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§1. Introduction.

In the representation theory of the semisimple Lie groups, one of the main
problems is to construct all irreducible unitary representations of a given group.
The purpose in this paper is to construct a certain series of the irreducible unitary
representations which are irreducible components of reducible representations in
the principal series for the following groups: Spin (2[,1), SU(, 1) and Sp({, 1) ((=1).

These representations are an analegue of those which are constructed in the
following results;

For the speecial linear group G=SL(2, R} (which is isomorphie to SU(1,1) and
Spin (2, 1)), V. Bargmann [1] constructed the representations Dij. defined by intro-
ducing an inner product in the representation space as the limit of the inner
product in the space of D (I=1/2). It was proved by I. M. Gelfand, M. I. Graev
and V. Ya. Vilenkin [4] and R. Takahashi [16] that D7 :DDi: is equivalent to the
principal series representation Ci/f in the notation of [1].

When G is a real form of a simply connected eomplex simple Lie group and
the corresponding symmetric space G/K is of a Hermitian type, A. W. Knapp and
K. Okamoto [13] proved that any one of the limits of holomorphic discrete series
representation is irreducible, and is equivalent to a proper subrepresentation of a
certain representation in the principal series. '

On the other hand, R. Takahashi showed the similar result for the group
Sp(1,1) ([16]).

The contents of this paper are as follows.

After the preparations in §2, we define the representation U{4,7) of a real
rank one classical group G on the space H(2,7) where 2 is an integral form on q,
and z is an irreducible unitary representation of a maximal compact subgroup K
in G. In §4, we study the asymptotic behaviour of the functions in the subspace
HX(2,7) of H(2,7). In §5, we shall prove that if 2 vanishes only on singular real
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roots, then the space H(zi,7) with the given seminorm | | is actually a Hilbert
space and Ul(4,z) is a unitary representation. In §7, we prove Theorem 1 which
plays an essential role in the proof of the irreducibility of U(,7z). Theorem 2 and
Theorem 3 in §8 are the main results in this paper. Theorem 2 proves that Uz, 7)
is irreducible if {z|M: ¢,_]=1 where ;.. is the irreducible representation of M with
the highest weight 2_=7--p_ in the notations of §6. Under the same conditions as
in Theorem 2, Theorem 3 proves that the representation Ui, 7} is equivalent to a
proper subreprerentation of a prineipal series representation V{i_, 0).

The most important tools in this paper are the theory of eigenfunctions of
two sided (-invariant differential operators obtained by Harish-Chandra [10] and
the asymptotic behaviour for the spherical funetions of the representations in the
principal series obtained by A. W. Knapp and E. M. Stein [14].

§2. Preliminaries.

Let G, be a simply connected simple Lie group and G be a real form of G,.
Moreover we shall assume that (1) G is of real rank one and (2) G has a compact
Cartan subgroup. Let g, qand t be the Lie algebra of G.,G, K respectively where
K is a maximal compact subgroup of G. Then g, is a complexification of g. Through-
out this paper [, means the complexification of the Lie algebra ! of q. Let p be
the orthogonal complement of £ in g with respect to Killing form B on g,. Let a
be a Cartan subalgebra of g such that anyp is a maximal abelian subspace of p.
Then a={@nNt)+@nNp). Put a;=ant,ag=anp. Then the assumption (1) means
that dimaz=1. Let X be the root system of the pair (g, a.) and g,=a,+ E\_ga be
the root space decomposition of g.. -

Let 2 be a linear form on a,. Then there exists a unique H; in a, such that
B(H, Hy)=4(H) for each Hca, Put (2, #)=B(H; H,) for any two linear forms 1
and £ on a,. Choose X.cg. for each root « satisfying B(X,, X_s)=1. Then
[Xe, Xoa]=H, for all « in X. Fix a singular real root e=a, on a (i.e. @=0 on as).
Then ap=RH,,. As usual we shall fix a lexicographic ordering in Y such that if
(e, g} >0, then « is positive. Put

Po=f{ac Xla>0 and (a,a,)x0},
P.={ae Xla>0 and (a,a,)=0}.
Define p, and p_ by 2p,.= 2 aand 20_.= T a.

ag p—

adpy
Let 0 be the Cartan involution corresponding to the decomposition g=t+p and
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m be the centralizer az in . Put my=ui+ap and n={( 2 8J0Ng. Then g=0u+
(my),+n. and g=f+ap+n. Let A, and N be the anails;{it: subgroup of G corre-
sponding to ap and n respectively. Then we have the Iwasawa decomposition
G=KApN.

Let W be a finite dimensional vector space over the complex field € and
C={W,G) be the set of all W-valued C®-functions on G. When W=C, we shall
write C°{C, G)=C=((). Define the representations B=Ry and L==L, of the Lie
algebra g (X<g) on the space C=(W,G) as follows;

(Ref)x) =—j‘t~ﬂx exptX)lme  (Lef)@) =»&-‘i~f<exp — X | e

Then R and L can be uniquely extend to the representation of the universal
enveloping algebra u of g.. We denote bf=R,f and b f=L,f for all bcu and
FeC=(W,G).

§3. The definition of Uz, 7).

Let dip,q) {p,qc K\G) be the G-invariant distance of the Riemannian symmet-
ric space K\G defined by elewHoa=¢ertth for all Héa, where ¢ is the origin of
the space K\G (remark the rank K\G=1). Let ¢ be an irreducible unitary repre-
sentation of K on the vector space W. We put

CZ(G)={fe C=(W,G) | flka)=<(k)f(x) for all z€G and ke K.
Define the seminorm v, (b u) on CT(G) by
Vs {f) = Sup Ibf(’lf) [ edzo0)

LG

for each f in C7(G) where | | is the norm in W. Let 3 be the center of u and
the mapping z—p(z) be the Chevalley isomorphism of 3 onto I{a,) where Ia,) is
the set of all polynomials on @, invariant under the Weyl group of (g.,a,) (see G.
Warner {19], p. 168). Then for any integral form 2 on a,, we can define the infini-
tesimal character y, of 3 by 7:(2)=2a(z(2)) for each z in 3. Fix an integral form
1 on q, and define Hy(2,7) as follows;

Hyi,o)={fe CT(@) |v(f)<+eo and zf=yx.(2)f for all beu and z¢3}.

