On unitary representations of exponential groups

By Hidenori FUJIWARA

(Communicated by N. Iwahori)

§ 0. In this paper, one theorem about unitary representations of exponential groups (see the definition in § 1) will be proved. It gives an affirmative answer to an open problem in Quint [7] concerning irreducibility and equivalence of holomorphically induced representations (see below), under certain conditions in the case of exponential groups.

Auslander-Kostant [1] extended the Kirillov theory for nilpotent Lie groups to solvable Lie groups. The following is one of their main results.

"Let G be a simply connected solvable Lie group with Lie algebra $\mathfrak g$ and $\mathfrak n$ be a nilpotent ideal in $\mathfrak g$ which contains $[\mathfrak g,\mathfrak g]$. Given an integral form $f\in\mathfrak g^*$, the corresponding character is denoted by $\eta_f\colon G_f\to T$. Then, if $\mathfrak h$ is a strongly $\mathfrak n$ -admissible positive polarization of G at f (hence $\mathfrak h$ satisfies the strong Pukanszky condition), the holomorphically induced representation $\rho(f,\eta_f,\mathfrak h,G)$ is irreducible and is independent (up to unitary equivalence) of $\mathfrak h$ and $\mathfrak n$."

Duflo [6] generalized this theorem; if π is a nilpotent ideal in g such that g/π is nilpotent, the same conclusion holds.

But these results are not so complete as Kirillov's result for nilpotent Lie groups. If we consider a polarization $\mathfrak h$ which is not necessarily strongly n-admissible for any n as above, many problems come to arise. For example, let $\mathfrak h$ be a positive polarization of G at $f \in \mathfrak g^*$ which is not necessarily strongly admissible for any n of above type. 1) When is the space of $\rho(f, \eta_f, \mathfrak h, G)$ not zero? 2) When is $\rho(f, \eta_f, \mathfrak h, G) \neq 0$ irreducible? 3) Is $\rho(f, \eta_f, \mathfrak h, G)$ (supposed to be irreducible) independent of $\mathfrak h$?

We give an affirmative answer to the last two problems under certain conditions; namely, if G is exponential and if \mathfrak{h} satisfies the strong Pukanszky condition (see the definition below), then $\rho(f,\mathfrak{h},G)=\rho(f,\eta_f,\mathfrak{h},G)$ (supposed to be non zero) is irreducible and independent of \mathfrak{h} , and actually is equivalent to the Kirillov-Bernat representation associated to f.

In preparing this paper, I have received many advices from Professor M. Saito. I would like to express my cordial thanks to him. I must be also grateful to

Professor M. Vergne and the referee to whom I owe many improvements of the first version of the manuscript.

Notations. In this paper, we have the following conventions.

- 1. The letter R (resp. C) designates the field of real numbers (resp. the field of complex numbers).
- 2. Lie groups (resp. Lie algebras) are always of finite dimension over R (resp. R or C).
- 3. Let E, F be sets, $\phi: E \rightarrow F$ a mapping and let $A \subset E$, then $\phi \mid A$ stands for the restriction of ϕ to A.
- 4. If $\mathfrak g$ is a Lie algebra, we denote its dual space by $\mathfrak g^*$ and for $f \in \mathfrak g^*$, we define an alternating bilinear form B_f on $\mathfrak g$ by $B_f(X,Y) = \langle f,[X,Y] \rangle = f([X,Y])$ for $X,Y \in \mathfrak g$. If $\mathfrak a$ is a vector subspace of $\mathfrak g$, we define $\mathfrak a^{\perp,\mathfrak g^*}$ and $\mathfrak a_f$ respectively by $\mathfrak a^{\perp,\mathfrak g^*} = \{f \in \mathfrak g^*; \ f | \mathfrak a = 0\}$ and $\mathfrak a_f = \{X \in \mathfrak g; \ B_f(X,Y) = 0 \ \text{for all } Y \in \mathfrak a\}$. When there is no danger of confusion, we write $\mathfrak a^\perp$ instead of $\mathfrak a^{\perp,\mathfrak g^*}$. A subspace $\mathfrak a$ is called isotropic (with respect to B_f) when $\mathfrak a \subset \mathfrak a_f$. The set of subalgebras of $\mathfrak g$ which are isotropic subspaces will be denoted by $S(f,\mathfrak g)$ and the subset of $S(f,\mathfrak g)$ which consists of all maximal isotropic subspaces will be denoted by $M(f,\mathfrak g)$. A subalgebra $\mathfrak h \in S(f,\mathfrak g)$ belongs to $M(f,\mathfrak g)$ if and only if $\dim \mathfrak h = \frac{1}{2}(\dim \mathfrak g + \dim \mathfrak g_f)$.
- 5. If V is a vector space over R, V_c is its complexification: $V_c = V + iV$. For $X \in V_c$, $X \to \overline{X}$ denotes the conjugation with respect to V. If W is a subspace of V, $\overline{W} = \{\overline{X}; X \in W\}$.
- 6. Let G be a Lie group with Lie algebra g, then G acts on g^* by the coadjoint representation and its action will be denoted by $a. f(a \in G, f \in g^*)$.
 - 7. The unitary equivalence of representations will be denoted by \simeq .
- § 1. We define at first some concepts following Auslander-Kostant [1]. In this section, unless otherwise stated, G will be a Lie group with Lie algebra g. Let $g_C = g + ig$ and consider $f \in g^*$ as a complex-valued linear functional on g_C , then B_f is considered as an alternating bilinear form on g_C .

