Singularities in contact geometry and degenerate

pseudo-differential equations

By Toshio OsSHIMA

To study differential equations, one of the most powerful approach is to
transform them into simple forms. For example, in the theory of non-linear partial
differential equations of the first order with one unknown function, established by
Lagrange, Hamilton, Jacobi [6], Lie, Carathéodory [1] and others, it is well-known
that the equations without singularities can be transformed into equilibrium systems
by contact transformations. Recently, also in the theory of linear partial differ-
ential equations, this approach has been proved to be greatly useful. In fact, we
can employ 2 wide class of transformations when we consider the equations in the
category of pseudo-differential operators. The transformations are initiated by
Maslov [9] and Egorov [2] and called Fourier integral operators by Hormander [4]
or quantized contact transformations by Sato, Kawai and Kashiwara [14] (which
we abbreviate to S-K-K hereafter in this paper). In S-K-K, it is shown that any
system of pseudo-differential equations with one unknown function and simple
characteristics can be transformed micro-locally into a partial de Rham system by
a suitable quantized contact transformation in the complex domain and the micro-local
structure of the system becomes clear. The pseudo-differential operators are defined
on the cotangential projective bundle P*X of a complex manifold X and “micro-local”
means “local on P*X”. Note that P*X has a natural contact structure and that
the support of any system of pseudo-differential equations with simple characteristics
is regular as an involutory analytic set in P*X.

In this paper, we investigate the structure of the systems of pseudo-differential
equations whose supports are involutory submanifolds with singularities arising
from the contact structure. For this purpose, we must investigate the structure
of singularities of involutory submanifolds in a contact manifold, while, of course,
it is a very interesting problem in itself to study singularitics in contact geometry.

In §1.1 we quote a result from Oshima [10] about the maps defined by linear
differential operators of the first order with degenerate symbols. In §1.2 we
examine the local structure of vector fields degenerale at the origin. The results
in §1.1 and §1.2 are lemmas for theorems in the following sections.

In §2 we study the structure of singularities of involutory submanifolds in a
contact manifold. In §2.1 we define a very simple class of such singularities and
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in §2.2 we give a sufficient condition for a singularity to be of this class. This
condition shows that the singularities generically belong to this class. Then, we
give an application to non-linear partial differential equations of the first order with
singularities.

In §3.1 we decide the condition for two pseudo-differential operators to be
conjugate when the operators have not simple characteristics and when the gradi-
ents of their principal symbols do not vanish. In §3.2 we transform the systems
of pseudo-differential equations whose supports are not regular into simple systems.

Throughout this paper, we treat these problems (micro-)locally in the complex
analytic category or real analytic eategory.

The author expresses his sincere gratitude to Prof. M. Sato, Prof. T. Kawai
and Prof. M. Kashiwara for their guidances and kind explanation of S-K-K, which
became a motivation to write this paper, and to Prof. H. Komatsu and Prof. K.
Aomoto for their advices and constant encouragement. Without the atmosphere
of the seminars with them this paper would not have been written.

1. First order linear differential operators.

Let
3 a
(L.1) P= 3] a(x) =— +b)
ict g

be a first order linear differential operator with analytic coefficients at the origin
of C» We denote by ¢ the stalk at the origin of the sheaf of the ring of
holomorphic functions over C». For the operator (1.1), a and b denote the ideals
of ¢ generated by a,(x), « -+, Ga(x) and a;(@), <+, a.(x), b(x) respectively and D(P)
denotes the analytic set corresponding to a. Throughout this section we assume
that a does not equal 7.

The first problem is to decide the kernel and the image of the operator P:
& —”. In §1.1 we quote a result about this problem from Oshima [10}, which is
needed in §3.

In §1.2 we assume b(z)=0, namely, P is a degenerate vector field. It is the
second problem to decide the equivalence classes of such vector fields under the
coordinate transformations at the origin. The case when a is the maximal ideal
of & is treated in Poincaré [13], Siegel [15] etc. We generalize them in the case
when a is a simple ideal. The result of this section is a main tool to solve the
problem in §2.
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§1.1. The theorem of Cauchy-Kowalevsky.

Let
(1.2) M)=20 00 o e pep)
a( Ly, "0y T n)
be the Jacobian matrix of a,,---,a, on D(P). Taking a different coordinate

system, M(0) is transformed into G*M(0)G, where G is the Jacobian matrix of
the coordinate transformation at the origin. This shows that the set of simple
elementary divisors of AI—M(0), which we denote by

(1.3 EP)={A—-p)™; 1215k},

is independent of the choice of coordinate systems.

Now we give the following conditions to formulate a theorem.

A.1.1. a is a proper and simple ideal of &, i.e. la is a non-zere regular
local ring.

Al2. If p,=0, then m,=1.

A.1.3. There exists a real number 0 such that 0<argp, <0+ for pn+0,
where arg p, denotes the argument of complex number e

Al4. IfaecNtand Z la 1| £0, then b(0)+ 2 o0, Here N={0,1,2, .-},

THEOREM 1.1. Assummg conditions A.1.1, A 1 2, A.1.3 and A.1.4, we have
the following conclusion:

25 if a=b,

0 if askb,
Im P=b.

Ker P==

That is, an analytic solution % of the equation
1.4) Pu=f

exists locally if and only if feb. If a#b, % is uniquely determined by f, and if
a=Db, there is a one-one correspondence between the solution » and the Cauchy data
U peps-

For the proof of the above theorem and for examples which do not satis{y the
conditions, we refer to Oshima [10], [11]. §1.2 tells us that A.1.3 can be weakened
in Theorem 1.1 (see Remark 1.10).

When the coefficients a,(x), b(x) of (1.1) are elements of the ring of formal
power series é’, we consider the same problem for the operator B. o (ﬁA, where
P expresses the operator P in the ring & . & and b denote the ideals of 2 generated
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by a,(x), -+, a.(x) and a,(x), -- -, a.(x), b(x) respectively. Then the following is an
easy corollary of the proof of Theorem 1.1.
THEOREM 1.2. Assuming conditions A.1.1, A.1.2 and A.1.% or assuming

that &+ and A.1.4, then we have

.

16 if d=b,
Ker P .
lo  if a=%b,

Im P=<b ,

where
A.LY. G is a proper and simple ideal of &
3
Ald. bO)+ 2 ayu#0 for ag N*.
RN

§1.2. Degenerate vector fields.

Let
e & g
(1.5) P= 3 a,x)
(=D ax;
and
1 . < ’ a
(1.6) Pr= 3 al(e)5—
il ax,;

be analytic vector fields at the origin of €. Then we define the following equiv-
alence relation.

DEFINITION 1.3. P~ P’/ <> P ig transformed into P’ by a suitable coordinate
transformation at the origin.

Throughout this section we assume A.1.1. Considering what we mentioned at
the first part of §1.1, we see that the following condition is necessary for P~ P’.

A.15. There exist an analytic diffeomorphism F:D(P)— D(P) and a
matriz Gy e GLMn, F(INPY)) such that

G)M@)G@) =M (F(2)) for xeDP),

where C(IP))=a.

THEOREM 1.4. Assume the following i) or ii) for P. Then A.1.5 is a neces-
sary and sufficient condition for P~ P’,

iy A.l1, A.1.2 and A.1.8 hold and moreover

A.16. if aeN' and lal= éa‘.g& then iEllaip‘——a,¢0 for 1=275=!, where
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{os; 1S5} is the set of all the non-zero eigenvalues of M(0).

i) A.1.1 holds and there exists G(x) € GL(n, & (D(P)Y)) so that GEYM@)G(x)™!
18 a diagonal matriz and moreover

A.1.7. there exist positive numbers ¢, v such that if xe D(P), lxl= 5}, (2] <e,
ae€ N and la|22, then l;‘_‘,crip,(x)wp,(:v)t>lal‘” Jor 1591, where {p,(x)‘;[lgjgl}
18 the set of the non-zer‘;ldiagonal elements of Gx)M(x)G(x)™*.

COROLLARY 1.5. Suppose that P satisfies i), Then under a suitable coordi-

nate system (xy, -+, %1, Y1, -, Yir), we have
" Lo a
LD P= 3 pi(pr——.
$,3=1 ax,

Suppose that P satisfies ii). Then under a suitable coordinate system,

! 2
1.8 P= § ey Frnl

The case when a is the maximal ideal of ¢ is proved on the assumption ii) by
Siegel [15] and Sternberg [16].

Proor or THEOREM 1.4. Considering coordinate transformations of the follow-
ing type:

1
xi"”kEfik(?l)ma , 1=isl,
=1

Y= g4y}, 1=,

we get easily Theorem 1.4 from Corollary 1.5, so we have only to prove Corollary
1.5. (Note that D(P)={x,= --- =2,=0}.)

We remark that it is equivalent to think coordinate transformations of (1.5)
and to think those of the autonomous system of the ordinary differential equations

1.9 Ty=a,x) , 1si=n.
It follows from A.1.1 that D{(P)=={x == ... ==2,==0} under a suitable coordinate
system (&, ---, %, %1, -+, Yr)- Then (1.9) is of the following form:

i
&= X et 2 ey,
ket lata2

(1.10)
!

