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§0. Introduction.

Recently a number of authors investigated the initial boundary value problem

I Nyt f),

at
0.1) ult, ©)s0=0,
(0, x)=a{x) ,

where £ is a bounded domain in R™ with the smooth boundary 9%, assuming that
the nonlinear term f(u) is a monotone nonincreasing function. (For example, see
Brezis [3], Brezis, Crandall and Pazy [4), Brezis and Strauss [5] and Konishi [14],
[15], [16].) They studied the equation (0.1) in connection with the theory of non-
linear semi-groups developed by Komura [12], [18], Kato [11}, Crandall and Liggett
[6] and others. Their result is the following:

The unique solution of the equation (0.1) exists globally in time and the
mapping Sa=u(t, -) has the semi-group property

S.Sa=S,a (t,820)
(0.2) Sa=a
limSa=Sa in X,

{8
and contraction property

1S.a—Sbllx=lle—blx,
where X is a suitable real Banach space with the norm | -llx, for example, L*(£2)
(I1Sp< ) or, Cy(f) consisting of the totality of continuous functions vanishing at
the boundary 22 with the norm jgjl= sup lg(@)].

On the other hand, for the solution of the initial boundary value problem of
the linear heat equation (diffusion equation)
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a0
(0.3) v(ty 95)!6.0“::0 1

(0, 2)=alx) ,
the following fact is well-known:

The solution #{t,x) can be extended analytically in ¢ to the sector
Z'K,Z:f:{zzﬂtmt’; larg z§<'g~} in the complex domain, and the linear operator
Ta=:u(z, ) (z€2.s) is a holomorphic semi-group in complex Banach space LP(Q)
(1<p<on) or G (ef. Krein [17], Yosida [20], [21]).

Now a guestion arises: Has the solution of the semi-linear equation (0.1) a
regularity property similar to that of the solution of the linear equation (0.3)?

The purpose of this paper is to show that solutions of the initial boundary
value problems for semi-linear parabolic differential equations like (0.1) are extensi-
ble holomorphically in ¢ to a sector &, in the complex domain which does not depend
on initial values, if the nonlinear term f(u) is a monotone decreasing polynomial.

The content is the following:

§1. Notations and summary.

§2. Monotone polynomials.

§8. Ordinary differential equations with monotone nonlinearity.
§4. Construction of a local (in time) solution.

§5. Global solutions of (IBVP) (proof of main theorems).

§6. Examples.

§7. Concluding remarks.

§1. Notations and summary.

Let us now introduce some basic notations and definitions in order to state a
summary of the present paper. Let £ be a bounded domain in R” with the smooth
boundary 9f2. We shall deal with the initial boundary value problem for u(¢, )
(tz0,2€8):

L1 %‘-:Awf(u) (t>0),
1.2) Bujsp=0,
1.3) w(0, x)=a{x) .

A is a second order elliptic differential operator of the form

(1.4) Au= 5_‘, aej(fr:) U+ E b (17)————u+c(a')u

aa,
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We assume that a (x), b(x), c¢(x) are real valued functions, e CQ) (0<a<l) and
e(z)=0. The a,(z) are symmetrie, i.e. e (x)=a;{&). A is uniformly elliptic;

(1.5) BIEPE 3 (@88, S81E (6, 8.>0,2e R,

2,31
and B is one of the following boundary operators;
(i) Diriclet condition Bu=u,

du

oy '

(1.6) (ii) Neumann condition Bu=
(iti) The third boundary condition Buz-@;& +a(xiu .
oY

Here /v denotes the outward conormal derivative, and we assume that o(x)=0
and smooth.

The nonlinear term f(x) in (1.1) is a polynomial with real coefficients. The
initial boundary value problem (1.1), (1.2), (1.3) is denoted by (IBVP).

REMARK 1.1. The comparison theorem for parabolic differential inequalities
holds for (IBVP) under the conditions described above concerning elliptic operator
A, boundary condition B and f(u). More precisely, if

%;i > Autfw) (t>0,z€9),
v
F SAv+f(v)y (t>0,z€2),

B(u—v)=0 on 092,
and u(0, x)=v(0, z) ,

then u(t, x)Zv(t, z) for t=0, x€ 2 (cf. Friedman [8)).

Some definitions concerning f{u) will be given.

DEFINITION 1.2. A polynomial with real coefficients f(u) is said to be monotone
or to satisfy condition (M), if f(0)=0 and f/(wW)=0 for ~—colu<+ oo,

Examples. fluy=—u??*!, —yu—u®, —u'—u’

DEFINITION 1.2. A polynomial with real coefficients f(u) is said to be monotone
on R,=[0, ) or to satisfy condition (M,), if f(u)==0 and f"(w)=0 for 0su<ceo.

Examples. flu)=—u?®, —u—ut, —u’—u’.

Let U(t, z,y) be the Green’s function of the linear initial boundary value
problem
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.7 %:Au t>0, €,
(1.8) Bu=0 t>0, z€dl,
1.9 u(0, ¥)==0d(x—y) (6-measure at z=y) .