DEFINITION. A complex subalgebra $\mathfrak{h} \subset \mathfrak{g}_c$ is called a *positive polarization* of G at $f \in \mathfrak{g}^*$ if \mathfrak{h} has the following properties:

- 1) h is a maximal isotropic subspace of g_c with respect to B_f .
- 2) $\mathfrak{h}+\mathfrak{h}$ is a subalgebra of \mathfrak{g}_c .
- 3) It is stable under Ad_GG_f , where G_f is the isotropic subgroup of G at f.
- 4) If $X \in \mathbb{N}$, then if $([X, \overline{X}]) \ge 0$.

Let g be a Lie algebra over R and let $f \in g^*$. A positive polarization of g at

f will mean a positive polarization at f of the simply connected Lie group with Lie algebra \mathfrak{g} . We denote by $P^+(f,G)$ the set of positive polarizations of G at f. Definition. For $\mathfrak{h} \in P^+(f,G)$, we define two subalgebras of \mathfrak{g} by $\mathfrak{b} = \mathfrak{h} \cap \mathfrak{g}$ and $\mathfrak{e} = (\mathfrak{h} + \overline{\mathfrak{h}}) \cap \mathfrak{g}$.

Let $\mathfrak{h} \in P^+(f,G)$ and let \mathfrak{b} and \mathfrak{c} be defined as in the above definition. Let D_0 (resp. E_0) be the connected Lie subgroup of G with Lie algebra \mathfrak{b} (resp. \mathfrak{c}). Since \mathfrak{h} is stable under $\mathrm{Ad}_G G_f$, it follows that D_0 and E_0 are normalized by G_f , so that $D=G_fD_0$ and $E=G_fE_0$ are subgroups of G.

DEFINITION. We shall say that $\mathfrak{h} \in P^+(f,G)$ satisfies the *strong Pukanszky* condition if E, f is closed in \mathfrak{g}^* , and that \mathfrak{h} satisfies the *weak Pukanszky condition* if D, f is closed in \mathfrak{g}^* , or equivalently, if $f+\mathfrak{e}^\perp \subset O(f)$ (See [3]).

The strong Pukanszky condition is the Pukanszky condition in the sense of Auslander-Kostant [1], and the weak Pukanszky condition is the Pukanszky condition in the sense of Bernat and others [3]. The former is effectively stronger than the latter. Next we define the concept of an exponential group.

DEFINITION [5]. Let G be a simply connected solvable Lie group with Lie algebra \mathfrak{g} . G is called an *exponential group* if the exponential mapping $\exp: \mathfrak{g} \to G$ is surjective.

As to other equivalent definitions of an exponential group, see [5] and [8]. Henceforth in this paper, G is always an exponential group with Lie algebra g.