Then H,{4,7) is a topological vector space with the family of seminorms {vhicu.
We put v=y, where 1 is the identity of u.
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Let R=R, (ycG) be the right regular representation of G on C7(G) and &k be
the set of all equivalence classes of irreducible unitary representations of K.
Define the projection operator E{(8){6€ &%) by
(B(6)f) (2) = deg aj Trace (k=) R f ) dk

X

where f¢ C7(G) and dk is the Haar measure of K normarized as Ldkzl. Then
we have the following lemma.

TL.EMMA 1. Let 6 be an element of Zx.

1) Then for any fe Hya, 1), Byf is in Hy(d,7) for dl y€G.

2y E8)f belongs to H{(A,t) for all fe Hy2,1).

Proor OF 1). Since

Sl,lg lef(w) led(zo,a)§ Slclg; ]f(,ry) Ied(zw.o)ea(ua.o)
Sul(feion
we have u(R,f)<+co. By Adly )bfe€ Hy(a,7) and boR,=R,o Ad{y™), we have
also vs(f)<+oo for all bcu. On the other hand by the condition zoR,=R,z for
all z in 3, we conclude that R,/ belongs to Hy(2,7).

In the similar way, the assertion 2) in Lemma 1 is proved.
LEMMA 2. In the topological vector space Hy(2,7), we have

lim X Eef=f
n-too 0¢ g, degdsin
Jor all fe Hy(2,1).
ProOF. Let f be an element in Hy(4,7). Then by Peter-Weyl’s theorem with

respect to the compact group K, we have

fle)= & [EQ)f])

for any fixed x in G. Let 2% be the Casimir operator of K. Then we have
E(0)2x"f=02E0)f=w(0)PE)f

for all ¢ in &% where w(d) is the eigenvalue of the operator Qg corresponding to

the eigenfunction §=¢(k) (k€ K) and »p=0,1,2, ... Therefore we have
(f— 2 Efi= 2, o) ? E0)2gr|
deg dsim degd>m

for sufficiently large ». Hence we conclude that lim »{f— 2 E(6)f)=0. By

.. Lo ] degSsm
the similar method, we have
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lim w(f— ¥ E)f)=0

meo oo degdsm

for all b in u. Let HX(2,z) be the set of all K-finite functions in H,(1,7),
namely Hi{2,7) is the set of all f in H,{4, <) satisfying dim (R, flk ¢ K}<{+-oco.

LEMMA 8. Let ¢ be the identity of G. Then we have followings;

1) Hm R,f=f in Hy(2,7) for all fe Hi(2,7),

2) ;I;z mapping R: y—R, is a continuous representation of G on the space
Hy(2, 7).

ProoF oF 1). For any fixed function f in Hi(4,7), there exists a C~-function
B with the compact support such that

(f+B) () :SG Bl flaw)dw= f(x)

for all  in G. (See [10], Theorem 1.) Let V; be a compact neighbourhood of
the identity e of G and put V.= supp(f). Put L= sup ¢?®>. Then we have

z¢ Vo Vg

zeC

s (Ryf—f) < sup S W Bl )b Bl ) e de
éva(f)g \b Blawy) — b Bla)  duo
G

where ;§(x):ﬂ(m“). Therefore we conclude that
lim vs{Bf—f)=0 for all beu and f¢ Hy(2,7).

ProoF OF 2). Let V be a compact neighbourhood of ecG. Then for any
fixed b in u, there exist by, b,, ..., b, in u and L,20 satisfying

wBSL{ 5 005))

for all ye V and f¢ Hy(4,7). Therefore by the first assertion in this lemma, we
have

lim w4 (Buf /) ga( ) ub,.<fmf'))+»b(f-f')

for all f/ ¢ Hi(4,7). Hence by Lemma 1, we conclude that lim w(R, f~f)=0. QE.D.
y-+8

We define the seminorm || || in H(2, 1) by
I/12= Iimoeg | f@) et condy
gt G

for each fe Hy(4,7). With this seminorm, Hy(4,7) is a pre-Hilbert space.
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Note that the seminorm || || is not a norm in general. We shall prove that
the seminorm || || is actually the norm in Hy(Z,z) for the special values of 4.

LEMMA 4. There exists o constant C, such that [fIl<Cwlf) for all f in
H,(2,7).

Proor. Normalizing suitably the Haar measure dr on G, we have the fol-
lowing integral formula (see S. Helgason [11])

=3

g f(x)d:c:s j S fley exp tIky| 11 sinh altHy) | dtddi,
G 0o JrkJK aL Py

for all f in CJ(G) where I, is the element in a, defined by p.(H)=1 and CT(G)
is the set of all C=-funections with the compaet support. Then we have

lim eS LA et dz <ol f) ] Tim e Sme““dt.
€40 G tr4 0 0
Therefore we conclude our assertion.

Let H(2,7) be the completion of the space H,(4, 7} with respect to the seminorm
fl I, and define the representation U(4,7)=U(,7; y)(y€G) by

(U o) f y=Ffley)  2,yeG and fe H(A 7).

Put U(2,7)|K be the restriction of U(4,7) to K. And let HE(2,7) be the subspace
of H(4,7) consisting of all K-finite funections for the representation U(4,7)| K.

LEMMA 5. Let Hi(2,7) be the set of all K-finite functions in Hy(2,7). Then
we have

1) HY(A,0)=H¥(4,7)

2} Uld,7) is a continucus representation of G on the pre-Hilbert space H(A, z)
and

3) lim {—}; Uiz, =5 exp tX)f () — f(m)}::Xf(a:) for all Xeg and Fe Hyld,x).