Under our standing assumptions U(t, #, ¥) exists. The following fact holds for the
linear system of equations (1.7), (1.8), (1.9): Set z==¢+1it’.
(1.10) (i) U(t, z, 4 can be extended holomorphically in ¢ to the domain
Fen={z; Rez>0}.

We denote the holomorphic extension of U(t, z,y) by Ulz, %, ¥).

(i) Let h{z,x) be a boundedly continuous function defined on =

{z; larg zl<0<»~7-2r~v}><9, holomorphic in z (z€ 2;) and locally Holder continuous in

# uniformly on any compact set in 2, and let g(x)e L?(2) (1<p<co). Then

(1.11) u(z, x) ::Su Ulz, =, oly)dy-+ SZdrgg Ulr, z, w)hiz, y)dy
satisfies

(1.12) % = Au+h{z, x) zely, vef2,

(1.13) Bujzo==0 2€ 8, €0,

(1.14) lim fu(t, ) —gllora=0

(¢f. Friedman [8], Krein [17}, Tanabe [19] and Yosida [20]).

DEFINITION 1.4, The Green’s function of the linear system of equations (1.7),
(1.8), (1.9 has property (U.B.) or said to be uniformly bounded, if for every
boundedly continuous function g(x), there exist constants K>0 and 0<0< -TZL which

are independent of g(x) such that

S Ulz, 2, wgy)dy | = Kllgll.
2

for z€ 3Zy={z; larg2| <0}, where [gl.= sup. ().

DEFINITION 1.5. u(t, ) is said to be a solution of (IBVP) in 0Zt<T (7>0),
if the following conditions are satisfied:

(i) u is continuous and bounded in (0, T)x2. At t=0, }imo1¢(t, r)=a(x), r€ .

(ii) j%, 4==1, ---, m, is continuous in (0, T)X @2 and the boundary condition
ey

(1.2) is satisfied on 802
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(iii) u(¢, x) is once continuously differentiable in ¢ and twice continuously dif-
ferentiable in z in (0, T7)X® and the equation (1.1) is satisfied there.

THEOREM 1.6. Suppose that the nonlinear term f(u) in (IBVP) satisfies
condition (M) and the initial value a=a(z) is real valued and boundedly con-
tinuous in 2, and that the Green's function Uz, x, %) of the linear sustem of
equations (1.7), (1.8), (1.9) has property (U.B.). Then there exists a sector
Zo,={z; larg z|<O;} in the complex domain which is independent of a(x) such
that the solution u(t,x) of (IBVP) is analytically extensible in t to the sector
g,
THEOREM 1.7. Suppose that the nonlinear term f(u) in (IBVP) satisfies
condition (M,) and the initial value a=a(x) is a nonnegative and boundedly
continuous function in x, and that the Green's function Uz, =, ) of linear
system of equations (1.7), (1.8), (1.9) has property (U.B.). Then there is a
sector Zg,=={z; larg z| <0} in the complex domain which does not depend on a(x)
such that the nonnegative solution w(t, x) of (IBVP) is analytically extensible
in t to the sector Xy,

§2. Monotone polynomials.

In this section we shall give lemmas concerning polynomials with real coeffici-
ents satisfying condition (M) or (M,) as a preparation for the next section.

LeMMA 2.1. Let a polynomial f(u) satisfy condition (M) and f(u)%0. Then
the followings hold:

(i) There exist nonnegative integers k, h and a positive constant K such
that

F)l & Klu|® (14 ul®)  for all ueC.

(i) There is a positive constant L such that if uz0, then f(u)s —Lu*ix
1+u), and if w0, then f(uw)=— Lu+ (14 uth),

PrOOF. Since f(0)=0 and f(u)#0, we ¢an put

SJlw)y=—wu b+ byu+ --- +but),
where s=1 and b, are all real, b,==0, b,#0. Set
glu)=by+byu+ - +-but .

Since f(0)=0 and f/(u)<0 for ue(—o0, +o0), we have
(2.1) fu)<0 for u>0 and lim f(u)=—o0,

U ~ro0

2.2) f)>0 for <0 and lim f(u)=+oo,

et
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(2.3) g(u)#0 for —cou+oo.

Hence from (2.1), (2.2), (2.3) it follows immediately that >0 and g(u)>0 for
o <UL + o0, 80 t:=2h (an even integer) and s==2k+1 (an odd integer). Thus

we 3e¢

@4 Fu)=s — U Bot bt -+ bpau™)
and

2.5) g =by+but - +byu

where b, b,>0. From (2.4) |f(w)| = Klu|?**(1+|u|**) for some constant K. Since
gu)>0 for —oo<u< 400, it follows easily from (2.5) that there exists a constant
L such that g(w) 2 L{1+u4*) for —co<u<+oo. This implies (ii).

