Formal groups and L functions

By Tomoyoshi IBUKIYAMA

As Honda has shown, the structure of the formal minimal model over Z of
an elliptic curve defined over @ is determined by its Hasse-Weil zeta function, and
vice versa (cf. T. Honda [3],[4]). He has also shown similar results in the ease
of one dimensional tori (Honda [3]; see also Remark 1 in §2 of this paper) and
certain higher dimensional Jacobian varieties (Honda [4]). In this paper, we shall
show some analogous results in the case of certain higher dimensional tori. Tori
that we consider here are R, (G, and R o(Gn)/Ry6(Gn), where k' are finite
Galois extensions over @ with k’ck. Now we explain briefly the case where G =
R,0(G,). For a fixed order © of k and a fixed Z-basis 0,=1, w,, ..., ©, of O, we
define a formal group F over Z by;

F(xa y>=t{Fl(x’ y), ree ;Fn(my Z/));
where

(1+xlw1+ e +xnwn) (1+y1(‘)1+ +ynwm 1+Fl( ?//wl +Fn(:s’ ?/)(f)n,

Filz,y) € Z[x,y]. By using the same basis, we also define a matrix representation
{As} of Gal(k/@) in GL.(Q) by;

(wld; e wna) = (wh L ] wn)Aa-

By this definition, the representation {A,} is equivalent over @ to the regular repre-
sentation of Gallk/@). If & is an abelian extension of @, we can define a malriz
Artin L funetion for this representation {4,} by ]1( —{(1/e,) }_,Agm """" ! (¢ runs
over all Frobenius substitutions of a prime number p and ¢, is th(, ramifieation index
of p in k/Q). For the sake of simplicity, we restrict ourselves here to the case
where k is abelian and tamely ramified over . (As for the further statements,
see Proposition 2.2.3 and Theorem 4.2.8 of this paper.) Let Dy. be the maximal
order of k. For a fixed Z-basis of Dma, define F' and {4,} as above. Put
I}(L.—(;L 2 Acr)p")_l: > A and gl = 3> Aepm,
?

m=1 M me1 In°

where x:(xl,...,x,) and 2”={x,",...,2,”). Then the formal group G defined by
Gz, y)=g Y g(r) +g(y)) is a formal group over Zs, where S is the set of all primes
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which do not divide any e, and Zs= 95' QN Z,. Then our results are stated as
follows, "

THEOREM A. Assumptions end notations being as above, the formal group F
is strongly isomorphic over Zg to the formal group G.

More precisely, we have;

Turoreym B.  Assumptions and notations being as above, the formal group F
is of type pl,—{)e,) 35 AT for all primes p in the sense of Honda [4] (T is a
variable: . ’

Similar results are obtained in the case where G =R, (G .)/Ry10lG.), 28 ex-
plained in the later scetions.,

We get Theorem A immediately from Theorem B, using the classification theory
studied by T. Honda 4], First, we get an explicit form of the transfermer of F
in §3. And using this, we obtain the types of them in §4. This proves Theorem
B, therefore also proves Theorern A. In the final section, we examine briefly a
weak isomorphism elass of I

To extend these results to general tori over @, we must choose good local
parameters of the tori and suitable matrix representations of the Galois groups
of splitting fields of the tori over Q. But we do not know what are appropriate
ones for general tori.

The material in this paper formed my master thesis at University of Tokyo
in 1973, I would like to take the opportunity here to express my sincere thanks
to my thesis advisor, Prof. Y. Ihara, who encouraged me during the preparation
of this paper, and also to Prof. T. Honda who corrected my errors in the manu-
seript.

§71. General notions

Put ==ty ..., ), am=tay™, Lo, 2™, S a set of some primes, Zszprsls @nZ,,
Zgtlell: the ring of formal power series over Zg, Zdl[z]l*: the n dimensional row
veetor space over Zglxll.

