

COROLLARY 8.9. If dz8, then dzn and the equality holds if and only if
(M, L)=(P{"'x P}, He+ He).

Proor. Clearly we may assume (M, L) (P2, 2H). Letting E:éL, with
d;=deg L;z1 we have d(M, L)= deg(det E)=3.d,=n. The equality hsfés if and
only if d;=1 for every j, which is equivalent to (M, L)=(P; 'xPi, H.+ H:).

§4. The singular case

REMARK 4.1. Let E be a vector space with E* being its dual space and let
P=p{E*). Then there is a canonical one-one correspondence between subsets of
P and ‘conic’ subsets of E, i.e., subsets which are closed under sealar multiplica-
tion. If both X, YcFE are conie, then X+ Y={z+ylr€ X, ye Y} is also conic.
With the help of the above correspondence, this gives rise to an operation * upon
subsets of P. We summarize a few properties of it.

a) xxx=2x for x€ P,

b) axy{xy€ P) is the line which passes through x and y.
¢) S«@=S8 for any ScP.

d) S*T:tGS'L;lIGT:v*y if neither S nor TP is empty.

e} SxT=TxS for S, TcP.

) (ST} U=8S«(TxU) for S, T, UcP.

The proofs are easy.

DEFINITION 4.2, For a subset S of P we denote the set {x¢ S|zxS=S} by
Ridge (S). Note that 2 ¢ Ridge (S) if and only if 2*xyc S for every y¢ S.

PROPOSITION 4.3. 1) S 45 linear if and only if Ridge (S)=S.
il) Ridge(S) is a linear subset.

PROOF. 1) i8 clear. As for ii), letting z, y € Ridge (S), for every z¢€ z*y, we
have z+SC (xxy)* S=xx(y*S)=2«S=S. This proves ii).
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LEMMA 4.4. Let Sc P, R=Ridge (S) and let H be a hyperplane such that HOR.
Let Sp=SNH, Rg=RNH and v be a point on R such that R=v«Ry. Then
S=v+«Sy and Ridge (Sg)=Rpy.

PrOOF. For any z€ S/{SgU{v}) let ¥ be the point (xxv)NH. Then zcvxycC
ve((vxS)N H)cv+Sg. Therefore S=v*Sy, since vxSyCv*S=S. For x¢ Ridge (Su),
we have x*S=a*(Sg*v)=(x*Sy)*v=Sy*v=S. Hence z€¢ R. For y¢ Ry, we have
y*SpCy*S)N (yxH) =8N H=Sy. Combining these we infer that Ridge (Sy}=Ry.

PROPOSITION 4.5. Let S, R be as above and let T be a linear subspace of P such
that dim T+ dim R= dim P—1 and TNR=@. Then S=Sp+R and Ridge (Sy)={,
where S;=SNT.

Proor. We use induction on = dim R, since the assertion is obvious for »<0.
When »>0, take a hyperplane H such that TCHOR. Then the induction hy-
pothesis proves that Ridge (S;)=& and Sp=S;+#Ry. Letting v be as in Lemma
4.4, we have S=v*Sy=vx(Bg*S;)={(v*Ry)*Spr=R+Sy.

PROPOSITION 4.6. Let W be a subvariety of P and let x ¢ W/Ridge (W). Then
deg (xx W)<deg W~1, and the equality holds if and only if W is non-singular
at x.

COROLLARY 4.7. Suppose that 4(W, H)=0. Then Sing (W)c Ridge (W).
The proofs are easy. For details, see Swinnerton-Dyer [16], p. 406.

THEOREM 4.8. Let (V, L) be a polarized variety with 4(V, L)=0. Then V 1is
normal, locally Macouwlay, and L is very ample.

ProOF. Since Bs|L|=, we have a morphism p=p;: V—>P=P(H(V, L)). Let-
ting W=p(V) and H=H(H"(V, L)} we infer that 4(W, H)=0 and deg p=1. Recall-
ing Proposition 4.5 we write W=MxRidge (W) where Ridge (M)=(. Since
A(M, H)=0, this implies that M is non-singular. Now, with the help of the
theory of local cohomology (see Hartshorne [8] and EGA, III, §2.1), we infer from
Theorem 3.2 that W is locally Macaulay. Since codim Sing (W)=2, this implies
that W is normal (see EGA, IV, §5.8). Now we can apply Zariski’s Main Theorem
to obtain that V=W.