LEMMA 2.2. Let a polynomial flu) satisfy condition (M,) and f(u)z0.
Then followings hold :

(i) There exist nonnegative integers k, h and a positive constant K such
that

f@) S Klul 1+ ul?) for all ueC .
(i) There exists a positive constant L such that
if u=0, then flu)s—Lu**(1+uM).
ProoF. From the assumptions we can put
(2.6) Say=—ur* o+ byu+t - +but),

where b,, b,#0 and k, h are nonnegative integers. Set g(u)=b,+bu+ -+ +byut.
We can easily show that g(u)>0, if #=0. Lemma 2.2 follows immediately from
this fact.

§3. Ordinary differential equations with monotone nonlinearity.

The purpose of this section is to obtain estimates of the solution of the initial
value problem for the ordinary differential equation;

du
—=fw) (>0),
3.1) dt

uw(®=a (eeR),

where f(u) is a polynomial satisfying condition (M) or (M,).
First we assume that f{u) (20) in (3.1) satisfies condition (M). Then from
Lemma 2. 1
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s Kjul® 1+ 1uj?) for all ueC,
(3.2) S = —Lu*'1+u>) for uz0,
f)z—Lu*'1+u) for uzs0.

PROPOSITION 3.1. Suppose that f(u) satisfies condition (M) and is not a
linear function. Then for the solution u(t) of (3.1) the following estimate
holds :

(i) of f1(0)=0 (kz1),

8-3) fu(t)] = C min (§~V3k ¢-1/2E+R)y
(i) of SO0 (k=0, hz1),
[#(t)| < min (e"%|a], Ct~V*) ,

where C 18 independent of a.
PrROOF. Let f/(0)==0 (k=1). First we assume a=0. Then u(f)=0, because
f(0)=0. By (3.2), if u=0,

@.4) J) S —Lu 1 (1+uy < — Lu*ttt
Now consider the equation

dv

(3.5) -&-“_:—L'v““ . v(0)=a.

The solution of (3.5) is v(t)=a(l+a®**2kLt)~V**. From (3.4) and the comparison
theorem for ordinary differential equations we have
(3.6} 0sut)yso(t) .

Since v(t)==a(l+a>*2kLt) V¥ (kL) V¥V, by (3.6) u(t) <(2kL)-v2g-1/2x,
Next let a<0. Then u(f)<0. From (3.2), if u<0,

3.7 flwyz —Lut* ' (1+ut*) z — Lyt

Hence comparing with v(t),

(3.8) Oz ult)=a(l + a2k Lt)" V%> — (2 L)~ Vg1,
Thus
(8.9) lu(t) S Rk L)~V k-1

On the other hand, flu)S —Lu**»*! for =0 and f(u)z —Lu***»*! for 50,
so in the same way as above we get |u(t)| S (2L(k+ h))-1/2¢+0¢-172G+0  Therefore,

(3.10) lu(t)| S C min (£71/%%, g-1/204m)
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where C== max ((2kL)~V%*, (21.(k + h))-1/2E+4),

We can show (3.3) (ii) analogously.

Next we assume that f(x) (#0) in (3.1) satisfies condition (M,). By Lemma
2.2 we have

)= Klul*Q+1ul*) for all ueC,
f) s —Lu** ' (1+u") for all =0,

(3.11)

where k, h are nonnegative integers and K, L>0.

Prorosition 3.2. Suppose that f(u) satisfies condition (M,) and is not a
linear function. If the initial value @ is nonnegative, then for the solution
u(t) of (3.1) the following estimate holds:

(1) if f10)=0 (kz1),
(3.12) 0= u(t)<C min (t-VE, gy
@) if f7(0)#0 (k=0,hz1)

0Z2u(t) < min (e~*a], Ct-V*r) ,

C being independent of a.
ProoF. First we assume f/(0)=0 (k=1). Since ¢=0 and f(0)==0, u(t)=0.
From (3.11)

(3.13) Suys —Lu(1+ur)y s — Lurtt
and
(3.14) flwys —Lu**"*t for uz0.

Let us consider auxiliary equations as in the proof of Proposition 3.1;

(3.15) %’Z’l =L y(0)=a,
and
(3.16) AU Lt y0)=a

X o )

The solution of (3.15) ((3.16)) is v(t)=a(1+a*k Lt)~/* (resp. a(l+a*" " *1(k-+ h) Lt) -t/ ),
Making use of the comparison theorem for ordinary differential equations, we have

3.17) Osut)Sa(l+arkLt)-VE<Ct-VE,
{3.18) O0sut)ysa(l+a®»(k+ ) Lt)~Van L Cf-vE+n
where C== max ((kL)~*, ((k+ h)L)-1&+m),
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Thus from (3.17) and (3.18) we have
3.19) 0= u(t)=C min (¢7V5, V&0 |
The proof of (3.12) (i) is the same as above.

§4. Construction of a local (in time) solution.

In this section we shall construct a holomorphic solution locally in time by the
iteration method.

Now we consider the initial boundary value problem with the initial time fo=<
(z=0)

g Eiu =Au+fu) ,
ot

i Bu=0,

Uz, 2)=alz) .