We shall consider enly the commutative formal groups over Z;. For given
two formal groups F (of dimension 2) and G (of dimension m), if there is ¢{x) €
Zsilall™, ©(0) =0, such that ¢(F(x, y)) =G(elx), ¢)), ¢ is called a homomorphism of
F to G over Z;. Moreover, if m=n and ¢ is invertible, ¢ is also a homomorphism
of G to F. Such ¢ is called a (weak) isomorphism. It is called a strong isomor-
phism if ¢(x}==r mcd. deg. 2 i.e. the total degrees of the terms o(x) —x are greater
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than 2. We shall denote these relations of F and G as F~G and F=G respee-
tively. A strong isomorphism, if it exists, is uniquely determined for F and G.
For a given # dimensional commutative formal group F{r,y) over Zs, there exists
one and only one fix)€@l{x]]* called the transformer of F, such that Fly,y)=
CfMfla) +fy) and fird=2meod. deg. 2. This implies that all F are strongly isomor-
phic over @ to the affine group a2+y. The problem we shall consider here is
related to the strong isomocrphism classes over Zs. A general classification of
formal groups up to streng isomorphisms over Zg was studied by T. Honda [4].
We shall adopt his theory to our special esse. A formal Dirichlet series is by
definition any Dirichlet series with ccefficients in M, (Z;}, having the Euler product
and the expansion »,Zl A.mTr= I“Is (L+Cop - - +Cppr 74 )7, assuming that
C,» and Cu for di.ﬁTerent prir:ltes p and 1 are commutative. The formal group
attached to this series is defined by Gz, y)=¢ Yg®)+g{y)), where

— < A"’Z’ﬂr:’,\
g(:c)—mz;j " am,

Then pg{x) +C,g@?+- - +Crg@®)+---=0mcd pZ,, that is, Glx,y) is of type
pL+C,T+---+CuT?+--- in the sense of [4] and it is defined over Z; (See [4|
Theorem 8.). (By an abuse of language, we say that Fiz,v) is of type u, if its
transformer is of type u.) When we want to prove the existence of a sirong
isomorphism over Zg between the above Glz,y) and another F{x,y), we have only
to prove that Fix,y) is of type pl,+C,T+--- at each p€S ({4] Theorem 2 and
the uniqueness of strong isomorphisms) and we shall prove our theorem in that

form.

§2' Rk!Q(Gm) and Rk/Q(Gm)/RJ;’/Q(Gm)

Let %k be an algebraic number field of finite degree, © an order of k and
0, =1, g, ..., 0. a Z-basis of ©. Define a formal group I’ over Z by;

2.1.1) Fle,y)="(F,9),.... F.le9),
where
(1+:C1wl+ e +xna)n) (1+y1(l)x+ e +y'na)n) :1+F1('E1 y)wl+ e +F1n(x1 ?/)w1l,

F.z, 1) € Z[x,y]. Let &’ be a subfield of k. Suppose that O has a Z-basis of the

nint n’
following form {£,0;|1<isn/,1<j< (n/n’)} with k= Z} Ko,k = Z’ Q¢; and &,=0,=1.
= &

Then a formal group Fy over Z is defined by;
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(At @yt @praaat Mot ) (L Yot Yuradbat - o104 )
ﬁzl(xr y) +22(x’ y)02+ e '*"zn,'n"{x) y)onin'7 Z,;(x, y) e Z[sh cey sn'a x, y]a

Py iilx, y) =the coefficient of &; of z(x, ¥)/alx, y)
(2.1.2) Fypte, gy ="F .5, y)).
F (resp. Fy) is a commutative formal group of dimension n {resp. n—=') over
Z, and (xy,...,7,) (resp. (x,,...,%,)) 1s one of the parameters at the origin of
RiolG.) (resp. RyolGu) /R ioGal).

