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§0. Introduction.

Let E be an elliptic curve defined over a finite algebraic number field K, and
let K be the algebraic closure ef K. Then the Galois group G= Gal(K/K) acts
continuously on the Tate mecdule T,(E), and we thus cbtain the following l-adic
representation of G for each prime number I:

o G—— Aut (T({E)=GL:Z),

where Z; is the ring of [-adic integers. J.-P. Serre has proved the following

THEOREM. (Serre {3],[4]) Assume that E does not have complex multiplication.
Then

(1) p(G) is an open subgrcup of Aut(T,(E)) for all l.

2) 0,(G)= Aut(T,(E)} for almost all 1.

In this paper, we shall prove an analogous result for certain two-dimensional
abelian varieties defined over a finite algebraic number field K. Let B be an
indefinite division quaternion algebra over the rational number field @, and let O
be a maximal order of B. Our object is a two-dimensional abelian variety A de-
fined over K such that End(A)= Endx(A4)=%L, where End(4) (resp. Endg(A)) is
the ring of endomorphisms of A defined over K (resp. K).

For each prime number [, we obtain the following [-adic representation of G':

pi: G— Autg (TL(A))E&X,

where $,=0®2Z,, and £ is the unit group of O, equipped with the l-adie topology,
and Auty(T,(A)) is the group of automorphisms of T,(A) which commute with the
action of © on T,(4) (for details, see Proposition 1.1). Our result is the following

THEOREM. (1) 0,(G) is an open subgroup of Auts(Ti{A)) for all L.

2) p(G)= Auto(T}(A)) for almost all L.

The proof proceeds almost in the same way as in the Serre’s papers [3], [4], [6].
Recently, I was informed that Professor J.-P. Serre had also obtained the same
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result, but that it is unpublished. The present work is a part of my Master’s
thesis submitted to University of Tokyo, 1974 (March).

1 wish to express my sincere thanks to Professor Y. Thara whose suggestions
and enccuragements were invaluable.

§1. Preliminaries.

First we fix our notations. Let K, B, D, and A be as in §0. We denote by
D the dizeriminant of B. We put B,=BR0Q,, T,=0%2,, and denote by N, (resp.
Tr,) the reduced norm (resp. the reduced trace) of B, over Q,, where @, is the
field of l-adic numbers. For a natural number n, we denote by A, the group of
n-secticn points of A. Then T(4)= l(i_r_n A, and we put Vi(A)=T, (A4S0

By the assumption, there is an isomorphism of O onto Endx(4), and we identiiy
O with BEndg{A) by this isomorphism hereafter. Especially, O acts on Ti(A), and
B acts on V,(A).

PROPOSITION 1.1, (1) Ty {A) ¢s isomorphic to D, asleft O-module, and Auts (T, {4))
is isomorphic to OF, where the action of OF on T, (A)=5D, is the right multiplication.
And hence V,(A)=B, as left B-module, and Autp(V,(A)=B. For cach prime
nuinber 1, we thus obtain an l-adic representation of G:

o G — Auto (T (A) =0F T Autg(Vi(A)) =By

2) The field generated over K by the coordinates of all the elements of A
contains a primitive I*th root of unity g, and ¢¢ G acts as LT={Mnin,

Proor. (1) is proved in Morita [2] §2. (2) is proved as in Shimura [9] pp.
307-309. Q.E.D.

Hereafter, we chall identify T,{4) (resp. V{4)) with ©; (resp. B)), and Auto(T(A))
(resp. Autg(V,(A)) with £ (resp. BY).

Next, we classify the [-adic Lie algebras.

PROPOSITION 1.2. The multiplicative group B is an l-adic Lie group in the
sense of Serre [5], and its Lie algebra B, is isomorphic over Q, to B, with the
bracket product [X, Y]=XY—-YX (X,YeB). The Lie subalgebras g of B, are
classified as follows.

(1) Case lID.

If dimg (the dimension of g s 0 (resp. 4), g is {0} (resp. By). If dimg=1,
g={aXlacQ}(XeB, X+0). If dimg=2,q is isomorphic over Q, to one of the

following four Lie subalgebras: {(a b )la, beQ,} (2EQ,),{ 0 b) a, be Q,},
0 2a 0 a
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{(g 2>!a,b€ Qi}, an tsomorphic image of a quadratic extension of @, into B,
|

(In the third (resp. the fourth) case, we say that ¢ is a split {(resp. non-split)

Cartan subalgebra.) If dim g=3,q is isomorphic over Q, to cither €,={X¢3B,|

Tr(X)=0} or {(g b)!a,b,c%Q,}. (In the latter case, we say that q is a Boiel
¢/

subalgebrayl.