(IBVP).

ProposiTION 4.1. In (IBVP). assume that
{1) a{z) is a boundedly continuous function,
(ii) fu) is a polynomial such that
IS Klujr A+ 1ul9)  (pz20,920),
(iii) the Green’s function Ulz, z,9) of the linear eguation has property
(U.B.) (¢f. Definition 1.4), that is, for every boundedly continuous function
g(x) there are constants M, 6 (0<0< —;—) such that

“4.1) sup

ze:‘g,;tci?

So Ulz, x, mo(y)dy

=M sup lg(x) = Mg ,

where Sy={z==t+1t; |arg z|<0}.
Then there exists a solution u(z,z) of (IBVP). which is holomorphic in

1
[, |z—7is } where A==
| | Allaliz(i+ Bllal)?)

time in A .= {z:t+it’; larg (z—1)
K@M)** and B=(2M).
ProoF. (IBVP), is transformed to the integral equation:

(4.2) ufz, w)=§ Uz—r, 2, yaly)dy + S zdsg Uz—s, z, f(uls, yhdy .
92 T g
We shall solve this integral equation (4.2) by successive approximation:

(2, x):g Ulz—r, =, y)uly)dy ,
Ja
(4.3)

U i1 (2, ) =Uo(2, x)+§ dsg Ulz—s, «, )f(u(s, dy (n=0,1,2, ---).
- a
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Let us show that u,(z, ) is holomorphic in 2z and
(4.4) fualz, Hll.=2Mal. ,

for ze 4, by induction on m. Obviously u.(z, ) is a holomorphic function of z and
by the assumption (iii)

(4.5) luoz, .= Mllall, (z€4,).
Assume that u.(z, ) is holomorphic in z (z€ 4,) and
lualz, Y| S2Mllall. (ze€4).

Clearly ,4,(z, z) is holomorphic in z for ze 4,. From (4.3) we have

(4.6) uaiilz, .= Mlall. +lz—c| KM@2M|lall.)?"* (1+@2Mlal.)?) .
Since
lo~e]< :
Alal2(1+Bllajz) ’
where A=KQ@M)»** | B=(2M)*,
we have
(4.7 lnir(2, aS2M 0l (e 4) .

We now consider the equality
4.8)  Uars(2, B)—u,(2, 2)= Szdsgg Ulz—s, x, W{f (a8, ¥))—SWa-r(s, ¥}y .

Since [Ju,u(z, -)[.=2M|a|.. (z€4,), there is a constant H depending on |ajl. such
that

(4'9) ”f(uﬂ(si '))'—'f(un—l(s; '))“méH”un(Sr ')——‘un—-l(sr ')”w )
for sed, and »==1,2,3, ---. We can derive from (4.8)
(4-10) ”uwn(zf ')"u‘n(zv ')”mé‘ng/IH“un(sr ')"_—u/n-x(sy )umldsl .

We shall prove

lz—zi®
n!

(4.11) iz, ) —un (2, M= (MH)*y ,

where y= s_u’p fluy(z, -)—uo(z, )= In the case n=1 (4.11) obviously holds. If (4.11)

is true for n::m—-l, then from (4.10)
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e — wmlm=]
(4.12) it e, )=tttz D= | rED B )
-7 (m“"l)‘
< (MH)mE:_’_‘Z;..
m!
In view of (4.11) it is clear that f} .1z, )—u,lz, )|l converges. This implies

that u,(z, z) converges wu(z, x) uniférmly in 4.. By making n - oo in (4.3), u(z, 2)
satisfies (4.2).

§5. Global solutions of (IBVP).

In this section we shall prove Theorem 1.6 and Theovrem 1.7. First let us
assume that f(u) in (IBVP) satisfies condition (M). First of all we shall establish
the uniqueness and global existence of the solution of (IBVP).

PROPOSITION 5.1. Assume that the initial value alz) is boundedly continu-
ous. Then the solution of (IBVP) is unique. Furthermore, if a(x) is real-
valued, then the solution exists globally in time.

ProOF. Since f(u) is a locally Lipschitz continuous function, it is obvious by
the standard argument that the solution of IBVP is unique (cf. Segal [18]). Ex-
istence of the local solution is guaranteed by Proposition 4.1. In Proposition 4.1
the interval in which the solution exists depends only on the norm jjaf... Hence
in order to extend the solution (¢, 2} to the interval [0, oo) it is sufficient to
obtain an a priori estimate, that is, to estimate [lu(t, -}{.. in terms of |al. (cf.
Segal [18]). Now f{u) satisfies condition (M), so we can put

(5.1) Su)=—uh(u) .
Here h(u)=0. Therefore the equation (1.1) has the form

du
(5.2) —a—t—mAu q(t, 2)u ,

where q(t, z)=h(u(t, £))=0. Making use of the comparison theorem we have |[u(t, x)|
<{t, ), where (¢, ) is the solution of the linear eguation
v
at
By=0,
20, z)=lalz)| .

