On unitary representations of exponential groups
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§0. In this paper, one theorem about unitary representations of exponential groups
{see the definition in §1) will be proved. It gives an affirmative answer to an
open problem in Quint [7] concerning irreducibility and equivalence of holomorphic-
ally induced representations (see below), under certain conditions in the case of
exponential groups.

Auslander-Kostant [1] extended the Kirillov theory for nilpotent Lie groups
to solvable Lie groups. The following is one of their main results.

“Let G be a simply connected solvable Lie group with Lie algebra g and n be
a nilpotent ideal in g which contains [g,g]. Given an integral form f¢g*, the
corresponding character is denoted by 75,:G,~T. Then, if § is a strongly n-ad-
missible positive polarization of G at f (hence 1) satisfies the strong Pukanszky
condition), the holomorphically induced representation e(f,7,,0,G) is irreducible
and is independent (up to unitary eguivalence) of %) and n.”

Duflo [6] generalized this theorem; if u is a nilpotent ideal in g such that g/n
is nilpotent, the same conclusion holds.

But these results are not so complete as Kirillov’s result for nilpotent Lie
groups. If we consider a polarization § which is not necessarily strongly w-ad-
missible for any n as above, many problems come to arise. For example, let §
be a positive polarization of G at f<g* which is not necessarily strongly admissi-
ble for any n of above type. 1) When is the space of p(f,7,,0,G) not zero? 2)
When is o(f,7,,0,G)+#0 irreducible? 3) Is p(f,7,,5,G) (supposed to be irreduci-
ble) independent of §?

We give an affirmative answer to the last two problems under certain condi-
tions; namely, if G is exponential and if % satisfies the strong Pukanszky condi-
tion {see the definition below), then p(f,5,G)=p(f, 7,5, G) (supposed to be non
zero) is irreducible and independent of B, and actually is equivalent to the Kiril-
lov-Bernat representation associated to f.

In preparing this paper, I have received many advices from Professor M. Saito.
1 would like to express my cordial thanks to him. I must be also grateful to
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Professor M. Vergne and the referee to whom I owe many improvements of the
first version of the manuscript.

Notations. In this paper, we have the following conventions.

1. The letter R (resp. C) designates the field of real numbers (resp. the field
of ecmplex numbers).

2. Lie groups (resp. Lie algebras) are always of finite dimension over R (resp.
R or C).

3. Let E,F be sets, :E—~F a mapping and let ACE, then ¢|A stands for
the restriction of ¢ to A.

4. If g is a Lie algebra, we denote its dual space by g* and for fcg*, we
define an alternating bilinear form B; on g by By X, Y)={(f,IX, Y D=f(X, Y]
for X, Yog. If ais a vector subspace of g, we define a'-¢* and a, respectively by
abt*={fCg*; fla=0} and a,={Xcgq; B/(X, Y)=0 for all Ycal. When there is
no danger of confusion, we write a' instead of a!. A subspace a is called iso-
tropic {with respect to B;) when aCa;. The set of subalgebras of g which are
isotropic subspaces will be denoted by S(f, ) and the subset of S{f,q) which con-
gists of all maximal isotropie subspaces will be denoted by M{f,g). A subalgebra

b in S(f,p) belongs to M(f, q) if and only if dim f):%(dim g+dim g,).

5. If Vis a vector space over R, V,, is its complexification: V,=V+iV. For
X¢ Ve, XX denotes the conjugation with respect to V. If W is a subspace of
V, W=1{X; Xc W

6. Let G be a Lie group with Lie algebra g, then G acts on ¢* by the co-
adjoint representation and its action will be denoted by a. flac G, f¢a*).

7. The unitary equivalence of representations will be denoted by =.

§1. We define at first some concepts following Auslander-Kostant [1]. In this
section, unless otherwise stated, G will be a Lie group with Lie algebra g. Let
ge=g-+1iq and consider f¢g* as a complex-valued linear functional on g, then B,
is eonsidered as an alternating bilinear form on g,.

DEFINITION. A complex subalgebra hcg, is called a positive polarization of
G at fcg* if § has the following properties:

1) b is a maximal isotropic subspace of q, with respect to B;.
2) 0§41 is a subalgebra of g.
3} 1 is stable under Ad G, where G, is the isotropic subgroup of G at f.
) If Xen, then ¢f (X, X1)=0.

Let g be a Lie algebra over R and let feg*. A positive polarization of g at
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J will mean a positive polarization at f of the simply connected Lie group with
Lie algebra g. We denote by P¥(f,G) the set of positive polarizations of G at f.

DeriniTiON. For e P*(f,G), we define two subalgebras of g by d=0ngand
e=(G+0)Na.

Let ¢ P*(f,G) and let b and ¢ be defined as in the above definition. Let
D, {(resp. E;) be the connected Lie subgroup of G with Lie algebra b (resp. ¢).
Since b is stable under AdG/,, it follows that D, and K, are normalized by G,
so that D=G,D, and E=G/E, are subgroups of G.