7= 2 du(y)a, -+ | ,1.23 , dr(y)ze,

EES

and (ea()) e GL{, Z(D(P))). By a coordinate transformation
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( Ly —> 2y
!
l Yy > Yyt kg Ry,

we can make d,(y)=0. Moreover considering a transformation

'
Ly —> E_‘.x Rz,

\ ¥ Yy
we can assume from the beginning that
g 3 calp)ru+ Hilz, 1) |
(1.11) o
V=H,lx, y)
where grad, H,|..,=0 and H {0, )=0 for 1Sj<n and
in the case i)
culO=p;, if i=k,
{ e (0)=0 if >k,
in the case ii)
ca=ply) if i=k,
{ cul1) =0 if ik,
Consider the following coordinate system :
{ &y=24+¢,(2, W) , 141,

(1.12)
Yy=wWy+e.lz, wy, 1=258V,

where ¢,(0, w)=0 and grad,¢l,.,=0. Then

! 1 !
E Car(Y) == 2 Zp gx‘ + 2 'wqaav‘ }; cu{¥) (24 02)
= é (2p— 2 ¢ (w)zk) o + 2 0z,
26— Zon “ 0,
!
+ X cpk(w)zx 2 Cor (W) Ps
p.k=1 a
7
4 EL {calw) —caly)) (@0
1 i
U= 3 Gom 2 enlwz) 2 4 5, 2
p=1 2y g=t oW,

! 941
T % epi{10)2, a’ .

prE=1 2,
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0x,/0z,, 6x/ow,
Y1z, Gy low,

In view of ( )e GL(n, ©), if o, satisfy

i A 1
gy
2wz 7=~ 3 calwles
b= oz At

mE=1 »

!
(1.13) = }; (ealy)—calHa+o)+Hz, ¥)

! a@,
> enlwize a”‘ =He e, ),
poh=t Zp

(1.11) changes into the following system:

{
2= 2 ez,
(1.14) ket

w,=0.
Therefore, it is sufficient to show the existence of a solution of (1.13).
Since the assumption says that

1 !
S a0 —c(0£0, X ane,,(0#0, for |a|22, 155!,
p=1 Pl

we see that (1.138) has a unique solution of a formal power series

(1.15) = 3 oplwet= X pgawfze, 1Sjsn.
jala?

lalz2, i 3i20
In fact, ¢,p€ C are determined inductively by (1.13) in the lexicographic order of
3
(lal, 181, 32 pa,, n—7) (see (1.11) and (1.12)). The rest part of the proof is to show
p=1

that (1.15) is analytic at the origin.
In the case i). The assumption shows the existence of a positive number C
such that

!
(1.16) !,Z“tﬂ"‘ﬁj‘%cfai for lalz2, 1s5=5l

Considering a coordinate transformation

j Z, — 6,2,
l e,eC,
C Y gl

we may assume the existence of the majorant series

M@+ - +x)
1—@+ - okt )

{mmw<
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} o c ...
1.17 = 0 if k, = ,
( ) (/‘m(y)< 1W(y1;§* e +?Ix') -+ if > 2nt If ,L<k
‘ T—(yy-t - +yp) o
L pd if 1=k,
where M is a positive number.
We set s=z,- -+ -}z, and t=w,+ --- +wy. Suppose the formal power series
uxl ' Em u,swhze satisfies ¢,(w, 2)<€u(w, 2). Then we have
alz2 i Pign
11 e} i ) L
o e cpk(ll))zt%‘:i‘ + 1]21 cn(O)zp‘g_fj + ;:21 Cu(w) o, —ci (0)g,

4

-+ 2 (el —culw)) e+ o)+ Hz, ¥)

1

k
<(_@5~~s ¢ )(ai ﬂ-%-lu)

1—t ' 2n? po1 0z,
M M M(s-+1u)?
— 1 i)
+(1~tu—l’u 1~t>(8+ W+ 1—g—t—nu

1
(Note that u<—]-”—s > _E)_u_)
2 =1 az,,

<s {(—j}g +hils,t0) 3 D%y Fufs,t, ws b

pl 3z,

where fy(s, ¢, w) and f.(s, t, u) are analytic functions with three variables and the
coefficients of their Taylor expansions are nonnegative real numbers and f£,(0, 0, 0)
=0. For simplicity we set

; w SN _  {(3C n Ou
I’(s, t,w, % ):s{( in +fils, t, u))E1 52, + fals, ¢, u)S} ,

then it is clear that

i

!
- 2
ke

»

i
Coult0)zs 285 4 3 0,002, 2222 4 Hoife, )
- 4

»

<F’<s, t u, —33‘—>
0z

holds also. Combining the above estimates with (1.16), we have ¢, <u if a formal
power series % satisfies

ou
9z,

(1.18) CS 2, <F<s, £, fi“—) .
Pt

9z

On the other hand the solution u(s, tf) of the equation
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"(_"C“ “"I'fl(sv tv '“)}"‘%?‘L‘“ ::‘fi(sv t, ’u)S 3
(1‘19) ( 4 ) U8
L Wep=0
is analytic at the origin and satisfies (1.18) and %% ==0. Thus we conclude that
g=:0

¢, are analytic by the method of majorant.
In the case 1i). As in the case i) we may assume

Mz, - +a)®
2—(@y+ - Xyt oo Fuw)

Hyz, <<

(1.17)!
M

Bt - FU)

oY) =¢, (PN
Let
{
gjalw)= 3 a,o,(w)— oW},
p=1

where we set p(w)=0 for j>I. Since e,(0)#0 for la|Z2, @ulw) of (1.15) are
analytic functions of w. Therefore it is sufficient to prove the following claim:
“There exist positive numbers & and N so that ¢,(w’ 2} are holomorphic functions
in the domain {z€C*; |2/ <5} and satisfy lg,(w® 2)| <N for any fixed w°€ C* satis-
fying [w°|<é”’.

Hence we fix w° satisfying |w°|<1 and omitting w°, we write simply ¢, &

ete. instead of @, (1%, ¢, (w°) ete.

Let
waz;l@ﬂ,! for la]z2,
=
L pa=1 for lal=1, ¢,=0.
Then

2, € 3 027, YKLt Xkt ,
Bt o ATyt s <l Zoeat

(1.13) and (1.17)’ imply that

ﬂl[( 2 gpaz"‘)2 M

) a o ; —_M 2"
% e S T<1—Z¢a2“ >(%(M)

<2M 3 (3 g2ty for 1=j=n.
r=2 @
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lejurd S2M = Pay - Ya, TOr Jalz2.
et e ea
C.=2My, 2{ Pay Oy s
i e
ka
where p,~ 30 le; 0. It follows from the assumption that there exist positive real
ol

numbers ¢ and v/ so that
lesl > 2nlal™ for |w’|<6 and Jalz2.

Then the same argument as in Siegel [15] pp. 24-29 proves that

Zd o A2 5
", DL W — Tt +z) for |w'|<é.

This completes the proof of Theorem 1.4.

The above proof shows the following:

COROLLARY 1.6. Suppose that the assumption in Theorem 1.4 holds and
that the two coordinate transformations of formal power series

x> eix), 11w,
ﬂ’}i-“)ng(x) ’ 1§'L§~ﬂ,

do mot change the expression (1.5). Then ¢, and ¢} are equal 1f ¢doirm=¢ilow
and grad ¢.lpe= grad ¢flpp for 12isn. And moreover tf ¢dow and grad ¢.lop)
are analytic functions on D(P), then the coordinate transformation is analytic
at the origin. KEspecially when D(P) is the origin, all the coordinate trans-
formations of formal power series that do not change the expression (1.5) are
analytic.

REMARK 1.7. In the real analytic category (namely a,(®) are real-valued
analytic functions and coordinate transformations are real analytic), we see that
Theorem 1.4 holds also in view of the above proof. But the existence of the com-
plex analytic coordinate transformation at the origin which transforms (1.5) into
(1.6) does not assure the existence of real analytic one. We cite a counter-example.

ExaMrLe 1.8 Peg-Z. 4—231‘a““+(42+y2—%—:c‘)“@“ ,
dx dy 0z
’.:-_/_(2»--2- .8-4_4 JPYLITap a

P 1 yay {4z y-I—:L)az .

The equations
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(P—Du,=0,
(1.20) (P‘“‘2)M2:0 ’
(P—&)ug=ul—ul

0y, s, Us) (0)}#0. On the other
oz, ¥, 2)

hand the equations (1.20) which we get from (1.20) by replacing P by P’ have a

solution (uy, 4., us)=(x, ¥, 2). This implies the non-existence of the real analytic
coordinate transformation which changes P into P’. But the transformation y —

have no real-valued analytic solution satisfying

/=1y changes P into P’.
REMARK 1.9. Assume P of (1.5) satisfies A.1.8 and that a is the maximal
ideal of . Then under a suitable coordinate system,

L3 n—1
P:ZPimi’i'*“Eatfvi“‘_a—"*“ ) Csa-’bai.
i=1 dx, = 001 1sisniaizl dxy
[CROET-H
pl . 6‘ - n
Here the Jordan canonical matrix of M(0) is s and {p, o= 2 p;
. n-1 LS
o

and C,, are complex numbers.
The proof of the above statement is as follows. Let & be a real number
satisfying A.1.3 and assume

Repie " T<Rep,e?77< ... SRep,e 0’7 .