=Av,
(5.3)

For o(t, ) the estimate

(5.4) 0=o(t, ©) = explct)lal.
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holds, where ¢== sup ¢(z) (ef. Ito [10]).

Thus we havgéhe desired a priori estimate
(5.5) Hu(t, .= explct)al. .

REMARK 5.2, For a treatment for (1BVP) in the space of continuous functions
with the aid of the theory of nonlinear semi-groups we refer to Konishi [15].

We shall give an estimate for the solution u(¢, ) which is important for proofs
of main theorems. In the following k, h, C, and L are those in Lemma 2.1 and
Proposition 3.1.

THEOREM 5.3. In (IBVP), assume that alz) is real-valued and boundedly
continuous und f(u) is not a linear function. Then we have

(i) if S1(0)=0, i.e. k=1, then

(5.6) [u(t, 2)) < C min ({72, g-126m) |
and

(i) if f1(0)£0, i.e. k=0, h=1, then
6.7) lu(t, 2)| < min (Ct1/2, e=*al.) .

Proor. Consider the ordinary differential equation for w(t)
(5.8 D f)  wO=]al. .
dt
Since c(x)<0 and o(z) =0, w(t) satisfies the differential inequality

9w = Aw-+f(w),
(5.9) at

Bwz=0.

Therefore, by applying the comparison theorem for parabolic differential inequalities
we have

(5.10) [ult, x)] < wlt)

because of Ju(0, x)l=|a(x)|S|lal]l.. Consequently, by Proposition 3.1, this implies
(i) and (ii).

Now we are going to prove Theorem 1.6.

PROOF OF THEOREM 1.6. We notice that by Proposition 5.1 there exists the
unique solution w(f, x) on the nonnegative interval R*=[0, c0). When f(u) is a
linear function, the statement of Theorem 1.6 is clear. So we may assume that
S(w) is not a linear function.
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Consider the initial boundary value problem (IBVP). with the initial value
u(z, x) at t=r. According to Proposition 4.1 it follows from Lemma 2.1 (i) that
there is the unique solution u(z, ) which is holomorphic in z in

. I.z{ ; - - 1 l
OH A= (2 farg (o <0 oS e S B, )

Of course u(z, 2) is coincident with u(t, x) on [0, co) because of the unigueness.
In the following we shall give the proof, dividing two cases.
(i) The case f/(0)==0 (k=1). According to Theorem 5.3
Ju(e, )| S CoV2k |

Therefore the domain

- 1
. { “:-5 : — —ri g
(5.12) P4, {Z i larg (z—0) <0, z—1] = 4,01+ B,c-"¥) } »

where A;==AC* and B,=BC?®, is contained in A,. This implies that there is a
constant §; such that when z=1, the domain

(6.13) {z; larg (z—17)I<0, |z—7|=Sd,7)
is contained in 4,. On the other hand by Theorem 5.3
Iu(r, x)[éc.‘.“l/‘z(k%-h) .

So u(z, x) exists in

1
(5.14) {z; lal’g (Z'—T)l<€, Iz’_flg Axr,k/(hq-k)(l+Blr—n/(k+h)) } .

Hence u(z, x) exists, if r<1, in the domain

(5.15) {z; larg (z—1)|<0, |2—7|Sds7} .
Thus u(t, x) is extensible holomorphically in ¢ to the domain
(5.16) {z; larg z—1)| <8, |z—1| S b7},

d being min (3,, 6,). It is easy to see that

(6.17) Lz)n{z; larg (z—1)| <4, lz—r| =47},

contains a2 sector
(5.18) 2o, ={z=t-+it’; larg z|<8,, 0<H,<0}.

(ii) The case f’(0)=0. As a preparation for the proof for this case, we state
a simple lemma.
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LEMMA 5.4. Let U(t,z,vy) be the Green’s function of the linear system of
equations (1.7), (1.8), (1.9) and q be a positive number. Suppose that U(L, z, y)
has property (U.B.). Then
(5.19) Ut, z, y)=Ult, =, y)e

is the Green’s function of the linear system of equations

%% ::Au—uqu::;fu s
Bu=10,

ult, )=06(x—1y) ,

(5.20)

and for every bounded continuous function g{x)

(5.21) SNlgl. (largz| <),

Szdsx Uts, , y)gy)dy
il 2

N being a positive constant which is independent of z and g(x).
PROOF. The first statement is clear. Since U(¢, z, %) has property (U.B.) (cf.
Definition 1.4),

Szdng Us, , y)g(y)d-y' = S:Me"’“‘“ fgli.ldsi= Nigll. .

Now we shall proceed to the proof of Theorem 1.6 for the case f/(0)%0. Put
h{w)==qu+f(u). Here g=-f"(0) (¢>0). So A{0)=h'(0)==0 and

(5.22) RS K(ul + 1wl (rz2, hzl),
(IBVP), with the initial value u(r, ¥) is rewritten into the form:
g %& == Au—qut-(qu-+fu) = Aut+h) ,
(5.23) ¢
( Bu=0.