Let $f \in \mathfrak{g}^*$ and let $\mathfrak{k} \in S(f,\mathfrak{g})$, then $\chi(f,\mathfrak{k})(\exp x) = e^{if(x)}(x \in \mathfrak{k})$ gives a character (1-dimensional unitary representation) of the connected Lie subgroup $K = \exp \mathfrak{k}$ of G corresponding to \mathfrak{k} . We denote by $\hat{\rho}(f,\mathfrak{k},G)$ the unitary representation $\inf_{K \nmid G} \chi(f,\mathfrak{k})$ of G induced from $\chi(f,\mathfrak{k})$, by $\hat{\mathcal{H}}(f,\mathfrak{k},G)$ the representation space of $\hat{\rho}(f,\mathfrak{k},G)$ and by $I(f,\mathfrak{g})$ the set of $\mathfrak{k} \in S(f,\mathfrak{g})$ such that $\hat{\rho}(f,\mathfrak{k},G)$ is irreducible. We have $I(f,\mathfrak{g}) \subset M(f,\mathfrak{g})$ (see [2]). Let O(f) be the orbit through f with respect to the coadjoint representation of G and let $\hat{\rho}(O(f))$ be the equivalence class of irreducible unitary representations of G corresponding to O(f) in the sense of Kirillov-Bernat [2].

REMARK. If $\mathfrak{k} \in M(f,\mathfrak{g})$, then $\mathfrak{k}_c \in P^+(f,G)$. The following conditions are equivalent: 1) $\mathfrak{k} \in I(f,\mathfrak{g})$; 2) \mathfrak{k}_c satisfies the weak Pukanszky condition; 3) \mathfrak{k}_c satisfies the strong Pukanszky condition.

§ 2. Let G be an exponential group with Lie algebra \mathfrak{g} and let $f \in \mathfrak{g}^*$. If $\mathfrak{h} \in P^+(f,G)$ satisfies the strong Pukanszky condition, the holomorphically induced representation $\rho(f,\mathfrak{h},G)$ can be constructed from \mathfrak{h} just as in [1], since every $f \in \mathfrak{g}^*$

is integral and the corresponding character η_f of G_f is uniquely determined by the simply-connectedness of G_f . The representation space of $\rho(f, \mathfrak{h}, G)$ will be denoted by $\mathcal{H}(f, \mathfrak{h}, G)$. Now we prove the following theorem.

THEOREM. Let G be an exponential group with Lie algebra \mathfrak{g} , and let \mathfrak{h} be a positive polarization of G at f satisfying the strong Pukanszky condition. If $\mathscr{H}(f,\mathfrak{h},G)\neq\{0\}$, then $\rho(f,\mathfrak{h},G)$ is irreducible and $\rho(f,\mathfrak{h},G)\in\hat{\rho}(O(f))$. In particular, $\rho(f,\mathfrak{h},G)$ is independent of \mathfrak{h} .

PROOF. The theorem is trivial when dim G=1, so we prove it by induction on dim G, and assume dim G=n.

Case 1. There is an ideal $a \neq \{0\}$ in g such that f(a) = 0.

Let $A = \exp \mathfrak{a}$, $\tilde{G} = G/A$ and let $\pi: G \to \tilde{G}$ be the canonical projection. Let $\tilde{\mathfrak{g}}$ be the Lie algebra of \tilde{G} and let $d\pi: \mathfrak{g}_c \to (\tilde{\mathfrak{g}})_c$ be the differential of π . Now we consider the exact sequence of exponential groups $1 \to A \to G \xrightarrow{\pi} \tilde{G} \to 1$.

Let $\tilde{f} \in (\tilde{\mathfrak{g}})^*$ be such that $\tilde{f} \circ d\pi = f$ and let $\tilde{\mathfrak{h}} = d\pi(\tilde{\mathfrak{h}})$. Since $\tilde{\mathfrak{h}} \supset \mathfrak{g}_f \supset \mathfrak{a}$, it is clear that $\tilde{\mathfrak{h}} \in P^+(\tilde{f}, \tilde{G})$ and $(\tilde{\mathfrak{g}})^*$ is naturally isomorphic to $\alpha^{\perp,\mathfrak{g}^*}$, so that $\tilde{\mathfrak{h}}$ satisfies the strong Pukanszky condition. So by Proposition I.5.13 in [1],

(1)
$$\rho(\tilde{f}, \tilde{\mathfrak{h}}, \tilde{G}) \circ \pi \simeq \rho(f, \mathfrak{h}, G).$$