20 Casel|D.

Iy dimg=0 (resp. 4}, g is {0} (resp. B)). If dimg=1,g=laX|ac QHX 3,
X#0;. If dimg=2,4 1s a non-split Cartan subalgcbra i the same sense as above.
If dimg=38,0={X¢3,|Tr,(X)=0}=C,.

Proor. The first ascertion is trivial. The case 11D is well-known {cf. Serre
[5] p. 7). Now assume that []D. Then 3, is the direct sum of @, and G,, and we
only have to prove that €, has no two-dimensional Lie subalgebra. But this cun
be checked easily by a direct computation expressing B, in the form Bi=Q,+Q; a-
Q,-8+0,-af with o, 20, and offi=—Ba. Q.E.D.

PRrRoPOSITION 1.8. The Lie algebra of 0,(G) cannot be G,.

Proor. By Proposition 1.1 (2), Ny(0,(G)) is an open subgroup of Z;. But the
Lie subgroup of Di° corresponding to €, is commensurable with the subgroup
{2 ¢ & | Ni(%)=1}; hence cur conclusion. Q.E.D.

PRrRoPOSITION 1.4. A has potential gocd reduction at any finite prime of K.

Proor. This is proved in 2] §3. It is also an easy consequence of the semi-
stable reduction theorem of Grothendieck [1]. Q.E.D.

£2. Local results.

By Proposition 1.4, replacing K by its finite extension if necessary, we can
assume that A has good reduction everywhere, and we do so hereafter.

PROPOSITION 2.1. Let v be a finite prime of K which divides a prime nwmber
p. Then the p-rank of A=A moed v 38 0 or 2. If p divides D, ii is 0.

Proor. The reduction mod v gives a homomorphism V,(4)— Vp(ﬂ). Its kernel
is a B-submodule (hence a B,-submodule) of V,(4)=B, Our assertion follows at
once. Q.E.D.

DEFINITION 2.2. Let v be as above. We say that A is supersingular (resp.
ordinary) at v if the p-rank of A modv is 0 (resp. 2).

Now let K, be the completion of K at v. Put D,= Gal(K,/K,), and let I, be
the inertia group of . We denote by g¢,b,, 1, the Lie algebras of p,(G), p,(D.}, 0,(L)
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respectively.
PROPOSITION 2.3. Let A be ordinary at v, with v dividing p. Then p does

not divide D, and b, is @ Borel subalgebra, and i, is isomorphic to {(g Z’)’ a,be Q,}.
i

Proor. The first assertion is already proved in Proposition 2.1. The reduction
mod v gives an exact sequence of D,-modules:

0—>X,—V,(A)——V,(4)— 0,

with a suitable D,-submodule X, of V,(A). By the identification Vold)=M,(0,),
we can identify X, with {(g :)} for a suitable choice of basis, because X, is

isomorphic to an M.,(Q,)-submodule of M,(Q,) of dimension 2. Our conclusion fol-
lows by the same argument as that of [3] Chapter IV pp. 42-45. Q.E.D.

For the case A is supersingular, we need some lemmas.

LEMMA 2.4. Let A be supersingular at v, and assume that v|p|D. Then
pla=e-mp, with z. A—>A"™ the pi-th power homomorphism, and ¢: A*—A an
tsomorphism.

Proor. This is contained in the proof of Proposition 5.3 of 9. QE.D.

Now let A,v,p be as in Lemma 2.4. We denote by O, the ring of v-integers
in K,, and by m, the maximal ideal of 0,. Since A is supersingular at v, the
D,-module A,» is isomorphic to the D,-module of the p"-section points of the formal
group over O, attached to A (ef. Tate [11]). Let A(X)=!{fi(X),f:(X)) be the
formal power series with indeterminate X=t(X,, X,) that gives the p-times addition
of this formal group. By the above lemma, f=fmodv is a power series in
X#=¢(X, X*), and its term of degree p* is of the form MX* with a suitable
matrix M of GL.0,/m,). Let M’ be the matrix whose components are p~3-th
powers of those of M, and choose M¢ GL,(0,) such that Mmod v=M’. Put Y=
MX. Then we have

92 . : o
11X :f(M”Y)E( Y , t(terms with degree greater than % ) med v

Y%+ (terms with degree greater than p?)