We can choose inductively analytie functions %, and complex numbers C,, so that

%y, ---, M) i8 a coordinate system satisfying
(1.21) (P—p)u,+ ” %_p Crat™=20; 1 Uqeq
falzs t

If <p, a>=p,, then a,=0 for jzi. Therefore the existence of C, and formal
power series u, satisfying (1.21) are clear and their convergence can be proved
similarly as in the proof of Theorem 1.1. (Cf. the method in Karlin and McGregor
71

REMARK 1.10. Suppose the first order part of

€.y P= 3 a,2) ai +h(@)
gzl o

satisfies the assumption ii) in Theorem 1.4 and that there exist positive numbers
¢ and v such that

| é a,p,(x) +b(x)| > la}™
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for
ze D(P), lz]<e, a€N' and lajiz=1.

Then we have the same conclusion as in Theorem 1.1.
Using Corollary 1.5, we can assume the first order part of (1.1) is of the form
(1.8). And the same argument as in the proof of Theorem 1.4 shows the above

statement.

2. Contact geometry.

A eontact manifold is an odd-dimensional manifold X with a line subbundle
27 of the cotangential veetor bundle T*X of X satisfying that for any point in
X there exists a section @ of .2 in a neighbourhood of the point such that the
(2n--1)-from wA(dw)” nowhere vanishes, where 2n+-1 is the dimension of X. o is
called a fundamental 1-form on X. We treat mainly the case when X is a com-
plex manifold, so a contact manifold means a complex contact manifold in this

gection.
We refer to Carathéodory [1] for the general facts that will be mentioned

below.

A map f: X~-> Y bhetween contact manifolds is called a contact transforma-
tion when f*w, is a fundamental 1-form on X for any fundamental 1-form wy, on
Y. It follows in this case that the dimension of X and that of Y are equal and
f is a local isomorphism. We treat a local theory in this section. Therefore, we
fix a point Pe X, call it the origin and denote also by ¢ and .2° the stalks of &
and %" at the origin respectively. .78 denotes the Whitney product of r copies
of .7 and #"%¢" the dual line bundle of «7%™ and ¢ ig 27 8@,

There exists a local coordinate system (py, + -, Po, @y, -+, a0y 2) of X at the
origin so that a fundamental 1-form is expressed as

w==dz—-pde,— - —pda, .
This coordinate system is called canonical. We define a map
S 8 WA B8 _y L BU~r-8)

W w
(fro = [f, 9]

by
;‘:g’n_ai{)___»’p ap “<,_a.sf_..l_ _8_9_)690
L£. 0] 1“" 0z 8 az +j:= ox, Ps 8z / dp;
— . 69) 1 _Q?.ﬁ_ i?_ R{l-~r~s5)
Y <al’j s 0z )apj }@‘” '
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for f=pRwP", g=¢Rw®"9. [f, g] is called the Lagrangean brackel of f and g.

We also use the coordinate system (21, -« -, %4, Tas1, &1r -« +, &as Eayy) Satisfying
( TR nibnn=(—p) Pl
l Lns1=2,
where (&, -+, &,,,) is 2 homogeneous coordinate system. Then.
o=&dx,+ - & dit - E i dany

and a section of S22 is a function of (z, &) and homogeneous in & of the homo-
geneous degree . Under this coordinate system,

A nil A
ogl="s & 20 "5 OF 9

2 ae, ax, & ox, o,

which equals the Poisson bracket {f, g}
An analytic set VX is called tnvolutory if f, ge (V) implies [f, gle I(V),
where

IV)={fec; fl,=0}.

DEFINITION 2.1. A point P of an involutory analytic set V' is called degenerate
if P is not a singular point of V as an analytic set but o|,{P)=0. Here o|, is
the inverse image of w with respect to the canonical injection VG X, We denote
by D(V) the set of all the degenerate points of V. We say that V is regular if
V has neither a singular point nor a degenerate point.

DEFINITION 2.2. Analytic sets (more precisely the germs of them) V, V’ are
said to be 4somorphic if there exists a local contact transformation f on X so
that f(V)==V’. We express this equivalence relation as V~V".

When an involutory analytic set V is regular, there exists a canonical coordinate
system (p, 2, 2) 8o that V={p,= --. =p,=0} (cf. Carathéodory [1]). Therefore, all
the regular involutory analytic sets with the same dimension are isomorphic.

The generic non-regular points in involutory analytic sets are degenerate. The
singularity of this type is peculiar to contact geometry and does not appear in
symplectic geometry, which is defined in the case when the dimension of the mani-
fold is even. But all the problems in symplectic geometry can be treated in contact
geometry of the one higher dimension.

§2.1. Linearly degenerate involutory manifolds.

DEFINITION 2.3. We denote by 7 the set of all the involutory analytic sets
in the (2n+1)-dimensional contact manifold X that are degenerate at the origin
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and especially by #, the set of all the d-codimensional ones in 7”. Under a local

coordinate system (t,, ---, %) of Ve 7, (k=2n+1-d),
(2.1) wly=a,(t)dt,+ - - +a{tydt, ,
then a,(0)=: - - - =2g,(0)==0. If there exists a coordinate system so that a,(t), - - -, a.{t)

are linear functions of ¢, we say the origin is linearly degenerate and denote by
2% the set of all such V.

PROPOSITION 2.4. For any Ve ¥, we can choose a canonical coordinate
system so that
(2.2) Ve={pe= oo =pe =z, p) =0} .

Here «'==(zq, -+, Za)y D' =(Dgy -, Pa) and h(z’, p") 18 a function without constant
and linear terms.

COROLLARY 2.5. If d>n-+1, then 7,=@ and the elements of ¥ QTe
isomorphic to each other.

We call the elements of 7., Lagrangean manifolds.

PROOF OF PROPOSITION 2.4. Suppose that V={f;= .- =f,=0}, where fie
and dfi(0), -, dfs(0) are linearly independent. We take a canonical coordinate
system (p,z,2). o@0)=dz, df0), -, df,(0) are linearly dependent because the
origin is degenerate. This implies the existence of indices j,, oy Tm ) Tmets oty Ja-t
such that

a(fl;"'vfd) ¢0_
a(pfl’ T pfm! xfm I | x-’d-l’ z)
Therefore, the implicit function theorem shows that V is expressed as the set of

the common zeros of the functions

Fl=p,+g0',2), 1sksm,
(2.3) fl=5,+90@, 2), m+tlsksd-1,

fi=2+4g.00", 2%) ,
where p’, o’/ are the variables excluded D, -+, Pips @jmars =" Tigoyy 20

IS5 f] Asksd—1,1<1=<d~1) depend only on the variables «, p’. On the

other hand, [f1, 1] belong to the ideal of ¢” generated by the functions (2.3). Con-
sidering the expression of (2.3), we see that [ f1, f1]=0. Since df1(0), - - -, dfs-1(0), @(0)
are linearly independent, there exists a canonical coordinate system (9, £, £) such
that p,=f, for 1Sj<d-1 (cf. Carathéodory [1]). V can be expressed as follows
hecause 3f,/05,#0. Hereafter we will omit .

V={py= -+ =pg1=2-+h, Do, -+, Pa)=0} .
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Now, [z-+h(x, p*), pJ=p;+ —gg(m, p’)y vanishes on V for 1£j<d-1, so gk ={,

&y
Therefore h is independent not only of p,, - -, vy, but also of ay, - -, £4-; and has
no linear terms because dp,, - - -, dPy.r, d2-+dh(0), w(0)=dz are linearly dependent.
q.e.d.

PROPOSITION 2.6. Two involutory analytic sets V, V'e 77, satisfy V~V’
when and only when wl|, is isomorphic to wl, as 1-forms on (En+-1—d)-dimen-
stonal manifolds.

Proor. The preceding proposition shows the existence of canonical coordinate
systems (p, x, z) and {(f, £, ) such that

V={py= - =pe=2z-+h(@’, p')=0},
V== =pa=E+AE, p)=0}.

We use the coordinate system (pg, -, P, Xy, * -+, &) for V, then
oly=pd2at - - +Pad@a+dh(a’, ') .

Suppose o, is isomorphic to w|,s, then there exist functions g¢,(z’, p’), ¥,(z’, p")
for d=j7=<n such that

Pt - +Pudra+ARE, P)=q.dyst -+ +q.dy.+dAly, g) .

Then
dz—(pdxy+ -+ + Do drg ) —(Padag+ - - Fpude,)
=d(e+h(@’, )=y, ) —(pda,+ -+ +p,odxyy)
~(q.8Yat - +0.dy.) .
Therefore under the canonical coordinate system (D, -+, Dacty Qay = *» G L1y = * = Laers

Yar -+, Yy W) Where w==z+h(z’, p')—h(y, q), we have

V={p= - =pe,=w+h(y, =0} .
This implies that V~ V.
The “only if” part of the theorem is clear. q.e.d.

Next we prepare the following lemma to determine the structure of #°%. For
the proof we refer to Mal’cef {8] or Gantmacher {3].

LEMMA 2.7. Two skew-symmetric linear transformations on a 2n-dimen-
sional symplectic vector space .5 over C are isomorphic (namely similar by an
isometric transformation on ) if and only if the elementary divisors of
them coincide. We denote by #°,, the sets of the simple elementary divisors
of the skew-symmetric linear transformations on &°. Then Ee€ 27, when and
only when
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i) for p#0 and k€ N, the number of (i—p)* contained in E and that of
(A+p)* are equal,

i) the number of i*-! contained in E is even,

i) the product of the elements of E is a polynomial of 1 of degree 2n.