Proor. By Lemma 2, 1) is obvious. Therefore we shall prove 2) and 8).
Since

—e[d{z0, 0) +d(yo, 0)1< —ed(xyo, 0)

=
= —¢d{zo, 0) —d(yo, 0}]

for all ¢ G and y e G satisfying d(zo, 0)2d(yo, o) and for >0, we have

(U4, =01, 9)= girgosj (flay), gla))e ez dy

[
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= lim 6,(:; (flz), glay et loaody

e +0

= lim ¢ (f(z), glay ™)) et v loody

£ b0 gd(zo,o);dwo,o)

=(f, U4z, yg)

for all f and ¢ in Hy{2, 7). Hence U{4,z;y) is a unitary operator. Next we shall
prove that y—U(4,7;y)f is continuous for any fixed f in H(4,z). By Lemma 4,
we have

lim U, 39 f—fll=0 for all fe HE(A, 7).
Y-+

Since H¥(4,7) is dense in H(4,z), we have
m U@, ;9 f—fIl=0 for all fe H(4, 7).
y-re
Hence we conclude that the mapping y— U{4, t;¥%)f is continuous.

Finally we shall prove the assertion 3}. Let f be a fixed element in H¥(4,7)
and B be an element in CY(G) satisfying f*8=f. Then we have

%—{[ U2, 7; exp tX)f1(@) — fla)) — XF(x) =j {%[ﬁ(exp tXy)— By - X8 (y)}f(wwdy

]

for all Xecg. Therefore we conclude that

lim »(—}[ U3, z; exp tXf)1) —f(x)>—Xf(x) =0.

t—g

The similar results hold for seminorms v, (beu).

§4.

In this seetion we shall recall the results on the asymptotic behaviour of the
certain eigenfunctions of 3 obtained by Harish-Chandra. Define the function &
on G by

5z :j' et H il

K

where xk=Fk,exp H(x, kinix, k), k.¢ K, Hiz, k)€ ar and n(x, k)€ N. Therefore by
Theorem 3 in [9) there exists an integer p=0 satisfying

ot 5 Slexp H) e (14 | H|9 7

for all He a, satisfying e, (H)=0 where |H|*=B(H, H).
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LEMMA 6. Let f be an element in Hi(d,7). Then we have

1) zf=y{z)f for all z¢3 and

2) 1S = eonst. Bz} for dll 2@,

This lemma is a direct consequence of the definition of Hi(2,7) and the above
estimation for 5{x).

Let u, be the subalgebra generated by (1, (m,),) in u. And let 3; be the center
of u,. Then for each z in 3, there exists a unique g,(2) € 3; such that

z—e Prop (2)oe € (Ou L.

Let z-»¢'(z) be the Chevalley isomorphism 3, onto I {a,) where I {a,) is the set of
all polynomials on a, invariant under the Weyl group of ((m,).,a.). Then p(z)=
{¢/op;}(2) for each 2 in 3.

Let W’ be a minimal invariant subspace (W'x0) of H(l,z) with respect to
the representation U4, 7)|K. Then U(4,7)|K induces an irreducible representa-
tion 7/ of K on the space W'. Let fi,fs...,fs (d’=deg’) be an orthonormal
basis of W’ and let wy, %.,..., % {d=deg ) be an orthonormal basis of W. Put
Sia)= A}:'z_‘,lﬂj(;v)u,. for each z in G,1<55d’. Let {W’, W) be the space of linear
mappix;és from W into W. Put f=(f;;). Then the linear mapping fin (W', W)
satisfies following conditions;

Al) flhaky)=clk)flx)e'(ky) for all ky, ky € K,

A2) zf=yx{e)f for all zin 3 and

A3) |fiz)} L const. 5(z) for all z in G.

Then we have the following lemma.
LeMMA 7.
1) There exists a unique function f° on My=AM with values in YW, W)

satisfying

lim |edtmesetlion) fim exp H)—f(mexp H)| =0

P+ (H) -0

and fO(mymm,)=c{m)f*(mc(m,) for all m,, ms€ M and for all me M,.
2) If zf=0 for an element z in 3, then p,(2)f°=0.
3) |flexp H)—e~rt® foexp H)| < const. |;Il
o.(H), He ag.
See P. C. Trombi and V. S. Varadarajan {18], Theorem 1 (6.1).
Let f° be the function in Lemma 7 corresponding to f. Define /7 (j=1,2,..,
d’'=degz’) by

e~ Pt for qll sufficiently large
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flx)u;  where fo={f1,).

M=

f?(x):‘ ]

i

COROLLARY TO LEMMA 7.

.

[.£;l?= const. limosL L% exp tHy) |2 e=<tdt.
et

&
ProorF. Define zi; by f,»(:ck):_ﬁzl rlk) file) (7=1,2,...,d’) for each k in K. By
the integral formula in the proof of Lemma 4, we have

A= lim e } } S | fulles exp tHy)ko) |2 ¢-<te2et o dtdlesdk,
= hmosS filexp tHk,) |2 et Fi—etdtdk,
£
= hmoss S Zrm Yok} fulexp tHy), falexp tHy) et ¢Ho +eddl
£t

£

= const. lim eS | filexp tH,)|2dt.

Hence we have our assertion.

§s.
Put ,={2]4 is an integral form on a, satisfying H (4, a)x0, (2, a,)=0 and

(2,8)>0 for each feP.}. In the following we shall z;lways assume that 2¢1,.
Let W', f and f° be the same as in §4. Choosing suitable bases fi, /s, ..., s of

W’ and u, Us,...,uq of W, we can assume that

"oy(m) i “oym)
dmy=| ™0 ] ™0
0o . 1 o

a,(m) a,(m) |

for all m in M where ¢; and ¢;’s are irreducible components of the representation
rI|M and 7’| M respectively.
LEMMA 8. 1) f° has the form
CuCyz--- Cy _V;(m) i
C2:Cyy -+ Cyy axlm
f('mexp tH): ‘21 22 .2 2( ).

-Crl 2" Crl _ 0':(‘"1;)
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Sfor all me M and Hcap where C;; is a constant matriz of type (dego,, deg o).
2) If we put F(t)=flexp tHy)—erHEo)f%exp tH,), then there exists a constant
C>0 such that

lF(t)lgC-—q—t:— Jor all sufficiently large t>0.