(5.23) is transformed to the integral equation:
(6.24)  ulz, x)ﬂg Uz—r, x, yhulz, y)dy-i-gzdsg U(s—z, =, v)h(uls, y)dy .
Q S fel

We shall solve (5.24) by the iteration. The iteration procedure is the same as in
the proof of Proposition 4.1:

(5.25) Ug(2, T) = g Uz—z, =, y)ulc, y)dy ,
2

(5.26) Ues (2, ) =105z, )+ S"dsg Ols—r, &, 9)hta(s, ¥)dy .
¢ 2



Initial boundary value problems 33

We now verify that when jarg (z—17)| <8,
(6.27) [Ualz, )| S2MCr-V2r
for sufficiently large r. Obviously by Theorem 5.3 Ju,(z, x)| S MCr-"**. Assuming

(6.27) for n, we have from (5.26)

(5.28) Iun+1(zg x)lélwcr—lli‘.h_*_

gidssg Uls—z, =, mh(u.(s, y)dy
éMCr“’“+NK((21¥46;)'T“"””‘+(2MC)““‘r“‘“”"’")z*“"‘ ,

making use of (5.22) and Lemma 5.4. For sufficiently large t (r=7,)

(5.29) NE((2MC)re@=r/2 4 (2MC)2h+1z0-200 )=tk < MCr-1/2n

Thus we have (5.27) for ze %, .,

(6.30) Zo.e={z, larg (z—7)| <6} (r27y) .

By means of (5.27) and by an argument similar to the proof of Proposition 4.1,

we can show that (IBVP),, with the initial value u(z,, ) exist in 2.

For 7=r7,, using the estimate of u(r, z) we can prove that u(f, ) is extensible
holomorphically in £ to the domain

(5.31) {z; larg (z—7)| <0, |z—1|S87} (c=7))

in the same way as for the case f/(0)=0. Therefore the solution of (IBVP) is
holomorphice in ¢ in a sector. Theorem 1.6 is proved.

Next let us assume that f(u) in (IBVP) satisfies condition (M,). Correspond-
ing to Proposition 5.1, we have

PROPOSITION 5.5. In addition to the assumption as above, suppose that the
initiel value alz) is boundedly continuous and nonnegative. Then the unique
solution of (IBVP) exists globally in time.

PrOOF. Since f(0)=0 and f’(x)=0 for uz0,

(5.32) 0=ult, )<|al. .

Noting (5.32), we can show the proposition by an argument similar to the proof of
Proposition 5.1.

THEOREM 5.6. In addition to the assumptions of Proposition 5.5, suppose
that f(u) i3 not a linear function. Then we have

(i) if f/0)=0, i.e. k=1, then

(5.33) 0Su(t, ) S C min (¢, ¢1/%+m)

and



34 Sunao Oucul

(i) if f/(0)£0, t.e. k=0, k21, then
(6.34) 0= ult, £) = min (Ct™/*, e~*|lall..) .

Here k, h, C and L are those in Proposition 3.2.

The inequalities (5.33) and (5.34) can be obtained in the same way as for
Theorem 5.8, so we omit the proof.

We can prove Theorem 1.7 in the same way as for Theorem 1.6 by making
use of Propositions 4.1, 5.5 and Theorem 5.6.

§6. Examples.

In this section we shall give sufficient conditions for the elliptic operator A and
boundary condition B under which Green’s function of the linear system of equa-
tions (1.7), (1.8}, (1.9) has property (U.B.).

Now let us consider the following boundary value problem for u(z):

(2~ Ayu=vlz) ,
Bu=0.

(BVP)

The following facts concerning (BVP) are well-known: The operator A with
the domain D(A),

D(A)=={u; ue W), Bu=0},
W) being the Sobolev space of order 2, is a closed operator in L*(2). The
resolvent kernel of (BVP) Gifz, y) exists for i outside the speetrum o(4), and
6.1) o{AYc{i; Rels—(Im i1—a)?4-b} for some real a, b.

PROPOSITION 6.1. Suppose that one of conditions (1), (#1), (447) below, con-
cerning the elliptic operator A or the boundary condition B holds:

(i) clw)s—c, <0,

(ii) Bu=u {(the Dirichlet condition),

(iii) Bus—é%—u—}»a(x)u , a{x)Za,>0 .
Then the Green’s function Uz, xz,y) of the linear equations (1.7), (1.8), (1.9)
has property (U.B.), i.e. 1s uniformly bounded.

In order to prove Proposition 6.1 we give lemmas. Set for a boundedly con-
tinuous function g¢(x)

6.2) T.g=§ Ute, z, oy (e=t+it’) .
2

LEMMA 6.2. Assume that one of the conditions (i), (i1), (i11) in Proposition
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6.1 holds. Then there are positive constants M and w such that
(6.3) I Togll.= Memtijgl. .