Using the expression (2.1), we set

___a‘(a'h cee, a,‘l
(2.4) Mit)= a’-«——--———“(t“ T &) for te D(V)
and

MOy=M,+M,, ‘M=-—M and ‘M,=M,,

where ‘M means the transposed matrix of a matrix M.
Taking a different coordinate system, M(0) is transformed into GM(0)'G=N(0)
and
N{0)=N;+N;, 'N;=—N, and *N,=N,.

Since GM,'G=N, and GM,'G=N,, the simple elementary divisors of AM,— M, are
independent of the choice of coordinate system of V€2, We denote them by
TAV).

Suppose d=1, then we sce that M, e GL(2n, C) by Proposition 2.4. Hence for
a="a;, ---, Q) and b=%(b, - -, b,) €C*™, we define the non-degenerate skew-
symmetrie bilinear form (a, b)='aM;be C. Thus we get a 2n-dimensional symplectic
vector space . The equation (a, M Mb)=—(M;*M,a,b) holds, which shows
that M,'M, defines a skew-symmetric linear transformation. Therefore, we see
that 7\(V)e. ¢, by the previous lemma.

For d>1, Proposition 2.4 and the argument just above shows that 7,(V)e
- Consequently, we can define the following map:

DEFINITION 2.8. Ty: 73/~ > @%pi1-0y, where 77/~ denotes the equivalence
classes of 77 defined by Definition 2.2

Then T, characterizes the structure of linearly degenerate involutory manifolds.

THEOREM 2.9. The map

(2.5) Ty: 775~ =210y

18 bijective, where we denote also by T, the restriction of the map in Defini-
tion 2.8 on FE[~.

ProoF. We will suppose d=1 because Proposition 2.4 and Proposition 2.6
reduce general cases to the case when d=1.

By giving a concrete form of % in the expression (2.2), we first prove that the
map is surjective. We set
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(2.6) h={p, Ap>+p, Ca>+<z, Bxy ,
p:z(ph Tty pn) ’ x:t(xlv T x‘n) y ‘A=A ’ ‘B=B '

where A, B and C are matrices with elements in C and <{a,b> is ‘ab for column

vectors @ and b. Taking the coordinate system (p, z) of V,
—wly=2{p, Adp>+{dp, Cad+<Lp, Cdxd+<{a, Bdaxd}+-{p, dzD> .

Then the Jacobian matrix (2.4) is

24 2C
“‘4" =
#0) (zec+1,, 23)
:_1_<0 —I,,>+_1“< 44 4C+Iﬂ)
2\1, 0 2\ 4C+1, 4B ’

Therefore

(MO)— MO) Y MO+ M(0)) = ( 4$C+1, 4B ) .

—44 —4C—I,
Take an arbitrary Fe.7",,. For a pair (A—p)* and (A+p)* in E, we define
the k;X k,-matrices
1
—(py—1
1 (e : ) 1 .
2.7) C,= s ) 1 , A=B=(0).
1
il ‘:ﬁ_l
i (0,:~1)

For i**s in E, we define the k,x k,-matrices

1
—= 1
r L ) 0.

(28) Cj..—.. ¢ . ) * , AJ.::: ) . . . Ifj;:(()).

1
1 1
4

And we define A, B and C by the direct sums of these A,, B, and C, respectively.
Thus we get Ve 7' satisfying T\(V)=E.

Next we show that the map is injective. Assume Ty V)=T(V’) for V,
Ve 7. Then we rewrite (2.1) as follows:

wly={(M,+M)t, dty, ‘My=—-M,, ‘My=M,, ‘
(ﬂly’:<(Nx+N2)t,, dt,> , ‘Ny=—N;, ‘N,==N,.

The symplectic vector spaces &7 and &/ defined by the bilirear forms (a, b)=="aM;b
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and (a, b)'='aN,b are isomorphic because they are of the same dimension. Hence
it follows from the assumption, Lemma 2.7 and Proposition 2.8 that the pairs
(&, M*M,) and (7#/, N;'N,) are isomorphic. Set the isomorphism G:a — Ga,
then

GIM ' My)=(N'N)G ,

M, ='GN,G .
Hence

IWQZMXGMIN;XNQG:‘GNZG .
Under the coordinate system t'/=Gt’, we have
by =M+ Mt dt’">

which shows V~V’ (¢f. Proposition 2.6). q.e.d.

In the real analytic category the map (2.5) is neither surjective nor injective
because Lemma 2.7 is not valid. We must consider simple elementary divisors
with signs. Let A be a skew-symmetric linear transformation on a 2n-dimensional
symplectic vector space % over RB. Then & is expressed as the direct sum of the
following A-invariant linear subspaces (c¢f. Yaglom [17}):

= 2 6—)7’, y
i=

where 97, 1%, for j+#j’. Moreover each 77, satisfies one of the following con-
ditions :
1Y There exists e€ ., such that

0 if k#2m,—1,
(e, A"e):::{
1 if k=2m;—1,
or
" { 0 if k#2m,—1,
=1 if k=2m,—1,

where dim &, =2m,.
2) There exist e, e, €57, such that

(e, A*e)==(e,, A*ey) =0,
0 if ktm,—1,

(e, Akes)::{
1 if k:mj“‘l N
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where dim 5 ;=2m, and m; is odd.
3)* There exist e, e;e ¥, and v,€ R such that v;#0 and
(e, (A—\'i:—lvj)‘e)t:tO .
. 0 if kszm;—1,
(e, (A4~ —1vp*é)= —
’ (vV—=1" if kz=m,—1,
or
0 of k=m,~1,

__(\/:.i)”‘f ’I,f IC::'mj““l i

] =
3) =
(

where e=e,++'—1e, and dim & ,=2m,; .
4) There exist e, e, e, ¢,€ 5, and p;, v;€ R such that p,#0, v,#0 and

(e, (A—«,ujmx"/:_iv,)"e)::(e, (A—p;+ \";:-iv,)"é).:o ,
(er, (A+#,+\”:iyj)ke’):(6', (A*F/l,—\/ :‘iyj)kél) =0 R
0 if ktm,~1,

e, (A4 p;++v —Tv)ke!) =
(e, ( H; P 1 if k=m,~1,

where e=e,++v' —le,, ¢ =e;++v'—1e, and dim .7 ,=4dm,.
5) There exist e, ;€. and p;€ R such that 1,0 and

(61, (A—p)*e)=(ey, (A4 p)%e.) =0 ,

(es, (A+ﬂj)ke:)::11 f i 1
1, =ML

where dim &7 ;=2m.

In the above situation, for A we assign to cach .7, the following polynomial
called a simple elementary divisor with a sign:

D+ 2ty 1)~ —amy,

2) Ay, ™5,

A FE+Hvpm, BT~

9 (Bp g™, (B2t ),

By (A—p™s, (A4p)m.
Then two skew-symmetrie linear transformations on .~ are isomorphic if and only
if their simple elementary divisors with signs coincide. We denote by Z°% the
sets of these simple elementary divisors with signs corresponding to some skew-
symmetric linear transformations on .%°.

In the real analytic category, by (2.4) and by
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MO)=M+M,, *‘M=—M,, ‘M=»M,,
we define the skew-symmetric bilinear form on R**
(a, hy=aMbe R .
Then R?* is expressed as the direct sum of the two M,-invariant linear subspaces
S P = R

such that /7, | R* and M,| . is regular. Set A=:(M,l5) 'M.|~, then by the above
correspondence between (4,.7) and simple elementary divisors with signs, we can
define the map (ef. Definition 2.8)

(2.9) R Wy~ ey
which characterizes the structure of linearly degenerate real analytic involutory
manifolds. In fact, the same argument of the proof of Theorem 2.9 shows the
following theorem.
THEOREM 2.10. In the real analytic category, the map
TH: #hl~ -2 8000

18 bijective.

§2.2. The structure of degenerate involutory manifolds.

Our main purpose in this section is to show that almost all degenerate involu-
tory manifolds are linearly degenerate.

DerINITION 2.11. For an analytic set V in the (2n+1)-dimensional contact
manifold X, 3(V) denotes the set of all the singular points of V. We call V is
an integral analytic set when wl,.ro,=0. Moreover when Z(V)=g, we call V is
an integral manifold.

PROPOSITION 2.12. For any integral manifold V, we can choose a canonical

coordinate system so that
{2.10) Ve{pi= o =pa=ag = - =ag=r=0} .

PROOF. We use the induction for the dimension of X. When n=0, the pro-

position is clear, so we assume nz1.
In the case when there exist f, g€ so that fl,=¢l,=0 and [f, g]l(0)=0,
under a suitable canonical coordinate system, we have

Y::{f:gzo}::{pl :x1=0} .

Since (Y, wly) is a (2n—1)-dimensional contact manifold and V is an integral
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manifold in Y, the expression (2.10) follows from the assumption of the induction.

In the other case, choose a canonical coordinate system so that {p,==0}DV and
set Y={p,=2z,=0}, then VNY is regular. It follows from the assumption of the
induction that VN Y={p,= --. =p,==z,~2=0} and the dimension of V is n. Hence

V={p=p,+fox,= -+ =p,+ o, =24g2,=0},

where the functions f, and ¢ depend only on the variables #,, ---, ¥,. We choose
(1, - -+, z,) as a local coordinate system of V. Since w|,=0, its coefficient of dux,

shows that =z, gg

+9==0, so g=0 (see Theorem 1.1). Next we have f;=0 by the
coefficient of dx,lfor 2<1<n. q.e.d.
COROLLARY 2.12. The dimension of any integral analytic set is not larger
than n and the same dimensional integral manifolds are isomorphic. Especial-
ly, every n-dimensional integral manifold is a Lagrangean manifold. )
PROPOSITION 2.13. Assume that V={f(p, z,2)=0}€ ¥, and that —g—ﬁ-(O)::l.