Hence by our assumption, $\mathscr{H}(\tilde{f},\tilde{\mathfrak{h}},\tilde{G})\neq\{0\}$. Since $\dim \tilde{G}<\dim G$, the induction hypothesis implies that $\rho(\tilde{f},\tilde{\mathfrak{h}},\tilde{G})\in\hat{\rho}(O(\tilde{f}))$. That is, there is an $\tilde{\mathfrak{h}}_0\in I(\tilde{f},\tilde{\mathfrak{g}})$ such that

(2)
$$\rho(\tilde{f}, \tilde{\mathfrak{h}}, \tilde{G}) \simeq \hat{\rho}(\tilde{f}, \tilde{\mathfrak{h}}_0, \tilde{G}).$$

Let $\mathfrak{h}_0 = d\pi^{-1}(\mathfrak{h}_0)$. Then it is obvious that

(3)
$$\hat{\rho}(\tilde{f}, \tilde{\mathfrak{h}}_0, \tilde{G}) \circ \pi \simeq \hat{\rho}(f, \mathfrak{h}_0, G) \text{ and } \mathfrak{h}_0 \in I(f, \mathfrak{g}).$$

From (1), (2) and (3), $\rho(f, \mathfrak{h}, G) \simeq \hat{\rho}(f, \mathfrak{h}_0, G) \in \hat{\rho}(O(f))$.

Case 2. There is no ideal $a \neq \{0\}$ in \mathfrak{g} such that f(a) = 0. This case is divided into two subcases.

i) $e \subseteq g$. We choose and fix one complementary linear subspace m of e in g, and let $j: e^* \to g^*$ be an injection such that j(h)(x) = h(y) for $h \in e^*$ and x = y + z with $y \in e$, $z \in m$. From now on, we identify e^* with its image $j(e^*)$, so that $e^* \subset g^*$. Let $\pi: g^* \to e^*$ be the restriction mapping such that $\pi(l) = l' = l|e$ for $l \in g^*$. Then $\pi|e^* = I$ (the identity mapping of e^*) under the above identification. Now $\mathfrak h$ is clearly a positive polarization of e at $\pi(f) = f' = f|e$. We shall show that $\mathfrak h$ satisfies the strong Pukanszky condition as a polarization of e at f'.

At first, since e is a subalgebra of g,

(4)
$$\pi(E,f) = (E,f)' = O(f)',$$

where O(f') is the orbit through f' with respect to the co-adjoint representation of E. Next, we prove that $\pi^{-1}(O(f'))=E$. f. If $a\in E$ and $l\in e^{\perp}$, one has $a,l\in e^{\perp}$. For $a\in E$, we write a,f=(a,f)'+f, where $f\in e^{\perp}$. Then we have, for any $h\in e^{\perp}$, $a^{-1}.(f-h)\in e^{\perp}$ and $a.(f-a^{-1}.(f-h))=(a,f)'+h$. Since $\mathfrak h$ satisfies the strong Pukanszky condition as a polarization of G at f, Proposition I.5.6 in [1] shows that one has $f-a^{-1}.(f-h)=b$. f for some $b\in D\subset E$. Hence

(5)
$$(ab). f = (a.f)' + h.$$

Since $a \in E$ and $h \in c^{\perp}$ are arbitrary, (4) and (5) imply that

(6)
$$\pi^{-1}(O(f')) = E. f.$$

Hence $O(f') = E, f \cap e^*$. Therefore O(f') is closed in e^* and f satisfies the strong Pukanszky condition as a polarization of e at f'.

Since $\rho(f, \mathfrak{h}, G) = \inf_{E \nmid G} \rho(f', \mathfrak{h}, E)$, $\mathscr{H}(f', \mathfrak{h}, E) \neq \{0\}$ provided $\mathscr{H}(f, \mathfrak{h}, G) \neq \{0\}$. Since dim $E < \dim G$, we can apply the induction hypothesis to have $\rho(f', \mathfrak{h}, E) \in \hat{\rho}(O(f'))$. That is, there is an $\mathfrak{h}_0 \in I(f', e)$ such that

(7)
$$\rho(f',\mathfrak{h},E) \simeq \hat{\rho}(f',\mathfrak{h}_0,E).$$

Lemma 2.2.3 in [2] implies that $\mathfrak{h}_0 \in M(f', e)$. And since $\mathfrak{h} \in P^+(f', E)$, $\dim_R \mathfrak{h}_0 = \dim_C \mathfrak{h} = \frac{1}{2} (\dim_R \mathfrak{g} + \dim_R \mathfrak{g}_f)$. Thus $\mathfrak{h}_0 \in M(f, \mathfrak{g})$.