PRrooOF. Since 2) is a direct consequence of 3} in Lemma 7, we give a proof
of 1). Put n,=dego; (¢=12,...,d), nj=dego; (=1,2,...,d') and

Cus(t)Cie(t) - -~ Cuult)

Solexp tHy) =| CaCnlt) - Cald

_Crl(t)cﬂ(t) e Cn(t)

where C,; i3 an (n;,n;)-matrix valued function of . Remark that f°(m exp tH,) =
SelexptHym) for all t¢ R and m¢ M. By Shur’s lemma, C;; has the form

Cf,‘(t)I,,‘. if o;=0;
0 otherwise

Ca’j(t)"‘:{

where I, is the identity matrix with degree n;. We shall prove that Cl’s are con-
stants. For this purpose, we shall fix a pair (i,) such that Cf;%0. Let 2 be the
Casimir operator of G. Then 2 belongs to 3. Therefore by 2) of Lemma 7, we
have

R =20 (1 2+ 02— | 0]2)f°

where 20= Y «. Therefore we have
a>0

t(Q)C05=Cl[| 24 p|2— | 0]*]o;.
Caleulating /,(2), Ci; has the following form

Cli(t)=C(t)efst +Ci5{t)ebit

for some polynomial funetions C/}, Ci; with the degree <1 and a complex constant

B;. On the other hand, it can be proved that

lim ¢ S | Foexp tH) Pe-stdt < + oo
1]

540

{see Corollary to Lemma 7). Therefore we conclude that C&(t)’s are constants
and fB; must be a pure-imaginary or non-positive real number. Therefore by the
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uniqueness of f° in Lemma 7, we have
(1) C?;(t)=C¢“§e5“+C€,-e"’§"
where C,; are constants and B; is pure-imaginary.

Now we prove that 8,=0. Put &= HOH“' Then #i'{@? belongs to ;. There-

fore we have

(2) wle @ = (e @)= (T (4, @))*f*=0.

>0

Agsume that 8; in (1) is not zero and g,—p- be the highest weight of the repre-
sentation ¢;. Then we have

mip@)Choi={ T1 (v =1B*a0+ s, @) *Clio
where $£* is a real number (20). By the condition (2) and by the fact

H (\/:“iﬁ*ao"i“l‘i, a) #0’

a>0

we have a contradiction. Hence B; must be equal to 0. Therefore we have the
assertion of 2) in Lemma 8.

LEMMA 9. Let 2 be an element in 1, and = be an irreducible unitary repre-
sentation of K. Then we have the following assertion.

If If1=0 and f€ Hy(4, 1), then f=0 on G.

ProoF. By Lemma 2, it is sufficient to prove this lemma for the function f
in W/ (cHX(2,7)) where W’ is the same as in §4. Let f¢ W and | fi|=0. By
Corollary to Lemma 7 and by Lemma 8, we have ¢ % flexp tH,)—0 as t—+oo.
Hence f satisfies the assumption of Corollary to Lemma 68 in [10]. Therefore
there exists a regular integral form 4’ on a, (i.e. 2(®)%0) such that zf=y;(z)f
for each z in 3 On the other hand zf=yx.(2)f, z€3 and 2(@)=0. Therefore by
1o(e 1 (@%)) %0 and by x,(#"'(@%)=0, we conclude that f=0 on G. Q.E.D.

§e.

In the following we shall assume that G is one of the groups Spin(2l, 1), SU(, 1),
and Sp(l,1) ({=1). Let M, be the connected component of M containing the iden-
tity e. Then there exists an element 7 € M such that M=M,UyM, and r belongs
to KN exp+v —laz. Let 2 be an element in I, and put A_=4—p.. Then 4_is a
dominant integral form on a;,Cm. We define the irreducible unitary representa-

tion o,_ of M as follows;
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1. Let ¢, | M, be the restriction of a,_ to M,. Then 4. is the highest weight
of o, | M,.

2. If ye M, then o,_{y)=(-1)xthe identity operator.

REMARK. Exeept the group Spin (2,1)=8SU(1,1), M=M,. TFor Spin (2,1}, M=
{e,r}. In this section, we shall introduce the spherical funetions corresponding to
the representations in the prineipal series. Let F be the representation space of
o, . Let LI(K) be the set of all square integrable F-valued functions on K with
respect to the Haar measure dk of K. We define §{2.) by

={fec LIK)| flkm)=0,_(m )f(k) for all ke K and me M}.

For each s in C, we define the representation V(i_,s;z){z€ G) of G on the space
B4} by
[V, s;2)f k) =g~ merdia=Lin fg 1)

for all fch{i.) and zcG. Let o be an irreducible unitary representation of K
and let | V(i 8} K:w| (resp. [w|M:0,_]) be the multiplicity of o (resp. #,_} which
occurs in V(A.,s}| K (resp. o,_ in w|M).

LEMMA 10. Let o be the same as above. Then we have

Vi, 8) | K:o]=[w|M:0;_]
Jor all s im C.

ProoF. Since V(i.,3)| K= b]}r%ii ¢;_, we have our conclusion (see G. W. Mackey
[15)).

Let © be the same as in Lemma 10 and assume that [{w|M:¢,_}>0. Then by
Lemm 10, there exists a finite dimensional subspace Iy in §(4_) such that V(2. s)|K
induces the irreducible unitary representation « on {)’. Choose an orthonormal
basis v, Vs, ..., 7, (= deg &} and put

diile)=(V(2, s;a)v,v,)  (1=1,5Z09).
We define ¢9(s;2) (7=1,2,...,¢) by

Pils;a)= ééh(a‘)v.

Then by A. W. Knapp and E. M. Stein [14] (§§11,12,13), we have the following
lemma.

LuMMA 11, There exist the meromorphic functions I'5i(s) (4,§=1,2,...,q) on
entirve s-plane and the constants ¢, ¢,>0,0<d,<d, such that

1) [83(s; exp tH,)— Z[I'U&é)e ot p F(s)em Um0ty | Ko Grep!
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Jor all (s, t) satisfying d,< |Re(s)] =d, and t=0

2) I'fi(s) (4,7=1,2,...,q) are holomorphic on the domain {s< C|Re(s)| <d,
and sx0}

3) V@,V =1y (3¢ R, px0) is an irreducible unitary representation of G.

Let P,, (v —1p) be the contribution to the Plancherel measure by the principal
series representation VA,V —1p) (p€ R, =0 and A_ is the highest weight of the
representation o; ). Then

4) il | [ (v ZTp)|°= const. (P

D) 5y WV =1p))
5) P,, (0)0 and V(3,0) is reducible.
COROLLARY TO LEMMA 11.