Then the map
[fRuD, -]: 78D -, Zr&t-n
w (0]
R8P > JRWS -

defines the map ¢ — Pp=¢. Note that P is a derivation which can be restricted
on V. Suppose that we have

P: 221 bf(t')ait,+c'(t') ,

2.11)
9

ot,

Ply= 3 b(t) 5 +-c(t) ,

under local coordinate systems t' on X and ¢t on V. Then the following hold.
i) Let (bf, -+, blps, f) be the ideal of & generated by b, ---, bbn,, and f.

Using such an expression, we have

(b;y Tty b‘gné-ly f)/(f)::(bll Tty b’}ﬂ)’";w"(ah ) azn) .

Here (a4, -+, a:,) is the ideal of 7 (V) generated by a,, - -,y in (2.1). And
f belongs to (b, - - -, bluuy) if 0.

i) c(0)=c(0)=-—s.

ili) Suppose that T(V)={(A—p)™; 1=1=k}, then

({1 " i)
EP) [(z 2(1+p,>) v 1isk]
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F(P|)J(7~~~1£(1 p)) gigk}.

(See Definition 2.8 and (1.3).)
PROOF. According to the definition of Lagrangean bracket,

_ of . of % o 3

(2.12) pP=: 2 (3:&:, ijaz)ﬂh le ap; oz,
e % AN O
i“(')’f Epjap >-\z Saz ‘

Set Ve={z+4-h(z, p)==0}, where h(z, p)=={p, Ap>+p, Czd>+<x, Be>+ H(z, p) and
tA=:A, *B=R and H has no linear term. By the assumption, we can write f=
(z--h)-g and g(0)==1. Hence under the coordinate system (p,z,2), M(0) in (1.2)
corresponding to P equals

2C+I, 2B 0
—24 -2C 0
0 0 r

On the other hand, T(V) is the set of simple elementary divisors of

(4‘C+In 4B )
—44 —4C
as in the proof of Theorem 2.9. Therefore we can know E(P) from T,(V). In
the same way we can know E(P|,) from T, (V). The rest part of the proof is
clear. g.e.d.
DEFINITION 2.14. We say that an involutory analytic set V is mazimally
degenerate when dim D(V)=mn.
Note that dim D(V)Sn since D(V) is an integral analyvtic set for any Ve 7.
THEOREM 2.15. All the maximally degenerate involutory manifolds of the
same dimension are isomorphic.
Proor. Considering Proposition 2.4 and Proposition 2.6, we have only to prove
the theorem in the case when the manifolds are hypersurfaces in X.
Assume Ve 7, and dim D(V)=n. Using the same notations as in the pre-
ceeding proposition, we have D(V)=D(P|,), which shows that

@.13) rank H O=n.

Combining this with Lemma 2.7 and Definition 2.8 and Proposition 2.13 iii), we see
that
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E(Pl,)= {(z— —;—(1_9,)) , (zu —;»(1+p,)> D o1, 1§j§n} ,

and the left part of (2.13) equals n. Hence S(D(V))=© and D(V) is a Lagrangean
manifold (ef. Corollary 2.12).

Choose a canonical coordinate system so that D(V)={x,= ... =x,=z==0} and
suppose V={z+g(z, p)=0}. Set

h(z, p)=g(x, p)+ Z‘: Xp;

Then olp,=0 implies b, E—aﬁ- =0 for 1<i<n. Hence h has no linear
lowy ¢ lpery
term, so we can write
h:} 2{ hy(x, plr, .
HH
Consider the equation
i R o an )
2— e = h r T Ty ey T y Ty T 8Ty,
2 %%, }szs “ (”‘ T o ar, )
(2.14) !
99 =y, for 15i<n.
0:174 Zy=eee=2,=0

Then we see that there exists the unique formal solution of the form Qzé_‘; Y,
+ 2 e.(y)x, where ¢,(y) are analytic at the origin.

m’\?ﬁe can prove that 2 is analytic by the method of majorant (ef. Oshima [11)),
but we employ here another method. Set

an an )
. = 2 === for 1Zjsn.
(2.15) P o, ’ a5 2, or VEXL

Then y,; and ¢, are expressed by (2.15) as formal power series of (x,p) and we

have
Yilzas =Dy, Qilze0=0,
'a_yi =h(j(0r Tty O’ Puyocoy pn)+h/i(or ] Ov Diy ooy pu)
ax{ z=0
2.16) | s
=2 0,p),
dx0x, ©.2)
99,

=0 if 137 and 1 if i=j.

0z,

=0
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On the other hand, (2.14) and (2.15) show that

2 pdagtdih—- 3 ap)= 3 pdectdQ

o ‘ﬁ:} (p: K )dL + 2 “_'y"‘dy{

(73:‘
= 3 gy, .

Hence
dz— 33 puda,=d(z-+g)— = qudy. -

Therefore the map F in the ring of formal power series defined by (p,2,2)—
(», %', 2)==(q, ¥, 2+g) is a contact transformation. Then if we show the map is
analytic, the above implies the existence of the canonical coordinate system
(¥, o, #) satisfying V={2/=0} which completes the proof.

For V we can rewrite P, in the case when s=0 (cf. Proposition 2.13):

L] J % dg @
2.17 Pl,— -2 AT Bt -
@17 =2 (8:5, “”) oo, = op, Br,
2.18 -
(2.18) }., P} ap, .

Now it follows from the first part of the proof of the theorem that P, satisfies
the assumption in Theorem 1.4, which assures the existence of an analytic coordi-
nate transformation G changing (2.18) into (2.17). Then the formal transforma-
tion I'G does not change the expression (2.18). In view of (2.16), we can apply
Corollary 1.6 to F'G, thus we sce that F'G is an analytic coordinate transformation.
Hence the map F is also analytie. q.e.d.

THEOREM 2.16. If Ve 7 satisfies the following assumption, then V is
Linearly degenerate.

A2.1. Suppose Ty(V)={(A+1—p)™; 1Sisk), then one of the following
holds

i) There exists € R such that 0< arg y; <0+r for 1si<k and Ek ap—
#0 for ae N*, |a|=2 and 1<isk. )

i) m=1 for 1<igk and there exists ve R such that IZa,;z, vl zlel™
for ae N*, |a|=2, 1515k,

REMARK 2.17. For Ve 27, we can write the product of the elements of TAV)
as the form ”ﬁ:d(l—pj)(x«{—p,). In this case, {6, -, Pns1-¢) can be any point in

F
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C~*1-¢, Now it is known that for any ¢>0 there exists a subset S of C»*'~¢
whose Lebesgue measure in C®*'"¢ is zerc and satisfying the following: If
(01, - Pas1-a) € S, there exists a positive number C such that

i eed
2.19) |Brva-at El B0l 2 I3t
Fer
sped 2eened
for 3e Z**¢ satisfying |5l= X 15,1%0.
i

Since (2.19) assures A.2.1 ii), we can say that the assumption in Theorem 2.16
generically holds. On the other hand, for example, when |Re p;|< —;— for 1sjsn,

the condition A.2.1 i) holds even if {2.19) is not valid.

REMARK 2.18. Combining this theorem with Theorem 2.9, we see that the
map Tyt ¥ yf~ = Zsnir-0 18 surjective and “generically” injective. Consegquently
we have the following: Assume Ve 7, satisfies A.2.1, then we can choose a
canonical coordinate system under which V is expressed in a very simple form (ef.
(2.7) and (2.8)). For example, if V satisfies A.2.1 ii), then we can write:

(2.20 V={p= - =pe=2+ 3 Com=0) ,

where using p, in Remark 2.17, C’im—;—(pm_dwl) for d<ign.

PROOF OF THEOREM 2.16. We employ a similar method as in the proof of
Theorem 2.15. We may assume V is a hypersurface, then we can write V=
{z-+h(x, p)=0}. Set

hix, p)=(p, Ap>+2p, Cap+<z, Bud--H(z, p) ,

as in the proof of Proposition 2.13. Define a quadratic polynomial g of 2n varia-
bles by

g(y, @=<q, Be>+<q, @ C+LYp-+y, Aw,

and consider the equation

'Q::h(xv - %Q_>—g (yv ‘%-S—?"> s
2.21) z ¥

=<z, y>+(higher order terms).

Set u=80—<z, ¥>, then (2.21) is transformed into

(P-Du=-—R,
2.22) {

# has no term of degree less than three,
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where
P=(~2Ca-24y, -?—> 4 —2Bet @C+ L)y, 2
. oz ay/
and
R={a2% ), /p ou aLé>—i~(a power series of the variables x, y and

\ e e/ "y Ty
9u with no terms of degree less than three).

oz
The Jacobian matrix of the coefficients of P equals (:;g 2‘51;1-1,.

origin, which implies that E(P)u:{()———;-pOMi; 1§i§k} {cf. the proof of Pro-

position 2.13). Hence A.2.1 assures that P satisfies the assumption in Theorem
1.4, so we can choose a coordinate system (¢,, ---, {;,) so that

) at the

P=32,t,-L 7% a2
wjﬂl ‘jjatj + il Ojj+latj’

where 8,=20 or 1 and 24;€{y,, ---, i} for 1=57=2n. Then R= (a quadratic poly-
nomial of -gty——, ,—%"—)4—(8. power series of the variables ¢, ---, t;,, —g}q’—, e,
1 2n 1
du with no term of degree less than three). Hence the equation (2.22) has a
en

unique solution of a formal power series if

on
(2.23) 2 o 2—~1£0 for ag N* satisfying |a|23 .
P!