DEFINITION. We shall say that He P*{f,G) satisfies the strong Pukanszky
condition if E.f is closed in g*, and that § satisfies the weak Pukanszky condi-
tion if D.f is closed in g*, or equivalently, if f+e¢tCO(f) (See [3)).

The strong Pukanszky condition is the Pukanszky condition in the sense of
Auslander-Kostant [1], and the weak Pukanszky condition is the Pukanszky con-
dition in the sense of Bernat and others [3]. The former is effectively stronger
than the latter. Next we define the concept of an exponential group.

DermNiTION [5]. Let G be a simply connected solvable Lie group with Lie
algebra g. G is called an exponential group if the exponential mapping exp: g—
G is surjective.

As to other equivalent definitions of an exponential group, see [5] and [8].
Henceforth in this paper, G is always an exponential group with Lie algebra g.

Let fcg* and let t€ S(f,q), then x(f, Blexpa)=e¢/®(xc¥t) gives a character
(1-dimensional unitary representation) of the connected Lie subgroup K=expf of
G corresponding to £. We denote by 4(f.t, G) the unitary representation i,n;(} 1 f, B
of GG induced from y(f, 1), by 27 (f, £, G) the representation space of #(/,f, ) and
by I(f,q) the set of te¢S(f,g) such that A(f £ G) is irreducible. We have
I{f,q)cM(f,q) (see [2]). Let O(f) be the orbit through f with respeet to the co-
adjoint representation of G and let #{O(f)) be the equivalence class of irreducible
unitary representations of & corresponding to O(f) in the sense of Kirillov-Bernat
i2].

REMARK. IfEe M(f,g), then fc € P f,G). The following conditions are equiv-
alent: 1) te I(f,0); 2) Ic satisfies the weak Pukanszky condition; 3) f¢ satisfies the
strong Pukanszky condition.

§2. Let G be an exponential group with Lie algebra g and let fco*. If §c¢
P*(f,G) satisfies the strong Pukanszky condition, the holomorphically induced re-
presentation p{f, 5, G) can be constructed from § just as in [1], since every feg*
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is integral and the corresponding character », of G, is uniquely determined by
the simply-connectedness of G,. The representation space of p(f, 5, G) will be
denoted by J7(f,5,G). Now we prove the following theorem.

THEOREM. Let G be an exponential group with Lie algebra g, and let b be a
positive polarization of G at f satisfying the strong Pukamszky condition. If
LD, GY#{0), then p(f,0,G) is irreducible and o(f,%,G) € B(O(f)). In parti-
cular, p(£,0,G) is independent of §.

Proow. The theorem is trivial when dim G=1, so we prove it by induction
on dim G, and assume dim G=mn.

Case 1. There is an ideal a#{0} in g such that f{a)=0.

Let A=expa, G=GJA and let z:G — G be the canonical projection. Let § be
the Lie algebra of G and let d=: 8.,—>(8), be the differential of . Now we con-
sider the exact sequence of exponential groups 1-4—G 5 G—1.

Let fc (@)* be such that fedz=F and let H=d= (). Since §Dg,Da, it is clear
that §c P+ £,G) and (§)* is naturally isomorphic to a‘®, so that ) satisfies the
strong Pukanszky condition. So by Proposition 1.5.18 in [1],

(1) o(f,5,Gen=p( 1,0, G).

Hence by our assumption, S(f,§,G)#{0}. Since dim G <dim G, the induction
hypothesis implies that o( £,0,G) € 6(O(f)). That is, there is an 0, I(f,§) such
that

(2) o( £ 0,3)=p( £, 5, G).
Let 9,=dz"'(0,). Then it is obvious that
(3) (£ 00, G)om=p(£, 00, G) and By€ I(f,0).

Case 2. There is no ideal a#{0} in g such that f(a)=0. This ease is divided
into two subcases.

i) ¢%g0. We choose and fix one complementary linear subspace m of e in g,
and let j:c*—>g* be an injection such that jih){x)=h(y) for hec* and z=y+2z with
yee, zeém. From now on, we identify ¢* with its image j{e*), so that e*ca*. Let
7 g*—c* be the restriction mapping such that =(l) =l'=lle for ¢ g*. Then zle*=1T
{the identity mapping of ¢*) under the above identification. Now § is clearly a
positive polarization of ¢ at =(f)=f'=fle. We shall show that § satisfies the
strong Pukanszky condition as a polarization of ¢ at f7.
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At first, since ¢ is a subalgebra of g,
(4) (B f)={(E. fY=0(1),

where O(f’) is the orbit through f/ with respect to the co-adjoint representation
of E. Next, we prove that = {O(f"))=E.f. If acE and l€et, onehasa.lcet,
For ac E, we write a. f=(a. f) +f, where fcet. Then we have, for any hcel,
a™'.(f—h)€et and a.(f—a L. (f—h)=(a.f)+h. Since §satisfies the strong Pukan-
szky condition as a polarization of G at f, Proposition 1.5.6 in [1] shows that one
has f—a~L.(f—h)=b. f for some be DCE. Hence

(5) (ab). f={a.f) +h.
Since ac E and heet are arbitrary, (4) and (5) imply that
(6) =z YO(f"))=E. f.