1) T'H(s) are holomorphic at s=0.

2) 45005 exp tH)~| £ (T50)+ T0)e | geivest

(=

for all t20 and 7=1,2,...,q.
ProOF. By 2),4) and 5) in Lemma 11, we have the first assertion. There-
fore by 1) in Lemma 11 and the maximum principle for the function of s

#3(s; exp tH)— X (I5(s)e 0+ Dils)e 0= v,

we have our conclusion 2) in this corollary.
LEMMA 12, Put A,=2-+sp, for each s in C. Then we have

263(s;0) =1, (2)95(s; 2)
SJor all ze¢j and j=1,2,...,q.

PrOOF. We define V (i, s):Lf(:c) Vii_, s;x)dx for each sc € and f¢COG).
Then the linear form 7%-*: f— Trace V,{i_,s) is a distribution on G and satisfies
2T =y,,(2)T* for all z in j (see Theorem 2 in {7} and Theorem 3 in [8)). On
the other hand V{i_,v —17) (%0,7¢ R) is irreducible by 3) in Lemma 11. There-
fore we have

2%V —1;2) =2y iy (2)95(V = In; x)
for all z in 3and j (1<j<q). Moreover ¢%(s;z), 29%(s;x) and y,,(2) (z€ 3} are holo-
morphic on the whole s-plane. Hence by the analytic continuation, we conclude
that 2¢%5(s;z)=yx,,(2)¢5(s;x) for all ze3, s€C and j=1,2,...,q.

Let r be an irreducible unitary representation of K on the space W. Let us
suppose that [¢|M:0._1%0. Then by Lemma 10, there exists a finite dimensional
subspace %’ in 5(4A.) (which is isomorphic to W) such that V{(i_, s)| K induces the
representation ron §’. Weput W=1. Let u,, us...,us {d= deg ) be the ortho-
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normal basis in W. Put ¢,(s;z) by
b8 2)=(V(2., s;2)u, u))

for each 7,7=1,2,...,d. We define ¢; by
a
$i(s;2)= X bij(s;xhus.

gzl

LEMMA 18. Let 4 be an element in I, and ¢ be an irreducible unitary repre-
sentation of K on W. Assume that [t M:.0:.1%0. Then ¢; (%0) belongs to H(2, 1)
Jor all =1,2,...,d.

Proor. Using Corollary to Lemma 11, we have p(¢;)<+oc0. On the other
hand by Lemma 12, ¢, (j=1,2,...,d) are both K-finite and 3-finite. Hence we can
choose a function B in C.(G) satisfying ¢;+#8=¢; for any fixed 5. Thus we have

bl [eteo) < S 1Bl 119wy} | o# raeee 400 dy
G

<) f b Bl |t leody < oo
G

for all b in 3. Hence we have y,(¢;)<-+oo. Therefore we conclude that 0xg;
belongs to H(4,7) for all j(1=<5<5d).

COROLLARY TO LEMMA 13. Let 2 and  be the same as in above lemma. Then
we have (U4, 1) | K:7]%0.

Proor. By Lemma 13, ¢, (1<j<d) are in H(4,7) and ¢,%0. Since E(r)¢,;*0,
we conclude that {U(4, 7) | K:z]%0.

LEMMA 14. Let us suppose that [t|M:0; 1=1. We define ¢. by

d
Pelr) = Elf;‘m(O;x).

i=
Then we have the followings.
1y dzj be(ekyk N dk=¢:(x)¢:(y) Sor all z,y€G.
K

2 Put [(y):kﬂ SS(.S"’:(x)?:S;(i"i/) e~cdwoody  Then we have

=dx lime 'G % 6B fale e da.
3 dgli=ILe) for all j=1,2,...,d.
8 gl)=d T (U248, 2181
5) ¢ulx)=(Ud,z;2)¢;, )Gl * Sor all i=1,2,...,d.
Proor OF 1). By Lemma 10 and by our assumption, we have
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(VA 00| K:zl=[c|M:0,_1=1.

Therefore 1) is proved by Theorem 10 in [6] (R. Godement).
PrROOF OF 2). By 1) in this lemma, we have

d21ly) =dz limeS 5 (@) BT et o0
GJK

£—+0

) hmef | () omsetemoly

E—~40

=1I(e) ¢(y).

On the other hand

Iy)=d?lim sj Y ¢ii(@)8,;(wy) et o) dy

€40 G 4

=tim {[ 2 ek e s e somda)
e~+0 K %,3,m.n

where
(V{(2-, 0; kx)us, u,)

It

( V('z—l 0) x) U,y V(Z", 0; kﬁl)ui)

Tk VAL, 05 2)us, uy)
k) Pi(@).

1

i

“M iMe

By Schur’s orthogonality relations for the representation r={(zr,;) of the compact
group K, we have our assertion.
PrOOF OF 3). For any fixed j, we have

6= lime | 3 Igie)iteecnvda

=1imej > 6 ¢,.j(/,:x)§5;;(ka)'e—ea<=o-°)dk>da:
G K

E->40 1

= Hm6§ 2 (j Tmjlk e )dk)¢|m( T)Pin(x)e =0 gy
E—+0 G 1%, m ¥4

=tim £[ = igntmitesed
e>40

=d2](e).

PROOF OF 4). By 2) and 3) in this lemma, we have
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wwwdjﬂ Iim S Z (/5” 2 ¢” xy) ~ed (20,03 ] s
Tle) c40 Jg 47

=d L (U 75980 $16:072

PRrROOF OF 5). By 4} in this lemma, we have
AV, 0s 2k, wi) = (U, 7y ak)ds, gl gall 2

Hence we have
= (VY L,O ) Ui, Us)

S VA, 052k u;, u;idk

e

,_

d
S % culbi (U, 5204, 816, 1-“dk
2’731)9)2 l’{l’)zn_ QED.

§7. A proof of Theorem 1.

Let z be an irreducible unitary representation of K. Let us assume that
{z|M:0;_1=1. Then by Corollary to Lemma 13, we have [Ui1, ) K:7]%0.

Let W’ be a subspace of H(Z,z) on which U(2,7)|K induces the representa-
tion ¢ of K. Let f and f° be the same as in §6 corresponding to W’. Then we
have the following theorem.