Definition 2.8 shows that for any g, there exists g, satisfying g, +p,=2. Com-

bining this with A.2.1, we see that (2.23) holds.

Setting p,::n——a—f?—, quﬁ_@ for a formal solution of (2.21) we can define a
ox, oy,

formal coordinate transformation by (p, 2) = (g, ¥). When we take the coordinate
system (p, ) or (g, ) for V, we have
—owly=dh-4 él pdz,
=d(2+0)+ 3 pide,
=dg-+ é 2,4y, .

Since ¢ is a quadratic polynomial of ¥ and ¢, V is linearly degenerate if the
transformation is analytic.
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The analyticity of the transformation (p, 2) — (¢, ¥) is similarly proved as in
the proof of Theorem 2.15. In fact, its proof is easier than in Theorem 2.15 be-
cause D(P) is a point {cf. Corollary 1.6). q.e.d.

REMARK 2.19. In the real analytic category, we see that Theorem 215 and
Theorem 2.16 also hold in view of their proofs. In the case when 1Sdim D(V)
<n—1, we must consider the matrix (2.4) with parameter t€ D(V), but here we
do not go farther (cf. Theorem 1.4).

We give an involutory manifold which is not linearly degenerate:

EXAMPLE 2.20. Assume n=1 and let

Y PRI S P

and

w[w

it

Then T;(V)le(V’)ml< ) ( —1—)]- We define two differential operators

on Vor V/: ’
e[ ]

=259 4
3P

=0}
0f .

w[o—-

v

3 ox’
and

Py = [(zw- J?)-p;z:»%xa)@w“‘”, _JI
3

(2 N0 1.9
——(3p+3:s>ap b aa
The equation (PI,,—— %>u=0 has a solution p, but the equation (P’lw—-—g—)umo

has no non-trivial solution. This implies Pl,<P’|,». Hence we see that
Vot Vg 7%,

In the rest of this section we will mention an application of the results to
first order differential equations. We will treat their local theory in the analytic
category. Let

f{(py x: z)=0 for 1§i§k N
2(0)=p,(0)= --- =p,(0)=0,

2.24)
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be a system of differential equations with one unknown function z of 7 variables

(zy, - -+, xa)=x, where p; denote % for 1gj<n. We regard the space of 2n-+-1
]
variables (p, z,2) as a contact manifold X with the fundamental 1-form o=

dz--p,dax;~— -+ —p,dz, and denote by = the projection from X to the space Y of
n variables (x;, ---,x,). By the well-known result in the theory of first order
differential equations (cf{. Carathéodory [1]), we have a one-one correspondence
between the solutions of (2.24) and the Lagrangean manifolds contained in V=
{fip, z,2)=20,15isk}< X and satisfying that the restrictions of = to the manifolds
are smooth. The Lagrangean manifolds contained in V are also contained in the
maximal involutory analytic set contained in V, which is defined by the set of zeros
of the closure of I(V) with respeet to Lagrangean bracket. Hence we may assume
that V is involutory.
For the sake of simplicity we consider a single equation

J J, 2, 2)=0,

(2.25)
[ 20)=p(0)== - =p,(0)=0.

Then V is an involutory hypersurface. In the case when %(0)4&0, there is a
1

one-one correspondence between the solutions of (2.25) and their Cauchy data % on
{2, =0} satisfying #(0)=0 and (grad «)(0)=0. When (grad, f)(0)=0 and (grad, f)(0)
0, (2.25) has no solution. In this case, V is regular and there exist Lagrangean
manifolds contained in ¥V as in the case before, but the restriction of = to any
one of the manifolds is not smooth. In the case when (grad, f)(0)=(grad, f)(0)=0
and (grad, £)(0)#40, V is degenerate at the origin. Hence we can apply the results
in this chapter to this case.

For example, consider the ordinary differential equation

dz \* Az . 2=
< ) 2x = dz—4a* =0,
(2.26)

= 92 oy
2(0) == (0)==0.

Then Vi={dz—p*+2pa+4at=0} and T (V)={(1—2+v 2), (1-+2+ 2)}. By the theorem
of Roth about the problem of Diophantine approximation for algebraic numbers,
we see that V satisfies A.2.1. Hence by Remark 2.18 (or simply by Theorem 2.9),

we have V~V/={22—(@2v 2 +1)p'2’==0}. In fact, the contact transformation is
given by



Singularities in contact geometry 71

[ Pl=p—2(V 2+,
VT 2V

o = . -
=g p+“‘“““““‘4 z,
, N2 L N2, 248 2
"“Z"}'———" " 7 e e T
# 16 p 4 ¢ 4 pe

There exist two Lagrangean manifolds {p/=2'=0} and {&’=2'=0} in V’. The
former corresponds to the solution z=(1-++"2)2* and the latter to z=(l—+ 2)a%
In the same way we see that the equation
dz \? dz \? dz
ZEN 4 (ZE) —2ad2) o —dr—dar=
(dx)+<dx) (+2) dz F—dwt=0
(2.26)°

=92 0
2(0) = <5 (0) =0

has two solutions.
In general we have the following:

THEOREM 2.21. Consider the equation (2.25) and assume that g—‘f(()):;’:() and

that V={F=0} is linearly degenerate at the origin. Set
F(p, 2, 0)=f1(p, x)+folp, @) ,

and
g(p, z, 2) rg{- 0)-2+fi(p, 2) ,

30 that f, is a quadratic polynomial and f. has no term of degree less than
three as a power series of (p,x). Then the number of the solutions of (2.25)
equals that of the equation

[ 9P, =, 2)=0,

2.27
@20 | 20=p@=--- =pa()=0 .

The number may be zero or may be infinite. But espectally when V sutisfies

A.2.1 1) and the roots of the elements of Ty(V) differ from each other, (2.25)

has at least one solution and the mumber of the solution is not more than 20
EXAMPLE 2.22. Assume n=1. The equation

2.28) m% 9=

has no solution, but the equation
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2.29) 2 9,0,
dz

has infinitely many solutions z=Cz* for CeC. The eguation
(2.30) )

is calléd a Briot-Bouquet differential equation (e¢f. Hukuhara [5]). We can apply
Theorem 2.21 to (2.30) if gzi(())z,to.

To prove the theorem we prepare a lemma.
LEMMA 2.23. Suppose that (p, z,z) and (o', 27, 2') are canonical coordinate

oz’ 02/ o . .
systems of X. Then ——(0)£0, -=(0) = -Z— (0)==0 for 1Si<n and there exists
az ap, dx,

)
a subset I of {1,--.,n} such that O, oo, xn)

a(th Y tn)
{x‘ if iel,
poif tel.
PROOF. Since there exists a non-vanishing function ¢ such that dz— 3 pda,
i=

(0)£0, where we set t,=

=e(de'— 3 pldal), we have 22 (0)==c(0)£0 and 2Z-(0) = 22 (0)=o.
EEEe az ap‘ ax’

Assume that the last statement in the lemma does not hold. Then rearrang-

ing the indices if necessary, we have an integer m<n and a subset J of {1, ---, m}

ae], -+, xh) @], « -, Thy Thit) | {9(xf, - -, Tl Thas) |
such that |~ —2="" ()220 and 0) = 1 = 0

a(tlr"'xtm) a(th"'»tmymi) l ) l a(tly"'rtm:pt) l()
=0 for m--1siz=n, where t,m{z;'j ii ;Zj' Set s’:{{)—jxl,fii' ifé’J' then we can
write :

o(x], -, xh, whey)
2.31 0)
( ) a(th"'1tm1xm+1y"'yxmsh"'ysm'pnwh""pn)(
:__< A AB D AC)
a aB b aC /'’

where a and b are row veectors of length m and 4, B, C and D are matrices of

sizes mXm, mX(n—m), mX(n—m) and m X m respectively. In view of [z!, x/]=0,
A AB\N\tY/ D AC

q th

we see that <a aB) (b aC

A'D+AB'C'A=D*A4AC'B'A

) is a symmetric matrix. Hence we have

and
a'D+aBCA=b*A+aC ‘B4 .
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Hence

(2.32) b=a(!D+BC'A-C'Bt4)*4-!
=aA™D.

This implies that the rank of the matrix (2.31) equals m. Hence the rank of
It <+, They, 21)
Dyy o+ Py Ty =5 Ty 2)

PROOF OF THEOREM 2.21. In view of Theorem 2.9, we can define a canonical
coordinate system (p/,27,2) so that V={f(p,z,2)=0}=/{g(p’, 2/, 2")=<0} and
ap’, 2, 2")

ap, x, 2)
variables 2’ defined by (p’, 2, 2/) = a/. Then for a Lagrangean manifold W con-

(0) equals m+1. This induces a contradiction. q.e.d.

(0)=I,,.;. We denote by =’ the projection from X to the space of

tained in V, x|, is smooth when and only when =}y, is smooth. The first state-
ment of the theorem follows from this.

Assume V satisfies A.2.1 and that the roots of the elements of 7T,(V) differ
from each other. Then we can choose a canonical coordinate system (p”, z’*, 2’’)
so that V={"+ ﬁ‘, Cp{’z{’ =0} (see Remark 2.18).