For proof we refer to ch. 6 in Friedman [8].
LeEMMa 6.3. Under the same assumptions as in Lemma 6.2 there exist

a<0 and 0<a<% such that

a(A)c{z; =2 larg (A—a)| = a - —‘2‘~§ .

PROOF. From (6.3) for Rei>—w we have
6.4) S Gile, y)g(y)dy:re-mgdt
o 0

=re‘“dt5 Uit, =, we(ydy .
g

[}

Hence, the resolvent kernel G,(z, y) exists for Re 1> —w. On the other hand ¢(4)
is discrete. Therefore, from (6.1) the statement of Lemma 6.3 easily follows.

PROOF OF PROPOSITION 6.1. The Green’s function Uz, %, y) is represented by
the resolvent kernel Gi(z, y) of (1—A)~! of (VBP) as

6.5) T,g:i,g e (1—A)-1gd2
271 r

51.__ S ei'dzg Galz, Yo dy .
Tt Jr 0

i

From Lemma 6.3 we can take the path I’'=I"+yr-,

It = j.g’. _,;uygi("'E"':';“), 0§7~<ool [’=-_,__5f‘_' -+ f,~e'“i(" i‘%’), ();»;'r-(oo} .
(2 J! | 2

Hence, if largz|<a, the Green’s function U(z, x, %) is uniformly bounded, because
<0 (cf. Remark 6.5 stated below and Tanabe [19]).

Combining Proposition 6.1 with Theorem 1.6 or 1.7, we have

THEOREM 6.4. Assume that one of the conditions (i), (i), (111) in Proposi-
tion 6.1 holds. If the nonlinear term f(u) in (IBVP) satisfies condition (M)
((M.)), then every solution whose initial value is real-valued (resp. nonnege-
tive) 18 holomorphically extensible in t to a sector Zpy=fz; larg 21 <0} which is
wndependent of initial values.

REMARK 6.5. The operator T, defined by (6.2) has semi-group property for
PP

(1) TTw=T.0 2, weZsp),
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(iiy Ty==1I,

(iii) hm Tw="T.g (w0 in X,
X being mLz(.Q) (1<p<ecz) or C() which is the space of boundedly continuous
functions g(x) with the norm jlgf..= azug lg(z)]. The continuity at the origin

6.6) {iﬂg;x (T.9)(x) =g(x) (fa’"g 21<h< %) '

is uniform on any compact set in 2 and (6.6) holds also in L?(2)-topology. As for
boundedness of 77,

6.7) 1 Tegll.. = Mo, n exp (o, sl2l}ligll..

for ze{z; largz| =4, |2z R}. This follows from (i) and (iii).
On the other hand for ze{z; larg 2|26, 2] S 7},

(6.8) {U, &, W =Cy, 12177 exp (—cp,, lu—y1*/|2]172)

holds (cf. Arima [1], Eidelman [7], Friedman [8], Ilin, Kalashnikov and Oleinik
[9], Ito [10], Tanabe [19]). After simple calculations we have

6.9) Tl s My gl -
The relation (6.4) and (6.5) follow from the theory of semi-groups. If we can take
@y, =0 for some 0 in (6.7}, then Ulz, 2, 4) has property (U.B.).
We shall give another sufficient condition under which the Green’s function of
the linear equations (1.7), (1.8), (1.9) has property (U.B.).
PROPOSITION 6.6. Suppose that the elliptic operator A has the form
A= ﬁ} d

$. st 69:,;

<ai Ax) ~a~a— u) +el@u  (c(x)<0)
¥y
and the boundary condition B is
Bu= —§~u+a(m)u y (o(@)20).
14

Then the Green’s function Ulz, x,y) of the linear equations (1.7), (1.8), (1.9) is
uniformly bounded.

Before proving the proposition, we note that the operator A with the boundary
condition B is non-positive self-adjoint. Then T,g defined by (6.2) is represented
by the spectral measure E(r) associated with A :

6.10) T,g= S° exp (c)dE(0)g .

—o0

The following lemma is essentially due to Beals [2].
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LEMMA 6.7 Let | be an integer such that l>~§’-. Then for ge D(AY) (the

domain of A% the estimate

(6.11) lgll.= CllA'gll .20y + 1l 9l 22can)

holds.

PrOOF. Set A;=1—A. Then A;! exists. From the assumption we can choose
2=q; < ¢, < +++ <q,(l=s) such that 1/g,., >1/q,—2/n, 0>1/q,—2/n. A;'maps L% to
the Sobolev space W% CL%+1. So A;® maps L® into W*iscL® Since Aj'=
A;SASY, we have

6.12) loll.<CllAigl o -

Making use of spectral representation of A, we have (6.11) from (6.12).
LEMMA 6.8. The inequality

M
6.13) NA' T, gl 20 = ‘(‘ﬁe—;—)'; g2 -

holds for Rez>0.
ProOOF. (6.13) follows from the equality

AT g B

]
o T,g= S texp (r2)dE(r)g .