The additive valuation v of K, is uniquely extended to K,, and we denote it
also by v. Let O, be the ring of v-integers in K,, and 7, be the maximal ideal
of 0,. For x=*(x,,a.)€ (M.)%, we put v(@)= Min {v(x,), v(z,)}.

LEMMA 25, Put T,={x€ (m,)?|fx)=0}, where f* is the n-th iterate of f, and
put Tu=T,—T..,. Then there is a positive constant ¢ independent of n such that
the ramification index of K,(x)=K,(x,,x,) over K, is no less than ep®® for all posi-
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tive integer n and any z € T.

Proor. Let ., (resp. n,) be the minimal integer such that a2Y2"2”2 {resp.
a,lYfl”z) appears in fimodv (resp. f.modwv} with a suitable a, (resp. a,) in
(O,Jjm,)*. If such n, (resp. n,) does not exist, we put 7,=co (resp. #,=co}. By
the above arguments, we have

{ AMY) =AY+ Y+, Vi +B(Y)
[lM Y )= Ay (V) + Y5+, Y+ B,(Y),

where AJ(Y)=0modv, €05 (i=1,2), and each term of B,(Y) (resp. B:{Y)) is
divisible by either YT or Y3 (resp. Y% or Y?”’Z), here the term Y3 (resp. Y’{l”z)

is neglected if n,=co (resp. n,=o0). Therefore, for any x==M"'y < (WM,)?, we have

vy}
\

{ v(f1{My)) > Min {p*oly), n.p (), viE) +v
Yo +oiy},

..zb(
v{fo(M'y)) = Min {p*e(y.), mip*vly,), v

T JTe

where £ is a prime element of v.
Since v{Mx)=v{z), and n;>2 ({=1,2), we have

v(f(2)) = Min {p*v(z), v(§) +v(a)}.

It is easy to see that pw(z)<v(€)+wv(z) implies v(f(z))=p*{x). Hence the
argument in Serre [7] p. 129 is applicable. Q.E.D.

PROPOSITION 2.6. Assume that v|p!lD, and that A is supersingular at v. Then
dimi,>2.

PROOF. Consider the subspace S:{((‘? g)ja,bez,,} of T,(A)=M,2Z). If pla

or pib, the image of t:<g g) by the injection S/p*S - T, (A)p"T,(A)=A,» is a
proper p™section point. Fix such an element t. S is obviously an I,-invariant
subspace of T,(A), and the map of I, to S which sends s¢ I, to ¢-£t€ S gives a
morphism of p-adic analytic manifolds: p,(I)->S. Take a measure ¢ of S such
that #(S)=1. By Lemma 2.5, p{I,-t)>¢>0, and hence looking at the tangent
spaces, we obtain dimi,> dim (the tangent space of S at tj=2. Q.E.D.

PROPOSITION 2.7. Let vlp and A be as in Proposition 2.6. Then d,=1,, and
it s either a non-split Cartan subalgebra or B,.

PROOF. By the above proposition and Propositions 1.2 and 1.3, we only have
to prove that b, is not contained in a Borel subalgebra. Assume that b, (and
hence 1,) is contained in a Borel subalgebra. We may assume, taking a suitable



304 Masami OHTA

basis of B, and replacing K by its finite extension if necessary, that p,(I)C

{(3 :)}C:GL‘;(Zﬁ). Consider the subspace S’:{ 8 Z)%a,bezp} of T,(A). By

the above assumption, dim (I,-1)<1 for any t¢ S, But, for t:<g Z) with pla
or pib, we have dim (I,-£)>>2 by the same reason as in the proof of Proposition
2.6, a contradiction. The last assertion follows from the fact that I, is a normal
subgroup of D,. Q.E.D.

Turorem 2.8. For all prime number p, p,(G) is an open subgroup of
Autg(T,(A).

Proow. First we assume that there exists a v|p cuch that A is ordinary at
v. Then by Proposition 2.3, the Lie algebra of 0,(G) contains a Borel subalgebra.
Assume that it is a Borel subalgebra. We may assume that K’,w(G)C{C; :)} by
the same reason as in the proof of Proposition 2.7.