First we will s;;;fove that every Lagrangean manifold W contained in V is of
the following form:

(2.33) W:{z”:yl:: cen =y,=0},
where y,=p{’ or z{’ for 1=i=n. Take a canonical coordinate system (P, £, 5 such
that We={f=#= --. ==£,=0}. Since Lemma 2.23 says the existence of a subset
Ic{l, -, n} satisfying 0y, i Ba) (0)50, we can write:
Y, -y Yn)
W={w+h(g)=y,+h (@)= - - =yn+h,(g)=0},

=l if vel, _(p¥ifiel, T

where y‘m{ p;r it iel and qf-—{ e ifiel and wr:z”»—‘% pi’z!’. Note that

(g, v, w) is a canonical coordinate system. When we write V={w+ f_‘. Clq==0},
gz}

we have

(2.39) T(V)={(3-2Ci—1), A+2Ci+1); 1Sisn)

and

2.39) a0, wt 35 Clawd=Cine— 5 .
i= [ f

Since the function (2.35) vanishes on W, we have
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(2.36) { S (41, 3o7 G [@=0.
) ¢

Combining the assumption with (2.34), we have ia,(C,’»-é-l)-iuC;;’:O for ae N*.
Hence by Theorem 1.2, we see that h,=0 for lélzgn. Moreover we have h=0
in view of Wc V. Thus we have proved that W is of the form (2.33) and there-
fore the number of the Lagrangean manifolds contained in V equals 2=

To complete the proof we will show that there exists a Lagrangean manifold
W satisfying that the map =}, is smooth. Applying Lemma 2.23 to (p”’, z”,2'")

a(xlv c £ )

! fn 0)
a('yly fr n) (
#0, where we define (g, %, w) as before. This implies that the Lagrangean

manifold Ww={w=q,= ... ==¢,=0} has the required property. g.e.d.

and (p, #, 2), we see the existence of a subset I<({l, - - -, n} satisfying

3. Pseudo-differential operators.

Let X be an (n-1)-dimensional complex manifold. The cotangential projective
bundle of X, which we denote by P*X, has a natural contact structure. Let 77
be the sheaf of ring of pseudo-differential operators of finite order on P*X. For
the definition and fundamental properties of “*/ we refer to S-K-K.

In this scetion we fix a point e P*X and treat the local theory at that

point. We employ local coordinate systems (z,, -« -, @ns1, %1, -~ +) Pass) and (pl, cee,
Dy B, - -+, Tn, 2), where the former corresponds to the point (x;, - - -, Tpey 2 7,d%,)
and x¥ corresponds to (0, ---,0; dx,,) (9, -+, 9.1 are homogeneous coordmates)

The relations z==x,,, and 1),“*»«77,/77,,1;1 (1=7=n) hold between them. The funda-
mental 1-form is w== V v,dr,—~d2~ E pdx,. (Cf. §2.)

Let Pz, D) and Q(fv D,) be pbcudo-dlﬁerentml operators of order m defined at
x¥. Assume that their principal symbols P,(x,7) and Q,.(z, 7) coincide and that
grade,, Pr(xf)#0. Then if V={P,=0}s® is regular as an involutory manifold in
P*X, we can find locally an invertible pseudo-differential operator U(x, D,) so that
P(e, D)YU(x, Dy=Ulx, D)Q(x, D,) (see S-K-K, Chapter II, Theorem 2.1.2). In §3.1
we consider the same problem when V is degenerate at z¥. In this case the next
symbols play an important role.

Given a local contact transformation F: P*X - P*Y, we can find a local
isomorphism @: F-1\S{ - F*{ so that the isomorphism between the principal
symbols induced by @ equals the natural one defined by F (see S-K-K, Chapter 11,
§3.3 and §4.3). We call @ a quantized contact transformation corresponding to
F.
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A pseudo-differential equation means a coherent left “#/-Module. We treat
here the equation -# with one unknown function, that is, there exists a left ideal
S of & so that A'=F] F. The symbol ideal J of S*'/ £ is defined by J=
{the principal symbol of P; Pe _# and ord P=0}, where ord P is the order of P.
If the set of zeros of J, which is called the support of .# and proved to be
always involutory, has no degenecrate point and if J is a simple ideal of 7, (in
this case we say that /7 is an equation with simple characteristics), then ..# is
locally transformed into a partial de Rham system by a quantized contact trans-
formation (see S-K-K, Chapter II, Theorem 5.1.2). In §3.2 we investigate the
cage when the support of .7 is degenerate at z¥.

§3.1. The equivalence of pseudo-differential operators.

In this section we treat a pseudo-differential operator P(x, D,) satisfying the
following :

A.3.1. Let P.(x,7n) be the principal symbol of Pz, D,), then grad,,p Pn.(x¥)
=0 and V={P,=0} is degenerate at x¥ where m= ord P.

P(z, D.) has the expansion P(z, D, :2 Pyx, D;), where Pz, n)e.sr8-n
=7 @w®"", In the sequel P, is used as théﬁgbove meaning.

Given an invertible pseudo-differential operator of the first order Uz, D,), we
denote by J._;(x, 7) € 77+ the principal symbol of UPU-*—P. Then we have
the following theorem :

THEOREM 3.1. 1) Jui(%, Dlow s determined only by P.(x,7), where D(V)
15 the set of the degenerate points of V.

i) Assume the principal symbol of Q(z, D,) € F! equals that of P(x, D).
If there exist invertible operators V(z, D), Wz, D)e 57 so that

3.1 Plx, D) V(z, D)=W(, D)Q, D,) ,
then
(3'2) (Pm~i(m) v)"Qm-l(x: 77))‘0(»'56'] “l(x’ ’;’)ID(V)Z .

ProoF. i) It is clear that J,.; does not depend on P, for jsm—1. Hence
we have only to prove that the symbol of order m—1 of UPU-'—U’PU’! vanishes
on D(V) for invertible operators of the first order U and 7. The symbols of
order m—1 of U""YUPU'—U'PU'-YU=(U'*U)P—PU''U) equals [Vilz, 1),
P, (x,»)], where V, denotes the principal symbol of U’-'lJ. Hence by Proposition
2.13 we see that its restriction to D(V) is identically zero.

i) (3.1) implies that the principal symbols of V and W coincide. Let the
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order of V be k and U be an invertible pseudo-differential operator of the first
order. As in i) we see that the symbol of order m—1 of (WU P(VUH—P
= U*QU~*~P vanishes on IXV), because WU-* and VU-* are pseudo-differential
operators of order 0 with the same principal symbol. On the other hand, the
restriction to I(V) of the principal symbol of U*QU-*—Q equals kJ i@, Dlpes-
Hence we have (Pao—Qu-1)}lsoy= b metl - g.e.d.

Conversely we have the following:

THEOREM 3.2. Assume that Pz, D) and Qz,D)eF’ have the same
principal symbol and satisfy A.3.1. Let T(V)={(A—p)™; 15i<K} (¢f. De-
finition 2.8). Moreover assume that ord P>0 and that (3.2) and the following
A.3.2, A.3.3 and A.3.% hold. Then we can find an invertible operator Uz, D,
e at x¥ so thut

3.3) Ple, D)YU(x, D)=Uz, D)Q(z, D,) .

A3.2. The dimension of D(V) equals the number of the elements of T(V)
satisfying p,=—1. In this case we will say that V is stmply degenerate.

Ad3. If A+)yme T(V), then m,=1.

A34. There exists 0eR such that p=—1 or fO<arg (0, +1)<84+n for
1sisK.

Proor. (Cf. S-K-K, Chapter II, Theorem 2.1.2.) To simplify the indices we
assume that @ is of the first order, but the proof in the general case (i.e.
ord @>0) is the same as in the case ord Q=1. We will use the notations such as

Q(xa Dm): ‘Elej(xr DJ:)

X
and
Qi@ M=q- &', 2, PYRw*7,

where 2/=(x,, -, x,).
a

Considering the transformation ( \)@Q(:b, Dx)<——é->“ , We may assume

n+l axn-{vl
in the proof that Py(x, »lpw=Qu(®, 7)lpe, (cf. the proof of Theorem 8.1) and

multiplying Q by a constant number we may also assume %Z’—’ 0)=1.
Set R=P-—@, then we have by (8.8

(3.4) Uz, DJQ(x, D)—Qlx, D) Uz, D,)=R(x, D,)U(z, D)
and by the above assumption
(3.5) 7o(&’, 2, Do =0 .

For Fle &%, G %®:, ae N" and i€ N, we use the notation
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3.6) (F, G)*= —Le D=9 R, DGz, 7) |
ala!

glai+l , Jai+t

where Dfef= — — and D@V= — ~ . Then by com-
Ox71 -+ 0xg"0Th 4y Ot -« 9RO
paring the symbols of order —k of the both sides of (3.4) we have
3.7 U, Ql]_ROU-k::L . 2 ot {(Bs, U_p*t
I AL
i<k

+(Q‘~ir U~j) ( i Q—l) l}

Especially when k=0, we have
3.7/ (Us, Qul— R, U,=0 .