THEOREM 1. Assume [t|M:0,_1=1 and let f° be the same defined as above.
Then there exists a constant C satisfying

0 0 07
Sexp Hm)=Cl0 o, (m) 0
0 0 0

Jor all Heap and me M.

REMARK. The existence of = satisfying [¢r|M:¢,_]=1 will be showed in §9 for
any fixed a.

First we introduce the necessary notations. Let A be the Cartan subgroup
of G corresponding to a. We define the function &, (€ 3) on A by

Adh Xo=&. ()X, for all & in A.

Let o,_ be the irreducible unitary representation of M, with the highest weight
p-. We extend the representation o,_ to M by os..(r) =the identity operator for
7¢ M,. Define the function &_ on A by
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Ad Bvo_=8&r_(Wve- for all b in A;

where v, is the highest vector of a,_. (If M=le,7}, we put §,_=1.) We define
the function £, on 4 by

Eplhhy=8,_th.) where h_-¢A; and h.C Ap.
Therefore we define the function 4. on A by

40 =) T1 (1=Eah™)

for all h in A.

Proor oF THEOREM 1. By Lemma 11, f has the form f=(C,,0,) where ¢; (1Zj557)
are the irreducible components of the representation ¢{M and C;; is a constant
matrix with deg ¢; rows, deg g; columns for 7,5=1,2,...,7.

Suppose that C;;20 for some 7 and j. Then C;; is a scaler matrix with deg o;.
Put £,k =4_(h) Traceo;(h), hc A. Then by the conditions p'op(2)=p(z) and
(2 =72 f° (z€3), we have

(%) ¢(2)6 =1, (2)E;

for all z in 3. Therefore it is sufficient to prove that ¢;=¢, . For this purpose,
we shall consider separately the groups Spin (21,1), SU{, 1) and Sp{, 1).

(1) Let G=Spin (2l,1). Then dima=Il. Let e;e,...,¢ be an orthonormal
basis in the I-dimensional Euclidean space R'=+"—1la,+az. Then the root system
Y can be identified with the set {x(e;xe)(1=i<jsl), e (1Sigl)l. Let

P={e;te; (15i<isl), e (1<)}

be the positive root system in 5. Then we have ¢,>e,>> -+ >¢ and ¢,=the sin-
gular real positive root.
We define @, (1<d<l) in I{a,) by

Q= 2 (HiH,,--- H;))?

158, <i, <o <iy Bl A
where ¢,(H;)=6;; and H,¢ R'. Put i=me;+mee+ --- +me (€1). Then m,;=0,
my>my> - -« >m;>0 and all of m,’s are integers. Let 1;—p_ be the highest weight
of the representation o; of M. We put g=mie,-+me,+ - -+ +mie,. Then by (x)
we have the following;

(ma )2 (ma,)? - -+ (my )= 2z (mi )2 (miy)? - - - (mi)?
184, <ip< - <iy Sl i) <ip< iyl

for all d (1<dxl). Therefore we have the identity
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l ’
Ul (U~ (m;)?) = ‘1}1 (u—{mi)E).
Hence we conclude that m;=mi(15i<l) and o;=0,_.

(2) G==SU,1). Then dima=I. Let e,e¢,...,e. bean orthonormal basis in
the Euclidean space R'*!, Then the set of positive root system P is identified
with the set fe;+e;]1<i<j<I+1}. Therefore we define the polynomials Q, (1<d<
1+41) invariant under the Weyl group of (a,,a.) by

d215€1<1’2<;<1‘¢£!+1 HoHiy oo Heye
In this case e¢,~e,,,=the singular positive real root. By the same methed as in
Spin (2, 1), we conelude that ¢;=a,_.

(3) G=Sp(l,1). In this case dima=I, the set of all positive root P=
{eite; (129<j<l), 26 (1=1<0)} and the singular real root a, (¢ P)==¢,+¢,. Using the
same way as in the case (1), we have our conclusion. Q.E.D.

§8. Main theorems,

Let ay be the singular real root as in §2. Then we have the following theorem.

THEOREM 2. Put ,={2|2 is an integral form on a, and satisfies (2, ay) =0,
n‘gﬁ[}a (4, 0)%0, (,)>0 for all a« in P.}. Let 2 be an element in [, and = be an
irre?iuc.ible unitary representation of K on the space W. Let o,_ be the irreduci-
ble representation of M with the highest weight A_=2—p_ satisfying o, _(r)=—11if
M is not connected (remark y € KN exp (V' —1ag)). Let us assume that [r|M:o, 1=1.
Then the representation U(d,t) of G on the space H(R,7) is an irreducible unitary
representation.

ProOF. Let H’ be a non-zero closed invariant subspace of H(Z,z) and g be a
K-finite element in H’ satisfying |lgl%-0. Then there exists z, in G sueh that
glxe) 0. Since [U(4,t; o)glle) =g(xe) %0 and U2, t;x,)g€ H’, we can assume that
g€ H', gle)x0. Then by the fact [E(z)glle)=gle) and by Lemma 9, we have H.=
E()H'={0} where E(c) is the projection operator defined as in p.7. Let oi(x)=
é‘¢e;(33)%¢e (1=j=d} be the same as in Lemms 12 where u,, %,,..., %, is the ortho-
nBrmal basis in W. We put é{x)=(4;{z)). Then by Lemma 8, there exists a
unique matrix-valued function on M,, ¢°=(¢?,) corresponding to ¢. Let Juto. s Sa
be the orthonormal basis of an irreducible component in H; satisfying U4, r;k)f;=
g}lrﬁ(k)f.- for all & in K where r,; are defined by r(k)ujzér.-,-(k)u.-. We put
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4
fley={f;{x)) where f;; are defined by f,(x)= Zjlf,‘j{m)u.«. Let £°={f%,) be the func-
tion as in Lemma 8 corresponding to f. By Theorem 1, there exists a constant
C such that

Cfoimexp H)=¢"m exp H)
for all me M and Heai. Therefore by Corollary to Lemma 7, we have
ICfi—¢,1=0

for all j=1,2,...,d. Using Lemma 9, we conclude that Cf;=¢; for all Jisrsd).
Hence we have ¢,¢ H'. Considering orthogonal complement of H' in H(A, ), we
conclude that H'=H(4,7) and U(4,7) is irreducible.