Take a finite prime v of K. If v'|p, A cannct be supersingular at o’ by

Proposition 2.7. Hence by Proposition 2.8, b, is also a Borel subalgebra, and b,
a b
0 ¢

And by this coordinate system, i, and i, are expressed as {(g 2)[6, ce Qp}. Hence,

and d,- are expressed as {( ) ! a, b, ce Q,,} by a suitable coordinate system of 3,.

replacing K by its finite extension if necessary, we may assume that I, {((1) *>}C
*
GL.(Z,) for any v'|p.
Next, if v"ip, we have p,{I,)={1}, since 4 has good reduction at v’

Hence the kernel of the map G»p,(G)/p,,{G)ﬂ{((l)

infinite unramified abelian extension of K, a contradiction.

*
corresponds to an
*

Next, assume that A is supersingular at any v|p, and that 2,(G) is not open
in Auts(T,(A)). Then, replacing K by its finite extension if necessary, we may
assume that p, is an abelian p-adic representation by Proposition 1.2 and Proposi-
tion 2.7. This and its restriction to D, and I, is semi-simple for any wvip by
Proposition 1.2 and Proposition 2.7 (ef. [7] Proposition 1). By Tate [11], P, 18 8
representation of Hedge-Tate type, and we conclude by [3] Chapter III p.7 that
0, 13 locally algebraic (for the definition, see [3]). By the first step of this proof,
all p, are semi-simple (ef. [7) Proposition 1), and they form a strictly compatible
system of rational l-adic representations in the sense of [3]. Therefore, by (3]
Chapter III p. 15 there are infinite prime I’s such that p, can be brought in diag-
onal form. But this implies that A has complex multiplication by [3] Chapter IV
p.42. Q.E.D.
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§3. Global results.

PROPOSITION 3.1. Let H be a closed subgroup of I’I OF, and H, bz its projec-
tion to OF. For 1] D, we denote by H, the image of H, by the natural map GL{(Z)—
GL,(F)). Assume:

(1) H, is open in O for all L.

@) The image of H by the map Il[ N;: ]lI D?—>Ill Z is opon.

8) There exists a finite set of primes S| D} such that H, contains SL.(F)
Jor all leS.

Then H is open in 111 .

PrRoOF. The argument of [3] Chapter IV pp. 23-27 is applicable. Q.E.D.

Our problem is now reduced to the study of the representation of G on A,

DEFINITION 3.2. Let v|p be a finite prime of K. We denote by I, the maximal
pro-p-subgreup of I, and put I,..=L/I,, For an integer d prime to p, we define
a character 04 of I, which is trivial on I, (hence also a character of L. as Jol-
lows (ef. {4] p. 263):

Ol0)=clare)- =11
where oc I, and © is a prime element of v in K,. We also consider 0, as a

character with values in Fy by the reduction modv of 0,.

LEMMA 3.8. (1) For a=a/d € Q with a,d¢ Z, and (a,d)=(p,d)=1, w2 pul M=
{x € M, |v(z)>a}, md =z € W, |v(x)>a}, and Va=ma/mi. We denote by ¢ the image
of o€ D, by the natural map D,~ Gal (k,/k,), where k, is the residue field of w.
Then V. is a one-dimensional vector space over k,, and o € D, acts on V. &-linearly.
In particular, I, acts on V. linearly, and its action is given by the character 03.

(2) Let p, be the group of p-th roots of unity in K,, and let ¢ be the rami-
fication index of K, over Q,. Ther the action of I, on p, 18 given by the character
Op-1-

Proor. This is Propositions 6,7,8 of [4]. Q.E.D.

Hereafter, we consider only those primes p which are unramified in K and
ptD. We then obtain a representation for each such p:

@1 Dy Auto(T{A)pT,A)=CLuAF,).

PROPOSITION 3.4, Take a prime v|p, and assume that A is ordinary at ».
Consider the representation

Pyl Iu_—’AUtD(Ty(A)/pr(A))EGLQ(Fp)'
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Then

*

(1) o, is equivalent to the representation <(1) ) with suttable *.

—1
(2 If L., acts on A, non-trivially, the order ojf o(L) is plp—1).
8) If I, acts on A, trivially, the order of ¢,(1I,) is p—1.