COROLLARY 4.9. Let (V, L) be as above. Then L is fully gemerating and
H*V, tL)=0 for p>0, t=0.
The proof is quite similar to that of Theorem 3.2.

COROLLARY 4.10. Let (V,L) be as above and suppose in addition that
R=Ridge (V)xO. Then every line bundle on V is an integral multiple of L.
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PrOOF. We regard V as a subset of P=P(H*V, L)). Let M be a submanifold
of V described in the proof of Theorem 4.8. Then the proper transform V/c@Qz(P)
of V is isomorphic to Pyu(Ly@®Ix"), where Iif" is the trivial vector bundle on M
of rank r+1, r=dim E. Moreover, Ly =H(L,®Iy", and the submanifold
PUIY of PLy@I")=V" is the exceptional divisor E=V'NEr on V', where
Er=QuR)cQy(P). Now it is easy to see that Fy is an integral multiple of Lg
for any line bundle F on V. Recall that

v, O%)=H'M, O®Z(Ly1=HE, OF)

and that H{V, O%) - H(V’, OF%) is injective since V is normal. Combining these
observation we ohtain the result.

§5. The relative case

DEFINITION 5.1. By a family of polarized varieties we mean a quadruple
(CY, [, =, 8) of two varieties C{/, 8, which may not be compact, a proper flat
morphism #:C{/—> S, and a line bundle _{” on €]/ which is ample relative to «, such
that every (ideal theoretical) fiber V,==""(s) over s¢ S is irreducible and reduced.
For each s¢ S, (V., L,) turns out to be a polarized variety where L, is the restric-
tion of [ to V,.

THEOREM 5.2. Let (CU, [, =, S) be a family of pelarized varieties. Then
A(V,, L,) is a lower-semi-continuous function of s€S.
This is a corollary to the results of Schneider [15].

PrRopoSITION 5.8. Let (CU, [, =, S) be as above and suppose that 4(V,, Ly)=0
for a point 0€ 8. Then 4(V,, L,)=0 for any s€S.

Proor. Using Corollary 4.9 we infer that A?(V,, L,)=0 for p>0 in a neigh-
bourhood of 0. Hence A% V,, L,) is locally constant and 4(V,, L,)=0 in a neigh-
bourhood of 0. Since 4(V,, L,)=0 for any s¢ S, Theorem 5.2 yields the assertion.

COROLLARY 5.4. If im addition (V,, Lo)=(P", H), then there 1s a wvector
bundle E on S such that (€1, L)=(PE), HE)).

PROOF. In view of the results of Schneider [15], we infer that r.Oa(t.L)
(tc Z) is a locally free sheaf on S. Let E be a vector bundle on S such that
Os(E)=70x(L). Then z4Qa(t.L) is canonically isomorphic to ()s(StE) for every
t=0. Hence P(E):Proj(§QS*GS(E)):P1'03(§°n*Ow(t,f)) and C{/ turns to be a
subspace of this by definition of the relative ampleness. Since the inclusion mor-
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phism f, restricted to each fiber V, is nothing but the morphism o, [i1CUV—
P(E) is an isomorphism.
Analogously we can prove the following

COROLLARY 5.5. Let (CY/, L, =, S) be as in Proposition 5.3 and suppose In
addition that d{V,, L,)=2. Then there exists a vector bundle E on S and a di-
visor W on P=P(E) such that (C, [)=~(W, HE)). Moreover, restricted to each
fiber of P, W is a hyperquadric. ‘

ProPOSITION 5.6. Let (O, L, =, S) be as in Proposition 5.3 and suppose i
addition that d(V,, L,)=3 and that V, i3 @ smooth variety whose canonical bundle
Ky, is the restriction of a line bundle K on C1). Then every fiber V, i3 smooth.

Proor. Putting K,= Ky, we have

(Ko +(n=DL)L7HV ) =(Ko+ (n~ 1) L) L { Vo) =2¢(V,, Ly)~2=-2.