THEOREM 3. If 2 and v are the same as in Theorem 2, then U(i,7) is a
proper subrepresentation of the principal series representation V(A.,0).

PROOF. By 5) in Lemma 14, there exist w€B(2.) and ve H(2, ) (430, v0)
such that (U2, z;2)v,2)=(V(2_,0;z)u, u) for all x in G. Therefore U(4,7) is equiv-
alent to a subrepresentation of V(2.,0) (see [5]). Hence 5) in Lemma 11, and by
Theorem 2, we have our assertion.

REMARK. Let W; be the Weyl group of G. Then the order of W, is equal
to 2. By F. Bruhat ({3]), the cardinal number of the irreducible components
occurring in the representation V(i_,0) equals to 2 or 1.

§9. Appendix.

In this section, we shall state the existence® of r satisfying ¢! M:0, ]=1 for
any fixed 2 in I,. '

Let b be a Cartan subalgebra of g satisfying a,c6Cf. Then there exists
an element in G, such that Ad(y)b,=a, and Ad(y)H=H for each H in a;. We
define a¥ (@€ 3) by a¥(H)=a(Ad(y)H) for all Hcb,. Identifying o with «, 3¥
is identified with 3. Let P, be the set of all compact positive roots in 3. Then
we can assume that P_.CP,. Let ¢s be the same as in the proof of Theorem 1.
Then we can assume the followings;
b=+—1R' for the groups Spin(2l,1) and Sp(, 1),

* Those results have been obtained in [2] (Boerner), [20] (Lepowsky) for all real rank one
semisimple Lie groups.
The results in [20] is pointed out to the author by A. Knapp and N. Wallach.
Using this, we can apply the arguments in this paper to the exceptional real rank one
ease (see a forthcoming paper).
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b={He vV —1R" e (H) +e(H)+ -+ +e(H)+e.(H)=0} for the group SUi, 1).
(1) When G= Spin (21,1), a;=RY —1H,+RY —~1H,+ --- +RV —1H where H;
(1<i<l) are defined by e;(H)=d;; 1<j<!, H;cR'. Fix an element / in [, and

!
put Ao=i—p_ =3 me,. Then m=0,mzmsz --- =m;=0 and all of ms are
LEED S
13
strictly half integers. Let p= ¥ p;e; be an integral form on b satisfying g, =zm.=
=1

P2z My v M Z Yy == % We put p,=p and p-=pe;+ s+ - - +m-1e5~1~%«ez-

LEMMA 15. Let =, and z_ be the irreducible representations of K with the
highest weight 1. and p. respectively. Then we have [z |M co; J={c.| Mo, _]J=1.

For a proof of this lemma, see |2] (Boerner).

PROPOSITION. Let v, and z. be the same as in Lemma 15. Then we have
VA, 0)= U2, z.)D U4, .) (direct sum).

Proor. By the remark after Theorem 3 and by 5) in Lemma 11, the number
of the irreducible components in V{i_,0) is equal to 2. On the other hand by
Theorem 3, U(%,7,) and U(Zc.) are contained in V(4.,0). By T. Hirai [12],
[U&, 7)1 K:7_1=0, [U(Z,z.)| K:t,]1=0. Hence U(4,t,) and U(4,r.) are inequivalent
to each other. Therefore we conclude that V(i_,0)=U(4,z, QU ).

(2) Let G=8U(,1). In this case a,={H¢cb|e,(H)=e,,(H)}, P={e;~e;|251<
jl+1) and Po=le;—e;1250<gsl]. Let ;L—:i‘é 1:¢; be an integral form on b satis-
fying po>p> -+ >4,>0. And let 7., be the irreducible representation of K
with the highest weight z#—p, where pk=—21~ 5 a. We put

o I’k

Al ={v={vs,vg, ..., 0) | t2Z0 = - -~

=u,>>0 and all of v.’s are integers}
and

1
Vn':“‘i{(#rHJﬁ‘ R N Rl R P ‘H’l)—2Uu+'%‘(l+1)}(ex+ez+x)

+ (v =yt (v —v)es+ - - + (o = v)€-r.
LeMMA 16. Let G=SU, 1) and 1=22. Then we have

Trace 7 (exp H)= 3 Traceo.»_(exp H)

vgt ALt
for all H in ay where o,-p_ is the irreducible representation of M with the
highest weight vy—p_.
3
COROLLARY TO LEMMA 16. Let 2 be an element in l,. We put i= X mue,.
i=1
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Then m,=0,m;>my> -+ >m,;. Let p; 2<i<]) be -1 integers satisfying

Mo+ P2 Mo+ D> M+ D2 Mg+ P> -0+ > Wy b P 2Mpey+p >m -+ >0,
!
Put p= _}::Iﬂiei where f=m;+D, Ha=M-y+ Doty ...r =Myt o,
===+ 1) +2p—[(pe—p) +(ps—p)+ -« +(De1— D).

Then we have [zu.o | M:0,_1=1 where zuo, is the wrreducible representation of M
with the highest weight p—p;.
]
REMARK. Let 2= ¥ m.e; be an element in [, satisfying m,>my> .-+ >m;>0.
i=1

We put pg= ;:jlu;e,; where [J):_‘%’“(l‘é‘l),flg:mg, py=mg -+, y=m. Then U4, 74p)
is equivalent to a representation in the “limits of holomerphic diserete series”
which is constructed by A. W. Knapp and K. Okamoto in [13];

Put A=pg—p where pzéagoa‘ Then A is a dominant integral form on 0.
Moreover A satisfies that (4-4p,a;)=0. Let 7, be the irreducible representation
of K with the highest weight 4. Since

At or=24—(0—p;)
=Mylr+ M3+ -+ +m,e,-—%(l+1)e,
=p
we have [z 4| K:c0;_1=1 (see Corollary to Lemma 16). Therefore U(4, =) (= U(4, 74-0,))
is a unitary representation which is equivalent to the representation U, constructed
in [13].
(8) Let G=Sp(,1). Then a,={H¢cble;(H)+e,(H)=0},
Pi={e;xe; 2=51<g=l), 2e; (1sis)}
and
P—:{e,’ie,‘ (3=<;74<j§l), €1 —€a, 26,} (3§’L§l)}.
!
Let = 3 me; be an integral form on b satisfying s> #> « -+ >,>0. Then all
=1
of u;’s are integers. We put 2p,= Zoa. Then we have the following lemma.
a>