This is obvious for F. As for I, by definition, we have, z,(x,y)=1mod. deg. 2
and 20T, Y B2 pendi o b8 med. deg. 2, ©22) so that we get F ). (x,y) =
2y mad. degg. 2. To see the assceiativity, put

A:i'- (1 - (fl'"'+151+ M “}‘3'21;’511’)02—*- " ) (1+ (yu’+l€:1+ o ')02%” . )
KA+ (o€ 4 )04 - ).
We have
A=z, y) F 2@, Y0zt - 2w (@ Y)0n i) L4 (Warans - )02t )

::zl(xy ?l)<l‘f“§2‘££7‘lﬁ*oz+ e 4_"%75_!””,(3’, y) nln )(1‘“{ (1vn’+!$1+ )02+ 0 )
2, y) z (2, )

=gy (@, Y) @ I (0, ), W) 22 (F s (2, U5, w)0ab - - -).
On the other hand, we have
A=z ly, w) (@, Fupy, ) +25(, Fiepy, w) 024+ - -)

Comparing these two equalities, we get,
2(Fypile, ), o) _ 28, Fyly, o)

2 (Fypfa, ), ) 21(45, Fuly, )
and by definition, we obtain Fy o (Fywlz, ), 0} =Fip (2, Fipoly, o).

REMARK 1: A formal group z-+y++vDay treated in [3] is strongly isomor-
phic over the maximal order of Qv D) to the formal group Fy; for k=Q+'D),
k' =@, O=the maximal order of L.V

In faet, if D is even,

L—r’l/ _ ’V/H

Fo x,
e (0, Y) == T Dy for 3

dnd the strong isomorphism to x4y++v Day of F,, is given by

B I was suggested by Y. Thara to consider Fyq instead of z+y++vDxy. This stand
point is a clue to the generalization of Honda’s results.
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X

PO Wb
and if D is edd,

stytey

F‘-.l /lk/l.,.\:
S Y T (D= 1) 42y

for 0,=1, 022'(&:%/'1)‘) and o(@)=

X

1-(VD-1)/22

In (3], the strong isomorphism to x+y-++'Dxy of the formal group attached to
Lis, ), (x(n)=(D/n)) was obtained explicitly and globally. We shall obtain it locally
for each p and as a result we shall have the existence of the strong isomorphism
over Z. There is a slight difference between {wo proves because in the former
Lis, x) is defined globally as Hecke’s L-functicn and in the latter Lis, y) is defined
locally as Artin’s L-funetion,

REMARK 2. (See [4] Theorem 3): In general, ¥ depends on the choice of
orders and its Z-basis. But the weak isomorphism class of F is well-defined if we
fix an crder. In fact, the base change by a unimodular matrix V transforms a
formal group F of type u into that of type Vu V™1,

Lemma 2.1.3. Put

S R AT T
1+xl$l+ te +$a’5n’

:9051;’+1(ﬂ:)§1+ v +9°1a+l)n'(x):n’) S:1~%M1’ (171'{"1;) € Z[[m]]i

and o@) =@, l2),..., . 2). Then o) gives a homomorphism over Z of F to
Fyppe.
PROOF. Put Flr,y)='{F;{a,y)). By definition of F' and z;, we have

(1+9:1‘El+ i 'Tn'gn’-{_ (‘rn'+1§l+ e +xﬂ"fn')02»§’ T )

X (1+yl£1_*- ot 'yn'sn'+ (y1a'+1£l—i- e +y2n'En')02+ . )
:1+F11(3:7 'y)51+ Tt +Fln'<'r; ?/)sn’+ (FZX(xa 2/)51"" e ‘%‘F‘Zn'("rl y)sn’)OZ"‘“ o )
= (1+x151+ cee +xﬂ'§n') (1+y]§l+ e +yﬂ"sn')

X (zile(@), o)) +2:(9 (@), @ WN02+ - -+ +Zasu {9 (2), 0 WN0u101).

Comparing these two egualities, we get
1+ Fylz, yéi+ -+ Fulz, 9)€a
:(1+$151+ ot +xn"’e7x') (1+yl$l+ e ‘*‘?J»'&u')z1(‘ﬁ($), 9’(?/))

Fyle, )i+ - +Fop(x, )0
= (1 +x1$l+ ot +In’6n') (l+yl£1+ o '?/;;'5»’)2;(59(37}, g’(y))
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and :
2;(‘/’537}, QO(E)_)_z Fil(x» y}gl'{'" '+Fi'n’(xy ?ﬂfn’ (?:22)
2o oly))  1+Fyle, b+ +F 2, p)é. -

The right side equals to @ i F @, Y&+ + ¢, (Flz,4)&,,, which implies
Foploa), oty =¢(Fx,y)) and this eompletes the proof.

Lemma 2.1.4. If f is the transformer of F, then the transformer f.. of
Fy is given by;

f/:;’/c'(t(xn'-‘rh ey 3:,,)) = (0, Inwn')f(t (O, Peey O; Tpragse oy xn))y

where I,_, 18 a unit matriz.
Proor. Observe that e{#) =10, I,_,)(z,, ..., 2z, mod. deg. 2, then that

ficlk' _1((0) In»—n')f} =g
(by 4] Proposition 1.6) and that
(‘"7(‘(03 R ::cn’-fl) ey Q"’n)) :‘:t(xn’+1a IR xn) . Q.E.D.

Put Z.,,=2nQ,.

LeMMA 2.1.5. If Fis of type pL,+C,T+CpeT?+--- (for the valuation ring
Zy and ==p,q=p,o=id.in [4]§2) and A,,uz(g ;) Cou€ My i(Ziy), then Fupe
18 of type Pl +C,T+C2T?4-- .. !

Proor. Multiply the congruence pf(x)+ A, f{a?) + - - =0 mod. pZy by (0, 1,_,7)
from left, and use Lemma 2.1.4.

Lemma 2.1.6. The multiplicative group x+y+zy is of type p—T (well-known
and easy).

Lemyma 221, Let £/Q le a finite Galois extension, O an order of k,w,=1,
Oy ..o, any Z-basis of O, and F the formal group defined by (2.1.1). Put
G o, yr="oy b b oWy . X b Ya 2.y, . Then if a prime ideal p of the maxi-
mel order Owax of & does not divide the diseriminant of ©, F is weally isomorphic
to G, over 0, where O, is the localization of Omx at b.

ProoF. Put Us==(¥), v;€ Gal(k/Q) and ¢(v)=Ux. Then (det U)? is the dis-
criminant of O, which is prime to p and U-i¢ M,(0,). By definition we have,

(g0l 4o e 0ad) (ol 4 w8 4 (i + 2,00 oV + - - F Yot
=Fn, Yo+ -+ FL ol Yo,

Then we obtain G,.*(Ux, Uy)=UF(x,y), and ¢ gives a weak isomorphism of F to
G over . Q.E.D.
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Assume as in Lemma 2.2.1; then p is unramified in k/Q and p can be taken
to be a prime element of D,.

LeMMa 222, F is of type pI,— U'U°T for the valuation ring O, and ==p,
g=p, where o is the Frobenius map of v in k.

PrOOF. G,* is of type {p—T)I,. There exists an element « of M. (©,).([Th
such that F is of type w{{4] Theorem 4}, and we have (p—T)U=tu where t is a
unit in M,(L)A(T]) (Lemma 2.2.1 and [4] Theorem 8). Then pl,— U1 T=
(U't)w. Therefore, F is of type pl, - UUT, for U~ is also a unit. Q.E.D.

Now suppsse that p is a prime number which does not divide the diseriminant
of ©, and p=p,---p, in k/Q. We denote by o; the Frobenius map of b, and define
Aq; for o; as (el ..., 0n)=lwy...,w,)A;. Then, we have

PROPOSITION 2.2.3. If plg, F is of type plo—((1/g) ¥ A,)T for Z,.,==p,
g=p, o= id. o

PrOOF. There exists an element u of M,(Z:[[T]) such that F is of type u
for Zi,n, ==p,q=p, 0= id ({4] Theorem 4), and then F is also of type u for Do
7T=p,q=p,0=0;. Then by Lemma 2.2.2 and [4] Theorem 4, the following relations
hold;

(2.2.4) pl,~U U T=tu (1==1~g)

where ¢, is a unit of M, ((0,)q,[[T). M,((O,).[[T]]) can be naturally embedded into
{ZATm anemmw)

as right M.(Z.,{{T]}) modules. Adding both sides of (2.2.4) in this sense and
dividing by g, we obtain

pI,.~<?1J'~ 3 U"‘U”f‘)T:é-(’tﬁ bt
FEEY

and we can easily show that i{U"*‘:UZ_g:lAU‘. If plg then (4,4 - +1,)/g isa

unit of M,(Z,[[T1j. Therefore, F is of type pl.—((1/g) ;:A%) T. Q.E.D.
LEMMA 2.2.5. If k/Q is an abelian extension, I is of type pl,—A.T, where
A, 18 a rational matriz defined (@7, ..., 0,0 =lw, ..., 0,4, and o 18 the Fro-
benius automorphism of p. (This time the condition ptg is not needed.)
PROOF. In this case, all 0;=¢ and ¢,=---=¢,. Then we have

pL, U U T=tu Q.E.D.
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% %
LEMMA 2.2.6. Assumptions being as in Lemma 2.2.5, we have Aa=< )

0 C,
C.€EM, . (Z.,), for a basis €0}, and Fy. i3 of type plo_.—C,T.
Proor. Easily proved by Lemma 2.2.5 and Lemma 2.1.5. Q.E.D.

§3. Explicit forms of the transformers

We will obtain explicit forms of the transformers of F' and F,;, which will
make it possible to examine the types also for ramified p’s.

THEOREM 3.1.1. Let & be a finite algebraic number field, O an order of k,
and w,=1, w,, ..., w, its Z-basis. Define F by 2.1.1). Then the transformer of F
s given by,

S@)=slog (I+Rlw)ax,+ - -+ Rlw,)x,),

where R is the regular representation with respect to (wy,...,w,), “log” s the
Jormal logarithmic expansion and s, is the projection to the first column of the
matriz.

PrOOF. In general, a transformer g=t(g,...,4,) is the unique solution,
satisfying gle) =z mod. deg. 2, of the differential equation dg;=¢;@)dz;{j=1~n),

where
aF;
(¢ri; () = < F;(0, 7/))
oa;
(4] Theorem 1). To calculate this in our case, put ww,= Z alw, @ €q@). Then
we have
File, )=, +y+ ki:jlaii’;vkyl and FG(O v) =0+ Z aly,
b= i

so that we obtain, (@) ={I+Rw)a,+ - - +Riw)z,) "t It is clear that flrv)=z
mod. deg. 2, and that

A < 9 Yog (I+ Rlwy)r, + .4-12(@,,).@-”))

ox; Glt,

=g (I+ Rlw)x, + -+ - + Rlw,)x,) ' Rlw;))
=the j-th column of (I4+ R{w)x,+- -+ Rlw,)z,) .

(Note that the first column of R{w;) is t{0---0 IJl,O «--0)). Therefore

(;f ) (T+ Rl 2, + - - - + Rlw,)x,) !

.lj
and the theorem is proved.
THEOREM 3.1.2. The transformer of Fi 1s given by;
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fki&':§l(10g (I+R($102}mﬂ’+! e +R<‘€n'0nia’)xn>)7

where §, is the projection to the n’'-+1-th to the n-th rows of the Sirst column.

PROOF. Obvious by Lemma 2.1.4 and Theorem 3.1.1.

LEMMA 3.1.3. Assume that F is a formal group over Zs and f, its trans-
former. Put flo)=f(,0,...,0+f0,2,0,...)+--+f0,...,0,2,) and Flx,y)=
F U@+ FW). Then F is a formal group over Zs and F is strongly 1somorphic
to F over Zs.

PROOF. There exists an element « of M, (Z,[[T]}) such that F is of type u
for each p€ S, and f satisfies the congruence pfle)+C fla?) + - - =0 mod. pZ,
({2] Theorem 4). Note that f(z), f(x?),... consist only of “unmixed” terms of
S@), f@@r),... (i.e. those terms af!---a3» with e;+0 for only one i). Therefore Fix
also satisfies

pf@)+C, Fla?)+- - =0mod. pZ,,.
Therefere the lemma follows from [4] Theorem 2 and the uniqueness of the strong
isomorphism.

REMARK. Put f(x)=f(0---0 2; 0---0). Then f(x) is of type % if and only if
Sflz;) is of type u for all 7.

§4. The type of F'

From now on, we assume that k/Q is an abelian extension.
LEMMA 4.1.1. We have the congruence,

pf@)~Aflz?)=0mod. pZ,, for ACM,Z,),

if and only if s;(R(w;)*7) = As,(R{w;)**) mod. p*Z o Jor all positive integers v, k
such that pin’.
ProOF. By Theorem 3.1.1,

Sfla)= 5_1,1 (—1)"‘1@%“.
Therefore
pf(f;) -Af(.’l:j”) = % (ml)nwlﬁ%@ﬁ‘
o @ ,n’pl‘

pin’ nljpk-l {(=1)met-is, (R{w;) wik_ (— 1)""EH1MIA31 (R(w;‘)""kwl)}
k=1

The first term is divisible by ». If p=2 and k=2 or p+2 then we have
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O
Therefore pf{z;)—Af(z)=0mod.pZ,, if and only if
8, (R(w;)" "™ = As,(Rlw;)**") mod. p*Z ..

1f p=2 and k=1, then (—1)*"1=-1,{—-1)""'=1, Therefore 2fxy—-AflxA=0
mod. 22, if and only if

8, (Rlw;)*) = — A8 (Rlw)") = Az, (Rw))™) mod. 2Z ). Q.E.D.

Now, we can determine the types of F also for the ramified p’s.

At first, we shall consider the tamely ramified case. Let © be an order of k
such that Z.,,0 equals to Z,;Omax, where Omax is the maximal order of k. Define
a rational matrix A, by (@7,..., 0. ={wy..., o)A Then Rlo)=A,Rlw)A, "
Assume that p is tamely ramified in /@ with the ramification index e. Let Ibe
the inertia group of p,k; the inertia field and ©; the maximal order of k. The
Frobenius class mod. I is defined only by p (because &/Q is abelian) which we de-
note by of. Suppose that p=(B,---%,)* in k. For any w€ Z,L;, there exists
@€ Z,,Or such that w—a€ (B, --B,)Z,, since the residue fields are the same for
k and k;. Put w=a-+0, then 0°€ pZ,0, and e<p—1 (note that k/Q is abelian).
Then we have e?=a” mod, pZ,0, so that

4.2.1) o*=a"* mod. p*Z ;0
and
4.2.2) (mw)p"‘l: (aﬂ)pk‘1+ pFg, ot

0,€ M- R)Z.,D, for all z¢ 1. Adding both sides of (4.2.2) over all €1, we
obtain ’

1 L . t1
L5 @t @t 2 g 01),

where Uy, (07 €& N - B ZnD=pZ,0; then

%’E[(w"‘)"“lz(a”)"k” mod. P*Z, 0.

In view of (4.2.1) and the fact that ¢ induces the Frobenius map on k;, we have;

4.2.3) w~"—3;_;;I(awf;»"-‘zan’u(aa:wk*‘zo mod. pZpD.

Put w=w;", then from (4.2.3) we obtain the congruence
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R(w} n (s Z AV"R ‘”pk le" =0 mod. P Z\p\

€ el

*
Noting that A _<(1) *>, we get

s1(Riw)™*) < 2A6f>sx( ()" * ) =0 mod. p*Z .

Therefore we have;
THEOREM 4.2.4. When p is tamely ramified in an abelian cxtension k of @Q,
the formal group F for an order © such that Z ., equals to Z ,Cmax, s of type
—{{1/e) ZA,»)T where F and {A,} are defined for any common Z-basis of L.
Corcllary 425, Put S={p|pin}. Then the formal group attached to

1 (1~(E 5 ax)r)

18 strongly isomorphic to F over Zs.

PrROOF. Easily proved by [4] Theorem 8 and the above theorem. Q.ED

Next, we shall consider the case of wildly ramified p’s.

LEMMA 4.3.1 Assume that k is an abelian extension of @ and put e=gp’™}
(v=2, ple)). Then k can be embedded in a cyclotomic field Q(L)Q(C.) (pim) if p+2,
and in K.Q(C,)2im) if p=2, where K, is some subfield of Q(lu»+1) with index 2

PROOF. By Kronecker’s theorem, there exist natural integers m and v/ {pim)
such that kcQ({,»,,). Since @((,) is the inertia field of p in Q9 over @, we
have [k-Q(C.): QU 1=[k: ENQE)]=ep"

As well known, Gal(Q(L,vm) /@) =(Z],».), and we can easily verify that its
subgroup with index e,p*~* contains GaliQ({ywm)/Q(pwn)) if p is odd. Therefore we
have k-Q(.) CQ{,»,) for an odd p, and we obtain our lemma in this case. The
proof is virtually the same for p=2.

LEMMA 4.3.2. Assumptions being as in Lemma 4.3.1, the different bdyq 18
divistble by p*~'.

ProOF. We denote the p-part of the different as d®. Note that

{p} (p) {p) (p) 1p)
DG o 0= DG o -0 D@00 A0D Do 0= dila.
As well known, we have p={p,---p,)?*"1®"V in Q(,,»)/Q and

& o= vty p=1j =~
bo’?a,,;,,ne—-(br'-p,)i’ =D =1y

If p is odd, Q({,»n) is a tamely ramified extension of p over k-Q(,) with degree

{p—1)/e, s0 that we obtain bé’il:py,,);k.gqm):(m-- -p,)#~Vie=1 Then we have
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i = pol(y gty =1) = (ip=1) fon =1
DG ez oy - p )T LT T D g1

and since

prlvip— 1)-1)A-<~pe ! —1> ZE-1pip=1 and p=(p---p)” 7Y,
0
b1 is divisible by p*~!'. The proof is virtually the same for p=2.
LEMMA 4.3.3. Assumptions being as in Lemma 4.3.1, let o be an integer in
k. Then (1je) try/, (w) € Z.,,0;.
Proor. By Lemma 4.3.2, we have p'~* € diji,;={@€k; tryi;(@Omx CLs). There-
fore we get

, w
tH/m(W)E Zzp;gl

and this proves our lemma. Q.E.D.

Put O :;Dq-erpD,,m, where Or, is the maximal order in the maximal sub-
field in which p is tamely ramified and Dna. is the maximal order in k.

THEOREM 4.3.4. Assume that k is an abelian extension of Q and that D is
an order such that Z,0=2.,0%. Then F is of type pI,—((1/e) t‘EAat) T, where
F and {A:} are defined for a common Z-basis of O.

Proor. First, (1/e)r§AggeM,,(Z“") by Lemma 4.3.3. For o€ Z., 0, we can
put (o::a‘kpo,aezu,;@rp and 0€ Z,,Dm:x. Then

(4.3.5} o™ =a med. P Z 3 Omaxs and w"‘“:av"“‘.g_pkob 0,€ Z Do,
s0 that

(4.3.6) - (w‘”}"k"l?_‘l > (a”)”kﬂl“i‘pkl 00,7,
¢ til e ! 4

Then using Lemma 4.3.3 and (4.3.5), (4.3.6), we have:

@.3.7 w”"»:; pat (= l)vfwav“——g;: (@5 mod. p*Z 0.
The right sxdo of (4.3.7) belongs to p*Z.,,© by the proof of Theorem 4.2.4. Then
putting w=w,», we can prove s (Rl{w)*** )E((l/e)‘z Aol (R(w)™?* ™" mod. p* "2 as
in the preof of Theorem 4.2.4, -

THEOREM 4.3.8. Let k/Q be an abelian extension, kr, the maximal subfield of
k tamely ’raumrif ed at p and Or, the maximal order of kr,. Put 27 =2r + POmax
and 0= ( [D\”‘ Then F 18 of type pl,—{ 1/e) E: Ay Tfor all p, where chd {A:}
are defmcd Jor any common Z-basis of D. >
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Proor. Easily proved by Theorem 4.2.4 and Theorem 4.3.4.

COROLLARY 4.3.9. Assumptions being as above, let S be the set of prime
numbers which do mot divide the denominators of (I/e)’g A,.. Then F and the
formal group attached to the formal Dirichlet series ,,Hq (I: —’-’((lle)f}; Adp~ 7t are
mutually strongly isomorphic over Zs. . o

Proor. Easily proved by Theorem 4.3.8 and {4] Theorem 8. Q.E.D.

We can obtain analogous results also for Fy,-. Now k/Q is abelian, so that
E’/Q is also abelian. Assume that 0 is as above and has a Z-basis {§:0;} and that

F,)» and 4, are defined for 0 and {£,0;}. Then A, can be written as <* i ),

0 C,
C,eM,_.(Z). Then by Lemma 2.1.5 and Theorem 4.3.8 we have:
COROLLARY 4.3.10. Fyw 13 0of type 'pI,._,,r——((I/e)_Z; CodT. The corresponding
tel,

Dirichlet series is given by

det T1 (IM'—G 5 Cgr)p-ﬂ)“’z Lils)l
L4 € te[p Ck'(s)

§5. Reduction mod. p

Suppose that £ is an order of k, abelian over @, such that Z,0>Z,D,
where £;is the maximal crder of the inertia field &y for p. Let p be any exten-
sion of p in k; and O, the localization of D, at p. Put

Gt X G = {2+ Y1+ T:Y0s o s T Y 2 Y Tost W rrts oy Tt Ul

As well known, this formal group is of type pI,,»—(é’ g)T for the valuation ring

Z.y avd z=p,q=p,c=id.
THEOREM 5.1.1. Notations being as in §4, assume that F is of type

pIn““(“l‘ Z Aor)T.
grc lp
Then F' is weakly isomorphic to G,"X G over Dy,

COROLLARY 5.1.2. Fmod p is wealkly isomorphic to G,7XG,*" over F,r.

r={k;: Ql, f=the relative degree of v in k/Q.)

PROOF OF THE THEOREM. As remarked in §2, the weak isomorphism eclass of
F does not depend on the choice of the basis. So we can choose wy,...,», a3 a
basis of Z.,;2;. Then

o 1
(5.1.2) ((I);g, ey @Y, % trk/,‘,(wr“), ey %tr“k,(wn"}) :’-((1)1, ey (t)n) - Z Aar).

(X213 1,
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All elements of the left side of (5.1.2) are in k;, so that

%Z AﬂZ':(OA' ‘g)a (wla’ S | wr”) :((1)1, BRI | wr)A) AGGLr(Zp))

Changing the basis by <g' ?_IB> we can write (1/e) 3 Aaz:<§‘ g) and U,’=U,A,
(U= (%), 1, j=1~7,7;€ Gal (KI/@)). Putting U=<(§J’ 2 ) we obtain

I, 0 A0
IL—{"" = I,— T
(7’ 0 0>T>U U(” (o o) >
(as an element of M, (0)d{T1) and U'€ M,(©;.,), for p is unramified at k,/Q.
From [4] Theorem 3, F is weakly isomorphic to G,"xG.*". Q.E.D.
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