We show next that $(\mathfrak{h}_0)_c$ satisfies the weak Pukanszky condition as a polarization of \mathfrak{g} . We first notice that

(8)
$$f + \mathfrak{h}_0^{\perp, \mathfrak{g}^*} = f' + \mathfrak{h}_0^{\perp, \mathfrak{e}^*} + e^{\perp}.$$

But since $\mathfrak{h}_0 \in I(f', \mathfrak{e})$, Proposition 3.2 in Chap. VI of [3] asserts that $(\mathfrak{h}_0)_C$ satisfies the weak Pukanszky condition as an element of $P^+(f', E)$ so that

$$(9) f' + \mathfrak{h}_0^{\perp, \mathfrak{e}^{\bullet}} \subset O(f').$$

One knows from (6), (8) and (9) that $f + \mathfrak{h}_0^{\perp \cdot \mathfrak{g}^*} \subset O(f)$. Thus $(\mathfrak{h}_0)_c$ satisfies the weak Pukanszky condition as a polarization of \mathfrak{g} .

Hence Proposition 3.2 in Chap. VI of [3] implies that $\mathfrak{h}_0 \in I(f,\mathfrak{g})$. That is, ind $\hat{\rho}(f',\mathfrak{h}_0,E)=\hat{\rho}(f_0,\mathfrak{h}_0,G)$ is irreducible. So by (7), $\rho(f,\mathfrak{h},G)=\inf_{E\uparrow G}\rho(f',\mathfrak{h},E)=\inf_{E\uparrow G}\hat{\rho}(f',\mathfrak{h}_0,E)\in\hat{\rho}(O(f))$.

ii) e=g (i.e., h is totally complex in the sense of Blattner [4]). In this case,

Blattneer [4] shows that $\rho(f, \mathfrak{h}, G)$ is irreducible. So we can assume that $\rho(f, \mathfrak{h}, G) \in \hat{\rho}(O(f_0))$ for some $f_0 \in \mathfrak{g}^*$, and it suffices to see that $f_0 \in O(f)$.

The first part of the proof of Theorem I. 4.10 in [1] for nilpotent Lie groups is also valid for exponential groups and we have the following lemma.

LEMMA 1. When G is an exponential group, b is an ideal in e.

PROOF. For $x \in \mathfrak{h}$, let $\pi(x) \in \operatorname{End} \mathfrak{e}/\mathfrak{h}$ be the operator on $\mathfrak{e}/\mathfrak{h}$ induced by ad x. Then $\pi(x)$ is a skew-symmetric operator with respect to a positive non-degenerate bilinear form on $\mathfrak{e}/\mathfrak{h}$ (see the proof of Theorem I.4.10 in [1]). Thus its eigenvalues are 0 or purely imaginary. On the other hand, $\mathfrak{e}/\mathfrak{h}$, considered as a \mathfrak{h} -module with respect to π , is of exponential type (see Chap. I in [3]). Hence $\pi(x) = 0$. So $[\mathfrak{h},\mathfrak{e}] \subset \mathfrak{h}$. q.e.d.

LEMMA 2. δ is an ideal in \mathfrak{g} and $\dim \delta \leq 1$. Further if we denote by \mathfrak{z} the center of \mathfrak{g} , then $\delta = \mathfrak{g}_f = \mathfrak{z}$.

PROOF. Since c=g, we first notice that b is an ideal in g from Lemma 1. We put $b=b\cap \ker f$, then $[g,b]\subset b$, because $[g,b]\subset b$ and f([g,b])=f([c,b])=0. Thus b is an ideal in g and f(b)=0. So, from our assumption, it follows that $b=\{0\}$. Hence $\dim b \le 1$ and $b \subset 3$. On the other hand, it is clear that $b \supset g_f \supset 3$. Hence $b=g_f=3$. q.e.d.