LEMMA 17. Let Z be the set of all integers and wuo, be the irreducible repre-
sentation of K with the highest weight p—py. Then we have

4{exp H) Trace =, (exp H)
= ! sign (P — ) (Ps—t5) * - (231-2“‘/11)[(212;1)11‘“(zxigl)uﬂq

Coilgeer s —g
PoiPgr--s P17
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4= - 5= 9 5=
Ade— 7% b 2 e N B

A2y
prodRn WYy b b D 125 TR b LR A1 7

(A= expe (H),1=1,2,...,1) for ol H in a; where X' is the summation over the

set of all elements (Ps, Doy ..y Pis s Tas . o . Q1) € Z871 satisfying

[ 2= Qal St = pa—1<Do+ St H 13— 1,

| pa—as] Slpp—pal = 1<ps+ @SSP+ pa—1,...,

[Dr =@ Sl — ] =1 <P+ 1 S+ 14— 1,
I = <prE Pyt~ 1.

Proor. Let » be an integral form on b. We define the function on A’ (which
is corresponding to b) by &,(exp H)= expn(H) for all H in 6. Put 4, on A’ by
Aib) =&, (b) TI (1—Ea(b7")), be A’.

B aer,

Then by Weyl’s character formula, we have 4.(b) Trace wu,,(b)= ZW e(s)€,,{b) where
se Wg

Wk is the Weyl group of the pair (£,5,) and &(s)= sign(s).

Since

ar={H=+"~10,(e;~¢,) +v —10:¢,+ - -- +v —18,¢,|0,€ R, 2<i<l),

dulexp H)=(35" = 23) 1T (Rt = 2= 2) A-(exp H)

128

for all H in a; where ;= expe;(H) (1<il).
Therefore if we prove the following lemma, we have our conelusion.
LEMMA 177, Let ng, s, ..., 0 be -1 positive integers. Then we have

AT ek S e S b SN (1 T P
% - n ~wnl
D’n—.‘ Xga——xg 8 RSS_A:)
Apt— 27" Al Ag ™ e AN

= 2/ sign{e—ns{pr—ns) o (Pre—n) X
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Ae—25% o %
208370

X T (R 25— 2,— 27 ) (A5-1201)

=8

. . 18 Ly -
A1 250100 20 1...,2*:1 1

where the summation 3’ runs over the set of all (ps, Dy ..., Dim1s To, Gy - « - » Qim1) € Z32
satisfying
1D~ G| £ na—7s] = 1< P+ g SMe 4+ 15— 1, ...,
iD=l Slpe—m ! 1<+ Epr—2 + 0 — 1.
We shall prove Lemma 17’ by using an induction for I. If [=3, then our
assertion is easily proved. Let us assume that Lemma 17’ is satisfied for [—1.
We define D(j,,J;) and D*{(j,, 5s) (257,<4;<1) by

n —1n, 37 —n,
| R -
Digoga= * O
AT3 AT i J e
453 2123 213 '233
£y -n n - P .t
Gi—Aigt Gi—Aigt e Aif=2504
A5 AT A" 276 ... AN 2576
LA O
b . .
X3 -R b3 -7
B B

where 2<7,<j§s< - <4;<l and any one of 7,,7%,...,7 are different from j, and j,.

Then we have
D= ¥ (=179 9D(55:) D* (52, Js)
257,<igsl
= o T (D A 5 By (R = iy (1))
X sign (1, —n3) D* (42, Ja)

!
= X’ { p ('22+Zz~_1—25“2;1) sign (n,—n,)

Poidg \i=38
X[ X (Ap—2772)(A2— 2, D¥(g, t)(—1)HHtive

25t<j

- X (A D, O~ D)

12t>7
L . .
=Y ¥ (A=A (—1)7* sign (ng—ng) {2+ ()7~ 2= (4) ™)
Pgi0p =8
PR R ,2;?2_1_.‘1]7_? 1§il_g;ﬁ R L

Py

LTV a7 RO L7 S huk? S 7 WS b SO L7 Sy 't
-2, VSCEY Ui S L R i R

Apt—Az ™M A=A
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where Y’ is the summation over the set of all (p,, q,) € Z? satisfying
| P2z = | 12— 1] —1< P+ En,+n,—1.

Hence by the assumption of the induction, we have

! . - - - - -
D=5 Y (A=~ 1) sign (ny—ny) (444" —2,— 45 1)

Youlg 373

.
P TN R A=A A7) sign (pa—na) (s =) <+ (Droa—)
NN T S TRRRRY FI W R

"2'!13""-?1_,1 =il

4 - q ~qg gy __3=93 .., 393_ 779
A2y e '2]“11'“'2'5-? 4 4744 AP
X : . : : (AB-1— 25 71-1)
YIS Sy A8 RS Ty i
!
— \ - -1
= 2 IT (A2 —A;—4; Vo sign (me—ma){pe—14) - (Prop—11)

ParPyge--aPpoy 728
Gyelys -y

25 7% ... Jfr 2
2250 . B
(ABt-1— 25711y,

Aq-1 - 37 %1 A1 27U

Henece we have our assertion.

COROLLARY TO LEMMA 17. Let A be an element in {,. Then 1 has the form A=
mie,—e;) + Myes+Mmeeg+ - -+ +mue, m>0 and my>m> - >m>0,mxm; 325£1),
m and m; (3<j<l) are integers. We put my=+co and m,=0. Then there

erists a unique k (I+12k=8) such that m<m+I—k+1<m.,.

Put po=my+1, py=m+1, . .0, hoa=mp 41, gy =mbl-k+1, ge=my, =

12
Mipats ..., y=m;. Let u= Z pei+e, and let 7., be the irreducible representation

of K with the highest weigﬁt ¢—p;. Then we have [z, | M: 0, ]=1. By Lemma

17, we have our conclusion.
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