Hence O(f)=E. fne*. Therefore O(f’) is closed in ¢* and |) satisfies the strong
Pukanszky condition as a polarization of e at f’.

Since o(f,h,G) :zi;?gp(fl’[” E), F(f',h, E)#{0} provided 5°(f 1, G)#{0}.
Since dim E<dim G, we can apply the induction hypothesis to have p(f’,h, E)¢€
BO(fN). That is, there is an Y€ I(f’,¢) such that

(7) el f. 6, E)=p(f",b, E).
Lemma 2.2.8 in {2] implies that h,¢ M(f’,e). And since hHe PH{f’, E), dimr b=
dime bz—;—(dimn g+dimzg,). Thus o€ M(S,0).

We show next that (f,)c satisfies the weak Pukanszky condition as a polariza-
tion of g. We first notice that

(8) SABE =" +B " +et.

But sinee b, € I{f’,¢), Proposition 3.2 in Chap. VI of [3] asserts that (b,), satisfies
the weak Pukanszky condition as an element of P*(f’,E) so that

(9) f/+hetcO(f).

One knows from (6), (8) and (9) that f+8,-CO(f). Thus (), satisfies the weak
Pukanszky condition as a polarization of g.

Hence Proposition 3.2 in Chap. VI of (3] implies that b,¢ I{f,g). That is,
;Qg B(f", e, E)=p(f0, 0, G) is irreducible. So by (7), P(f,ﬁ,G)=Fi:r}g p(f, 5, E)=
ind A(£", o B) € SOLS).

ii) e=g (i.e., § is totally complex in the sense of Blattner (41). In this case,
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Blattneer [4] shows that p(f,5,G) is irreducible. So we can assume that o(f, §,G)c
B0 f)) for some f,<g*, and it suffices to see that Jo€ O ).

The first part of the proof of Theorem I.4.10 in [1] for nilpotent Lie groups
is also valid for exponential groups and we have the following lemma.

LeMMA 1. When G 13 an exponential group, b is an ideal in e.

Proor. For zcb, let =(x) ¢ Ende/do be the operator on e/b induced by adz.
Then =(x) is a skew-symmetric operator with respect to a positive non-degenerate
bilinear form on ¢/b (see the proof of Theorem 1.4.10 in [1]). Thus its eigen-
values are 0 or purely imaginary. On the other hand, ¢/b, considered as a d-mo-
dule with respect to =, is of exponential type (see Chap. I in [3]). Hence =(zj=
0. So [belch. q.e.d.

LEMMA 2. b is an ideal in ¢ and dimd<1. Further if we denote by 3 the
center of q, then d=q,;=3.

Proor. Since c=g, we first notice that b is an ideal in g from Lemma 1. We
put b=bNker £, then {g,d]ch, because [g,b]cd and f(lg,b])=r (¢, 0))=0. Thus b
is an ideal in g and Ff(B)=0. So, from our assumption, it follows that 6={0}.
Hence dim d=<1 and b3 On the other hand, it is clear that b>g,>3. Hence
b=g,=3. g.ed.

Now we continue the proof of our theorem. If we assume dimbd=0, then
a,={0} and dim O(f)=dimg=n. Therefore the differential X —X.f of the map-
ping g—g. f is bijective, so that O(f) is open in g*. On the other hand, since
satisfies the strong Pukanszky eondition, O(f)=G. f=E. f is closed in g*. It fol-
lows from the connectedness of g* that O{f)=g* which is a contradiction. Thus
dimb=1.

We can put d=g,=3={Rz} with f(2)#0 and then dim O(f)=dim g—dimg,=n—1.
The set V={heg*; h{z)=f(2)} is an (n—1)-dimensional hyperplane in g*. Since
2€3, {a.f)z)=f(z) for any a€cG; ie, O(f)cV. Here we can repeat the above
argument to conclude that

(10) olf)=V.

Let Go€ I(fy,08). Then §,D3 (see Chap. I1in[2]). We denote an intertwining oper-
ator between A(fy, 00, G) € AO(f) and o(£,5,G) by R: % (fo b G)> (£, 5, ).
For brevity, we write 3(fs, 0, G)=L and p(f,5,G)=L. Thus, if ¢¢€ 5°(fo, b, G
and a€ G, then (RoL,)¢=(L,oR)¢. Let t,¢ R be fixed and put a,=expixz. Since
a, belongs to the center of G,



Unitary representations of exponeniial groups 471

(Lo9)(@)=0(exp (—tez)a) =9(a exp (—ty2)) =€*o0?¢(a)
for acG. Hence (Rol:ao)éze“o<fo~=>R¢. On the other hand, {{L,°R)é)a)=
(R¢)(exp (—toz)a)=(R¢)(a exp (—tx)) =€/ (R$)(a). Hence (L, R)$=¢"/vERg.
It follows that e“ood(a)=e'" o '2¢(a) for some complex-valued C=-function
¢=20 on G, and for all aeG. Thus eo“o=>=¢" 2> Since ¢, ¢ R is arbitrary, it
follows that

(11) <f0’z>:<faz>'
We can conclude from (10) and (11) that f,€ O(f). q.ed.
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