.00

ProOF OF PROPOSITION 6.6. Combining Lemma 6.7 with Lemma 6.8 we have
for a boundedly continuous funetion g(z)

(6.14) I Teolle =2 CU A Togll 2oy +1 Tug 220

M, )
sc( s+ Nolizaar

Since 2 is bounded, for Rez=1 and |arg z|<0 < —725—

=Migll.» -

(6.15) (T @)= l[ S UG, =, Wowdy [

For Rez=<1 and larg 2| <48, there is a constant M such that
(6.16) | T.oll.< Mligl. ,

by (6.9), (6.15) and (6.16) imply that Green’s function Ulz, z,¥) is uniformly
bounded.

REMARK 6.9. By arguments similar to that in the proof of Proposition 6.6
we can show the same result as stated in Proposition 6.6, for elliptic operators
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with coercive boundary conditions which are non-positive self-adjoint.
THEOREM 6.10. Let the same assumptions as in Proposition 6.6 hold. Then
the same result as stated in Theorem 6.4 is true.

§7. Concluding remarks.

(i) L*theory. In preceding sections we discussed under the condition that
initial values are boundedly continuous. When initial values are real-valued and
belong to L2(2) (1=p<o0), the fact deseribed below is known under some regularity
conditions by applying the theory of nonlinear semi-groups:

There is a unique generalized solution (¢, ) of (IBVP) and the mapping
S.a=u(t, -) has the semi-group property,

(7.1) SLS,(IISSH.,G t,sz0),
(7.2) Se=a ,

(1.3 llirrg Sa=8a in L*Q),
(7.4) ISia—Sbll.ray S e la~bl e, -

(Sec Brezis [3], Brezis, Crandall and Pazy [4], Brezis and Strauss [5], Konishi [14],
[15], {16].) In view of these results, we shall give remarks on solutions with
initial values in L*(2).

Let Iy, be the sector in Theorem 1.6 and K be an arbitrary compact set in g,
According to the proof of Proposition 4.1, there is a constant Cx which is in-
dependent of initial values such that

(1.5) juz, 0)|=Cx (e K) .

Since f(u) is a polynomial

(7.6) [fu)—f) S Aylu—r| for Jul, 0|2 M.

Combining (7.5) with (7.6)

(1.7 (e, ) —=v(z, Miror S Crlla—bllirco

where u(z, 2) (v(z, x)) is a solution of IBVP with the initial value a(x) (resp. b(z)).
The inequality (7.7) implies

(7.8) 1S.2~Sblre S Cxlla—blliray (z€K) ,

for boundedly continuous functions a(x) and b(x). As continuous functions are
dense in L*(2), (7.8) holds for any a(z), b(z)e L*(Q). Thus solutions obtained by
the method of nonlinear semi-groups are holomorphically in time extensible to the
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sector Xp,. Analogously Theorem 1.7 can be extended for solutions with nonnega-
tive initial values in L7(©).

(ii) Unbounded domains. The boundedness of 2 required above is not
essential. Our arguments are based on the following:
(@) uniform estimates of bounds of solutions of

du
(8) comparison theorems for parabolic differential inequalities,

{y) uniform boundedness of Green’s function of parabolic equations with boundary
conditions.

For example, consider the initial value problem

9wt fw),

(IVP) a
w(0, z)y=a(x) ,

in [0, o)X R". The Green’s function of heat equation Uz, x, ¥} is given by

Uz, 2, y)= ! — exp (—|z—yl*/42) ,
(4nz) %

and satisfies
(1.9 lgm Uz, z, ey dy| S Mgl . (largz{<0) .

The inequality (7.9) implies the uniform boundedness of the Green’s [unction.
Therefore, from arguments similar to the proof of Theorem 1.6 or 1.7, we have

THEOREM 7.1. Assume that f(u) in (IVP) satisfies condition (M) ((M.)
and the imitial value a(z) is real-valued (resp. monmegative) and boundedly
continuous. Then every bounded solution is holomorphic in time in a sector
Zg,={z; larg 2| <p} which does not depend on initial values.

(iii) Abstract theory. For abstract evolution equations we can obtain results
similar to those in preceding sections. Let X be a complex Banach space with the
norm ||-]lr. Let ¥ be a real subspace of X which is a Banach lattice with unit
1. Consider the abstract evolution equation

L

(AEQ) dt

#(0)=a .
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We assume that A is a gencrator of a holomorphic semi-group T,, which satisfies
(7.10) Tyl z=Miallx for z€{z; larg2i<4},
(7.11) ITal:<laly aeY,

and T.Y,.CY,, Y, being the totality of nonnegative elements of ¥, and
3
(7.12) flu)= ’:5;‘,1 B(u,u, -, u),

where By(u,, #s, s, - -+, Uy) is a multiple linear mapping, and f(u) is monotone on
Y(Y,), that is,
f)zf(v) for uswv (resp. 0ZSus).

Under certain conditions on f(u) which assure uniform estimates of solutions of
ordinary differential equation,

du _
7y =f(w) ,

u(0)=a, €V,

we are able to show results analogous to main theorems.
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