PrROOF. By the reduction mod v, we obtain the exact sequence of D,-modules:
00— X, A, (A mod v),— 0.

We can identify A, with M,(F,), and X, with {(g

from Proposition 1.1 (2) and Lemma 3.3 (2), using the same argument as [4] pp.
273-214. Q.E.D.

LEMMA 3.5. Take a prime v of K such that vip! D, and assume that A s
supersingular at v. If we normalize v by v(p)=1, we have vix)=1/(p*~1) for all

:)} Qur conclusion follows

x¢ Ty, where Ti is as in Lemma 2.5.

PROOF. Since we are assuming that p is unramified in K, we can take p as
a prime element of K,. Let f(X)=t(f\(X),f2(X)), M, ete. be as in §2, and put
y=Mzx. We may assume that v{y,)<v{y,), i.e. v(y,)=2{y) by symmetry. First we
see that

LM Y)Y =Y 46, Y Y + B, (Y) Y7! mod v,
If vly)=v{y,) <1/(p?~1), we have
1>v(y’;2—1)2 Min {l:'v(p)’.v(yl‘lpz'yg‘l)}.

Hence we have n,<oo, and (22— 1)v{y,) >n,0°0(y,) —v(y.) > (p*—1L)v(y.), a contradie-
tion. Therefore, we have »(y.)>1/(p?*~1).
Next, put M"z(? B ) Since f(X)=pX + (terms with degree greater than

I

1), we have

PlaY, +BY) +pCy(Y)+ YT+ Y3 +B,(Y) )

f(M"‘Y)=< , .
Py Ye+0Y.) +pCo(Y )+ YE 46, Y1V +By(Y)

where each term of C.(Y) has degree greater than 1, and B;(Y) is as in the proof
of Lemma 2.5.

Since v(M'y)=v(y), we have either v{ay,+8y.)=v¥.), or v{ry.+aoy.)=v(y.).
Assume that v(ay,+8y.) =v(y.). Then fIM'y)=0 implies

1+ () = v(p(ays+ By.) =v(pC, () +¥% + e + Biw)).
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But by the above argument, we have

7yp2,

V(Y2 ) =070 (Y > (PP~ 1o (o) +ulye) 2 1+ 2v(yy),

if my<<oo. Therefore 1+v{y,)>p*v{y) =p*vw.), and hence v(y,) <1/(p*—~1).

The proof in the case v(yy,+6y.)=v(y, is similar. Q.E.D.

PrOPOSITION 3.6. Let vlp, and A be as in Lemma 3.5. Then A, is isomor-
phic to a two-dimensional vector space over Fp, and the action of ¢ € I, is a multi-
plication of ,2.,(c) on this vector space. The image of D, by ¢, is either a cyclic
group of order p*—1, or its normalizer in GL,(F,). The former case occurs if
and only if the residue field of v contains Fp.

ProorF. By Lemma 3.5, we have an injective map of D,-meodules: T,-»V.HV,
with a=1/{p*~1) by sending z='(x,,z.) € T, to {(x, mod ms, 2, mod my) ¢ VoP V..
Qur assertion follows from Lemma 3.3 (1). Q.E.D.

THEOREM 3.7. There exists a finite set of primes SOU|IID, or I<T, or 1 is
ramified in K} such that ¢ (G)=GLy}{F,) for all 1¢8S.

Proor. After Proposition 3.4 and Proposition 3.6, we can proceed thoroughly
in the same way as in [4] §4, and we omit the proof although it is the essential
part of the proof. Q.E.D.

We have now established the theorem of §0 by Proposition 3.1.

Finally, let us consider the case Endg(A)= End(A)=r, where K and A are
as before, but ¢ is an order of B which may not be maximal. Take a maximal
order © which contains g, and put f={r€ B|z0<t}. One sees easily that f is a
lattice in B contained in r, and that the right order of f is . Therefore by
Shimura-Taniyama [10] §7 Proposition 7, there is a f-transform A’ of A defined
over K, which has the property Endg(A’)= End(4’)=0. Moreover, we can take
a t-multiplication of A onto A’ defined over K by loc. cit. Hence V,(4) and V(4"
are isomorphic as G-modules, and the [-adic representation of G on V,{A) is equiv-
alent to that on V,(A4’) for each prime number [.
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