Now we continue the proof of our theorem. If we assume $\dim \mathfrak{d}=0$, then $\mathfrak{g}_f=\{0\}$ and $\dim O(f)=\dim \mathfrak{g}=n$. Therefore the differential $X\mapsto X$ of the mapping $g\mapsto g$ is bijective, so that O(f) is open in \mathfrak{g}^* . On the other hand, since \mathfrak{h} satisfies the strong Pukanszky condition, O(f)=G is closed in \mathfrak{g}^* . It follows from the connectedness of \mathfrak{g}^* that $O(f)=\mathfrak{g}^*$, which is a contradiction. Thus $\dim \mathfrak{b}=1$.

We can put $b=g_f=b=\{Rz\}$ with $f(z)\neq 0$ and then $\dim O(f)=\dim g-\dim g_f=n-1$. The set $V=\{h\in g^*;\ h(z)=f(z)\}$ is an (n-1)-dimensional hyperplane in g^* . Since $z\in g$, (a,f)(z)=f(z) for any $a\in G$; i.e., $O(f)\subset V$. Here we can repeat the above argument to conclude that

$$O(f) = V.$$

Let $\mathfrak{h}_0 \in I(f_0,\mathfrak{g})$. Then $\mathfrak{h}_0 \supset_{\bar{\mathfrak{d}}}$ (see Chap. II in [2]). We denote an intertwining operator between $\hat{\rho}(f_0,\mathfrak{h}_0,G) \in \hat{\rho}(O(f_0))$ and $\rho(f,\mathfrak{h},G)$ by $R: \hat{\mathscr{H}}(f_0,\mathfrak{h}_0,G) \to \mathscr{H}(f,\mathfrak{h},G)$. For brevity, we write $\hat{\rho}(f_0,\mathfrak{h}_0,G) = \hat{L}$ and $\rho(f,\mathfrak{h},G) = L$. Thus, if $\phi \in \hat{\mathscr{H}}(f_0,\mathfrak{h}_0,G)$ and $a \in G$, then $(R \circ \hat{L}_a)\phi = (L_a \circ R)\phi$. Let $t_0 \in R$ be fixed and put $a_0 = \exp t_0 z$. Since a_0 belongs to the center of G,

$$(\hat{L}_{a,o}\phi)(a) = \phi(\exp(-t_0z)a) = \phi(a\exp(-t_0z)) = e^{it_0\langle f_0,z\rangle}\phi(a)$$

for $a \in G$. Hence $(R \circ \hat{L}_{a_0}) \phi = e^{it_0 \langle f_0, z \rangle} R \phi$. On the other hand, $((L_{a_0} \circ R) \phi)(a) = (R \phi)(\exp(-t_0 z)a) = (R \phi)(a \exp(-t_0 z)) = e^{it_0 \langle f, z \rangle} (R \phi)(a)$. Hence $(L_{a_0} \circ R) \phi = e^{it \langle f_0, z \rangle} R \phi$. It follows that $e^{it_0 \langle f_0, z \rangle} \phi(a) = e^{it_0 \langle f, z \rangle} \phi(a)$ for some complex-valued C^{∞} -function $\phi \not\equiv 0$ on G, and for all $a \in G$. Thus $e^{it_0 \langle f_0, z \rangle} = e^{it_0 \langle f, z \rangle}$. Since $t_0 \in R$ is arbitrary, it follows that

$$\langle f_0, z \rangle = \langle f, z \rangle.$$

We can conclude from (10) and (11) that $f_0 \in O(f)$. q.e.d.

References

- [1] Auslander, L. and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354.
- [2] Bernat, P., Sur les représentations unitaires des groupes de Lie résolubles, Ann. Sci. Ecole Norm. Sup., 82 (1965), 37-99.
- [3] Bernat, P., N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renouard and M. Vergne, Représentations des Groupes de Lie Résolubles, Dunod, Paris, 1972.
- [4] Blattner, R.J., On induced representations, I, II, Amer. J. Math., 83 (1961), 79-98, 499-512.
- [5] Dixmier, J., L'application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France, 85 (1957), 113-121.
- [6] Duflo, M., Sur les extensions des représentations irréductibles des groupes de Lie nilpotents, Ann. Sci. Ecole Norm. Sup., 5 (1972), 71-120.
- [7] Quint, S.R., Representations of Solvable Lie Groups, Lecture Notes, Univ. California, 1972.
- [8] Saito, M., Sur certains groupes de Lie résolubles, I, II, Sci. Papers College Gen. Ed., Univ. Tokyo, 7 (1957), 1-11, 157-168.

(Received June 7, 1974)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan