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Introduction

In a previous paper [4], we determined the 3-rank of the ideal class groups
of certain pure cubic fields Q{3/m ), namely those for which m does not contain
prime factors of the type p=+1 (mod 3). In [5], we generalized the method and
proved that, for any m, the rank is equal to the multiplicity of 1 as an eigenvalue
of a certain matrix over F;. But we did not show how to get the matrix in the
general case. The purpose of the present article is to give an algorithm for this.
It involves only the calculation of the Hilbert’s norm residue symbols in Q{+/ -3},
and as the reader will see, it can actually be carried out if m contains a prime
factor p+#3 with pz+1 (mod 9) (of course, this condition guarantees the exist-
Vm)ew=3). In [1], F. Gerth III has already given an algorithm for the de-
termination of the 3-rank. But the two methods are different and the author
hopes that there is still some interest in publishing another version.

In 81, we give a brief but precise formulation of the method used in {5], and
the determination of the matrix in question will be done in §2 (Theorem). Finally
in § 8, we show as an example that the 3-rank is equal to 6 for m=237-433-2293-3307.

The following notations will be used throughout the paper.

F;: the finite field with 3 elements.
I.: the group of fractional ideals in a finite algebraic number field k.
C.: the ideal class group of k.
d®Cy: the 3-rank of C,, i.e. dim (C,/C,%.
f(K/k): the conductor of an abelian extension K/k.
f®: the p-component of a conductor f.

§1. Reduction step

Let m be a cubic free rational integer and put 2=00/m ), k=0Q(+/ -3}, K=
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E(3/m). Let also © (resp. K) be the unramified class field over 9 {resp. K cor-
responding to the ideal group Cz* (resp. Cx®. By class field theory, d®Co is equal
to the rank of G(2/2). Denote by ¢ and ¢ the generators of G(K/k) and GK/$
respectively. Then r operates through the inner automorphism pr>zpz™! on G(K/K)
which is a veetor space over F,, and we have shown in [5] §1, that the rank of
G(2/9) is equal to the multiplicity of 1 appearing as an eigenvalue of this repre-
sentation of =. But if we denote by K, the unramified class field over K corres-
ponding to C,'7%, then K,cK and GK/K,) is a c-invariant subspace of G(R/K).
Hence the multiplicity in question is equal to the sum of those of ¢ on each of
the two spaces GK/K)GIEIK)=GKJK) and GKIK,).

The same argument in [5] §1 shows that the multiplicity of 1 on GX,/K) is
equal to the rank of the extension QKNK/K. We saw in [3] §3 that this is
equal 1o the number of prime factors p of m such that p=-+1 (mod 3).

To deal with the representation of = on G(K/K,), we recall the following two
faets {ef. ID] §82,3). Note that they are valid for any Kummer extension of de-
gree 3 over k.

iy G(K/K) is the commutator subgroup of G(K/k) and is contained in its
center. So the commutator funetion [%,y1 on G(K/k) is bilinear and depends only
on the cosets of 2 and y in G(K/k)/GK/IK) =G (K k).

(i) For each prime p in &k with p|f, f==f(K/k), let ¢, be a generator of the
inertia group of p in G(K\/k) and denote by the same symbol any extension of g,
to K. Then G(K/k) is generated by {o,},; and GE/K)) by {0y 0Tt

Now (i) means that we can know the action of = on [, 0,] if we know to,r!
in GUKy/k). Butin G(K/k), vo,c7! is contained in the inertia group of =p in G(KJ/k)
and hence it coincides either with o, or o™, As we will see, we can normalize
o, o that we always have coyr™'=¢¢,~'. The calculation of d®Co, therefore, will
be completed if we can find the linear relations among [s,,0¢,]. This will be done
in the next section (see Theorem).

82 Determination of a basis of G(K/K,

The goal is to find a basis of G(K/K,) in the notation of §1. Our method
does not depend on the fact that K/k is generated by a rational number. So we
assume that K is any Kummer extension of degree 3 over k and put K=£k(3/3),
aC kX,

Let f=f(K/k) and p,,..., D, be the prime factors of f. Let, for each b, 0,, be
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the element in G(K/k) as described in § 1, and denote them by g; for brevity. Let {
be a primitive cube root of 1 which we fix once and for all through this section.

Each o; is non-trivial on K. So, replacing o¢; by ¢;7! if necessary, we assume that
they act on K by

0!('{/(1 ):C{/&” 'L:l, 1t
Then obviously
(+) 05 €GIRIK) == ¥, a,=0 (mod 3,
4=1 =]

and hence, as we have seen in [4] p. 214, {o,, o;l={o;, aslon, 0,1 for any 2,7, k. In
particular G(K/K) is generated by {[o, ¢;}}%i=e. We want to find the linear rela-
tions among them. There are two steps.

a) By () of §1,

¢ ¢ ¢
U [ay, oi*i=[ay, I o%=]ay, 0,7 I 0%],
§=2 =2 i=2

where we put alz‘z:,‘z a;. Then, by (), the second element in the last commutator
belongs to G(K/K), 36 that it is equal to the Artin symbol ((K/K}/c) for an element
c¢€Ck, hence the last commutator in the above equality is equal to (RIK)jei).
But ¢,|K is a generator of G(K/k), hence K corresponds to the ideal group Cx®=
Cx0” (cf. [3] §2, Proposition 1) and therefore we see that

1 [g,, 0.1 =1==) 0 € Ci~1Cic%,

where Cx% is the subgroup of Cx of G=G(K/k)-invariant elements.

Next let Dy be the subgroup of Cx generated by G-invariant ideals in K.
Dy is generated by the prime factors P; of p; in K, and (Cx®: Dy)=1 or 8 (ef.
[2] Ia, Satz 18). If Cx®+#Dy, take any ideal $,;, (not necessarily prime) from a
class in Cx% not contained in Dg, and put ;=N (Bes). Then Cix% is generated
by these P,’s. If now we take any ideal % in ¢, we see,

c€ Cx™CxS==) A=B 1 I P7ily), 3BE€ Ik, Irc K>, )
€==) Ny (U) = I’I »*iNenr)), e K=, 3,)
@Cwl}njszK/k(r):ﬁ’ arer’ a(wrxj)r

where we denoted by 8 and z; arbitrarily chosen elements in k& generating the
ideals Nk, (¥) and p; respectively. Using the Hasse norm Theorem, we have thus
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shown that

[qh ]‘_1

if and only if the following system of equations for all primes p in k has a solu-

tion in {w,x;):
(BT
p i p b

We note that (&, a)/m =z, a)/p)=1 for Yplf, since { is a unit and (=) is a
norm from K.
bi  What remains is to know the value of ({3, a)/p) for a given set of integers
(@s,...,a). First we look for an ideal % in K such that
t >
g, I’ (fga“i:(!g/I('). a;= IIa]t

i i1

But by (i) of §1, it is sufficient to find an ideal A with

- KIKN_( Kk
oinlir=(F35 )= () o 5o

This is achieved by means of the norm residue symbol (for the definition and
properties of it, see [2] II, §§6-12). Namely, for each p;, ((5, Ki/k)jp) with g0
(mod ;) covers the inertia group of p; in G{Ki/k). So, for each 7, let 5; be an
element in k satisfying the following three conditions:

18,70 (med p), fi=1 (mod Fff,0), (‘9; » )=:,

where we put §,=f(K,/k). Then the element ((3;, K\/k)/p:) = ((Ki/k)/{(B:) sends Vea
to &% and hence coincides on K, with the o; chosen at the beginning of this
section (since G(Ky/k) is of type (3,..,3}, the relation ¢;(}/a ) =8« determines o;
uniquely on K,). This gives

t .
e oem [ K0 on &,
i=2 (iglwal 1_1,’950{)

Finally take a prime element = in k satisfying

&

=841 8% (mod fy).

t=2

Such an element does exist by the Theorem of arithmetie progression. Then (z)
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splits in K/k and (=) =Ng; (R for a prime ideal ® in K. We can take I and =
as ¥ and B in a) and we get

Ii_al =P
<,ﬁ;§>: cai p:piy 7:::2, ey t.
i wi

In fact, by the same reason as we indicated at the end of a), ((x,a)/p}=1 for pif.

Putting a) and b} together, we get the following result.

THEOREM. Let k=Q(v/ 13}, K=k(¥/a), a€k*, o be a generator of G(K/k),
and K and K, be the unramified class fields over K corresponding to the ideal
groups Cx® and Cy'~7 respectively. Let m,...,p, be the prime factors of §=F(K/k)
and & be a fived primitive cube root of 1. For each p;, let i be an clement of k
such that

5.0 (mod pi, =1 mod i), (Po)=c,
where we put §,=F(K\/k), and o; be any extension of ({8, K\/k)/v) to K. Then
G(KIK) is generated by {[o,, 0.} =2 For any set of integers (a,,...,a,), they sa-
tisfy the linear relation

t
,112[‘71, o %=1

if and only if the following system of equations for pIf has a solution in (w,2;):

(}3 “> 1 <jif,fi>=f _ { CnopEn, 4= ?2“"
b A L% p=p;, 1=2,.. ¢
Here the index 7 runs through 1,...,t or 1,...,t+1 according to whether or not
every ambiguous class in Cx contains an ambiguous ideal. In both cases, n;, for
j=1,...,t, is an arbitrarily chosen element of k generating p,. In the latler case,
find any ideal B in K contained in an ambiguous class but not equivalent to any
ambiguous ideal, and then we take as =, an arbitrarily chosen element of k
generating Ng ., (B).

REMARK 1. By virtue of the preduct-formula for the norm residue symbol,
we can drop one of the equations, e.g. the one for p={(+/"=3) if it is ramified.

REMARK 2. When a=m, every ambiguous class contains an ambiguous ideal
if m has a prime factor p+3 with p==+1 (mod 9}. cf. {2] Ja, Satz 13.

In order to earry out the procedure described in §1, we need one more fact
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which i3 easily verified from the definition of the ¢,’s.
LeMMA. Under the assumplions of Theorem, let a=m€EZ and  be as in § 1.
Then writing o,, for o;, we have

70,7 =0y, on K.

§3. Example

Let m=37-433-2293-3307. All the prime factors of m satisfy p=+1 (mod 8)
and the multiplicity of the eigenvalue 1 of 7 on G(X,/K) is equal to 4,
Next put

~1+v-3 11+3v/ -3 37+11v/23 95+7v/ =3
L= » TrE ey 3 Tga3™ - ey Tageg = ot s
11544/ —
Taa07 = 2« —3,

Yy (nrg) ete.,

and denote their complex conjugates by # and §. In the table below, the (p,r)-
component shows the exponent z of £ in {({r, m}/p)=¢*. Since our equations are
non-homogeneous, we have to find these values “canonically”, e.g. by means of
the formulas:

ﬁ,a.\:(:: )‘b i Pl e )R, BB,

p o/
(‘D’ >Ea”"”")“‘ (mod v) if pla.
4 Tyr Tags  Tasey  Tuzoer Tar Fi33 To209 Z3307
Var 0 0 0 0 0 0 0 0 0
g7 0 0 0 0 0 0 0 0 0
Ping 0 0 ] 0 0 0 0 0 0
Pyas 0 0 ¢ 0 0 0 0 0 0
Pagag | —1 0 -1 -1 0 0 1 1 0
Proga| =1 0 -1 —1 0 0 1 1 0
Dasgr 1 0 1 0 1 0 -1 1 1
Pagor 1 0 1 -1 -1 0 -1 0 -1

If we write oy for py; and gw for s, ete., and take oi; for ¢;, we get the system
of equations in Theorem in the following form:
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0 w —a+---+g)

0 & a

0 i b

0 ; é _ ¢

a } - d

a e

oo
La=-b /N oxy g

Hence the linear relations sought are

and

The

and

[1]

[2]

[31]
[4]
{51]

{032, 0229318 041, 08231 037, Ta307) (047, Gmaer ¥/ =1,
we can take as a basis of GK/K,) the following five elements:

o4, 053], (032, 0433, (031, o), [037, Taass), (037, 02208 ).

representation of « on GUK/K,) w.r.t. this basis is

[T oo BN B R
D QO O
DO D
O O O

the multiplicity of the eigenvalue 1 of this matrix is 2. Thus we get d®Ca
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