If V, is singular, we use Corollary 4.10 to infer that —2 is an integral multiple
of d(V,, L,), which contradicts the assumption d(V,, Lo)=3. So V, is smooth.

COROLLARY 5.7. Suppose in addition that (V,, L) (P?, 2H) and that S is
smooth. Then C{/ is a P* '-bundle over a P*-bundle over S.

§6. Proof of the fundamental ineguality
The purpose of this section is to prove the estimate
dim BsA<4(V, [4))+ (dim |4|—dim 4)
stated in Theorem 1.9. From now on this inequality is denoted by (F).

LEMMA 6.1. Let D be an effective Cartier divisor on a variety W such that
[D] is ample. Suppose that the support of D is a union of two analytic subsets
Dy, D, neither of which contains the other. Then dim (DN D,)= dim W-2.

We prove this lemma by induction on w=dim W. For wxl, everything is
trivial. For w=2, take a non-singular model W’ of W (see Hironaka [9]). Using
the vanishing theorem of Kodaira-Mumford (see {13], Theorem 2), we infer that
HY W', —[Dy1)=0. This implies 2°%(Dy/)=0 and hence the support of Dy is con-
nected. Therefore D is also connected and this implies D,\ND,%. For w=3,
take a generic hyperplane section H such that dim (D,N D,N H)=dim (D,N D,)~1
and that neither of (D, N H) nor (D,N H) contains the other. Applying the induction
hypothesis we obtain dim H—2< dim (D,N D, H). The estimate follows from this.
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ProOF OF THEOREM 1.9. We shall establish the inequality (F) by induection
on n=dim V. If n=1, (F) follows easily from Lemma 3.1. We consider the case
nz2. Since L=[4] is ample, dim BsA~dim Bs|4|<dim |4]—dim 4. Therefore we
may assume A=|L|. Now, we take a non-singular model 7:V'— V of V such
that z*A=E-- A’, where K is the fixed part of 7*4 and A’ is a linear system of
effective Cartier divisors free of base points. Let W be the image of the mor-
phism p=p4: V' - P¥ N=dimA. Note that [4’]=p*H and BsA=r(E). Then
one of the following conditions is valid: a) dim BsA=n, b) dim BsA=n—1 and
dimW=1, ¢) dimBsA<n—2 and dimW=1, d) dim Bsd=n--1 and dimW=2,
e) dim BsAsn—2 and dim W>=2. We shall show that the inequality (F) holds in
each of these cases.

Case a). This condition implies V=BsA and h°(V, L)=0. Hence NV, L)=
n+-d(V, LY>n.

Case b). Putting w=degW we have 0 AW, HYS14+w—(N+D)=1+w~hV,
L). Let X be a general fiber of p. Then L" 'H=wL""'X>w since L" X>0. More-
over, L"'E>0 because dim z{E)=n—1. Combining these inequalities we obtain
that d(V, L)=L">L"""Hzw=zh"V, L)~1. This implies (F).

Case ¢). Similarly we have 0sSd(W, H)<14w—h(V, L) and d(V, L)=L">
L*'H. (F) follows from these.

Case d). Let S be a general member of 4’ and let D be the corresponding
member of A. Note that D=z(E)U=(S). S is connected since H'(V", —[A" =0
(see Mumford [13], Theorem 2). So G==x(8) is irreducible. Moreover, Lemma 6.1
proves that dim (z(E)NG)=dim Bsdg=n—2. On the other hand, dim A;=dim 4-
1=h*(V, L)-2. Now we apply the induction hypothesis to the pair (G, 4;) to ob-
tain that n—2<dim Bsdg<n—1+d(G, L)—(dim 4;+1). The estimate (F) follows
from this since d(V, L)=d(G, L)+d(=(E), L)>d(G, L).

Case e). Let S, D be as in case d). Then D is irreducible and D, =G==(8).
Hence BsA=BsA; and dim A¢=dim A~1=h%(V, L)—2. Applying the induction
hypothesis to (G, 4;) we obtain dim Bsdg<n—1+d(G, L)—(dim Ag+1). This
proves (F).
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