Set Hy=[-, Q] —R,: &8 - Z®_  Combining the assumptions with Definition 2.8
and Proposition 2.18, we see that H, satisfies the assumption in Theorem 1.1.
Thus we know that (8.7) has a unique solution with the Cauchy datam Uglpsr=1
(see (3.5)) and that U_, (k=1) are inductively and uniquely determined by (3.7).
We want to prove that 2 U.{z, D) defines a pseudo-differential operator,

which is equivalent to say that there exists a neighbourhood V of x¥ so that

3.8) Tim v sup [u—,(@¥)/j! <eo,

Joreo
where U_j{z, n)=u_,(z’, 2, p)@w"ﬁ’.k We will employ the method of majorant.
Using the coordinate system (p, z’, 2), for ¢€< we have

-

D, (pQw®*) = gg— ®Rw®* for 1Sisn,
£

D,,,+,((,0®a)@“) = ‘%’g’ ®(l)®k s
3.9
Dq‘(sl?@wﬁk) P g;‘f. ®w8k+1 for 1§i§’ﬂ ,

1

Dvn+x(§0®wek) = ( k—p ‘.2‘1 op

Let %, - -+, Az be all the non-zero elements of {1+4p,; 1Si£K}. Then A.3.4
assures the existence of a positive number C, satisfying

5 gy

32-3':' Ba,+1zC@181+D for feN* and leN .
i=1

Hence in view of the proof of Theorem 1.1 (see Oshima [10]),' we can choose a
coordinate system (¥, *+ -, Ym» 21, * * +» Zn’) (where m=codim I(V) and m/==dim D(Vy)
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so that the following hold:
Set g==yy4 -« +UYmy =2y - +2, and u==s--f{. Then there exist positive
numbers r<1 and C, such that when we define H* by

(310) (Cl u ) ,a,_ — C" ""T‘I’CC1 C» . Czu ,

P 0s 7 — at r—1U r—u

then “H¥e(s, )>H oy, 2)” implies “¢>¢” for k=1. Here and in the sequel, we
use the notation ® in the ring of formal power series of the variables (v, 2).
Now we introduce the following notations:

v - __ , where p>0,
P“*’lL pm(?h v Ypt A o 2w
Fe={Cwt; C>0 and 1€ N—{0}},
])_; “@*‘ :.f/r‘—) 2
du " g ©
Cvt e Civ**! .

And we define the notation “F,>F,” for two maps F, and F, from S into the
ring of formal power series of (¥, #), which means Fip>F.p for any pe.%. Here
we fix the positive number p so that the following hold:

_CGr

P < CreC,

@.11) e Lw, T L@+ 10 for 120, ¢ LG+ for j=—1,

<yD for 1S5 n.

3 P <vl) , 9 D and 0
7 op, a

wr

In view of (3.7), (3.9), (3.10) and (8.11), we see that if g€ satisfy the

following (3.12), then ¢,>u_,.
‘(@o>’0

(3.12)

| H¥p>W, for k=1,2,3, .-+,

where

; 13
We- 3 28EDN (pyel T (e 11+ oD)u}wD) ",
kg:ig;)]z}"l a!l! et

“+ (’L-I;-;.‘)‘ {(wD)'*! H (j+t—1+vD)o wD)«Ftyive |

First we will compute W,.
Since D'>ivD%!, we have by induction
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(3.13) (vDy'< (D)2 w1 DiY)
=2-15%((i—1)o D'~ + DY)
<2'D* for i21.

If iz—1, 7=1 and 7=, we have
H (14 r—1+ D)/ H( 4zt 1-b e Dyt

/S M i J‘F"’%ﬂl l 3
< (1 F55)jonre,

—L&<3 in the above,

because (r~:~'vD)’z;f<(r+j)v’”:(1+ f:—)(vD) vf. Now =
7 272

so we have
{

(3.14) T e+ r—1{+ v D)4 (v D)*e? .
rur)

Now we set
3.15) Q=K1 MFp¥er

where the positive integers M and N will be determined later. In view of Nz1,
we can apply (3.14) and have the following:
W< hy) 3@+ 44w D)D)y e+,

k=dd-g4ialtl !lY
iz—1,5j<k

<, 2, AL s nienre ey,
iz—1i<k : ‘

(Apply (8.13) and set C,=2¢(n-1).)

< E 3(1:;1)' nger(l).-,vz‘»m)(ﬁrlpj)

k=itjtr
ia—1,5<k
. 2 (oDt
— I3 1 Be+f b2 N7 T .
k~::i§i+r G+t 1+ o1
iz—1,5<k

<k. 2 (203)“)”»1?:!?)3:*‘*1.0"90;

4,7,720,5<k
On the other hand,

Hf«w:(cl-‘?g?—“-)snvwk(c,_ 205u )w.(k -1 G Gou s
r-—u - -4

and
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(Cl_ 2Cyu )v- Cl+202< Cir u) 1, G20 g G420,

r—u r—u \ C,+2C, p-nu> r—u r

Hence we have

vaNkn}k CI+ZC: ’U""‘ .
T

Set N=:10. Then for non-negative integers 4, j, k and r satisfying k=1i-+j
+r—1 and k>4, we have
Nl—@r-i4+1) -+ o+ (Nj+1)=10(k—j) — (4 +2+1)
2100k~ g) — 4z 1)~ 2:=6(k—35)—6=0 ,
and

. 107+ .,
Drp,= ,ﬂ{;ﬂ£~¥*__QMl THIOSEL
Pred i 0

Therefore, combining the above facts, we see that if M satisfies

3.16) (k!M’*)(Ic—Cli—ggl)g s @Cyi gy 204D
r k:i;hé'—',:rmx (1051

for k=1, then (3.15) satisfies (3.12) and in view of ¢, >u,, we have (3.8) for V=
{(ty,2); lgl+ -« Flyal+lzld -+ +12.1<p/2}. Consequently, to complete the
proof, it is sufficient to prove the existence of M satisfying (3.16).

Consider the following inequalities:

g _AJE,‘_.._U. idetiyt g JM
317 sy ek BT g,
_ 1101 (20,
kfagﬂml(w“) k1k(105)! M
i<k
e i Ue—1) 1 (10k—9l—i+1)1 (gg.)k—f
Ry kk1(10k—100)! M
LESF-YENY
s« (k=D 100k—9l+1)1 /2C, \!
s 2 - —
S1208 2 R 10k —10))] (M)
o 10B—9LH1 /1=t 10k—9l— ¢ \/2C, |}
=120 % T % (E o1 )( M)
o [20C, !
émoc“xs‘?:'s‘k( M ) )
Take M so that Mz %%’-4—40@,, then (3.17)< 93;—2@— which implies (3.16).
‘1 e

g.e.d.
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The above proof shows the following:

COROLLARY 3.3. Suppose P(x, D,ye F’ satisfies A.8.1, A.8.2, A.8.3, A.8.4and
ord P>0, then we can characterize the invertible operator Uz, D,)€ G so that
P(z, D) U(x, D)= Uz, D) Pz, D)) :

The operator U is of the first order and uniquely determined by the datum
U@, D ows, which can be any analytic function satisfying Uyla)#0. Moreover,
if we assume D(V) is the point x¥, then the invertible operator which commutes
with P is the operator of multiplication by a constant number.

REMARK 3.4. In Theorem 8.2, the assumption ord P>0 is necessary. In fact,
suppose that the principal symbols of P(x, D) and Q(x, D,) are z,,;,. Then, for
the existence of an invertible operator U€ %/ satisfying (3.3), it is necessary and
sufficient that P.,(x, Dy =Q_,(x, 7y mod Z holds, where V’/={g= ... =7,=0}
On the other hand, D(V)={p,= -+ =9,=5.,,=0}, and if P_i(x, Dloe»=Q-1(%, Dlow
mod Z, then there exist invertible operators V and W satisfying (3.1). This is
proved by applying Theorem 8.2 after multiplying P by an invertible operator to
make the order of P positive.

§3.2. The structure of pseudo-differential equations.

In this section we investigate the local strueture of pseudo-differential equations.
Let V be an involutory manifold containing 2¥. Consider the pseudo-differential
equations with support V and satisfying the following condition:

A.3.5. The equations have one unknown function respectively and their
symbol ideals are simple at xf.

Then the equations are transformed by a quantized contact transformation
into the following equations %~ at z¥:

THEOREM 3.5. (S-K-K, Chapter II, Theorem 5.1.2.) If V is regular involu-
tory manifold of codimension d, then

(3.18) e _a_“—-_—o, i=1, --.,d.
0,
THEOREM 3.6. If V is a maximally degenerate imvolutory manifold of

codimension d, then

Mo g=1, e, d—1,
oz,

(3.19) e
Znas ou +f (g, -, 2)u=0,
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where f 18 an analytic function of variables z,, ---,xz,. In this case, ¥ i3
isomorphic to A, for le Z.

THEOREM 3.7. If V is of codimension d and satisfies A.2.1 1) and A.2.1
i1), then

g, =1, e, d—1,
dz,

(3.20) Ny
ou i ou
n+l T4 A =0 )
T s + E& Cis o1, +Cu
where C,; are constant numbers determined by V (see Remark 2.18) and C i3 a
number depending on the corresponding equation. In this case, 4, is iso-
morphic to Ay, for any integer l.

Using Theorem 2.15 (resp. Theorem 2.9 and Theorem 2.16) and Theorem 3.2,
we can prove Theorem 3.6 (resp. Theorem 3.7) in the same way as in the proof
of Theorem 3.5 in S-K-K. We leave the details to the reader.

REMARK 3.8. Omitting A.2.1 ii) from the assumption in Theorem 3.7, we
have a similar result by applying Theorem 2.9. For example, assume n=d=1
and that T,(V)={#}, then

i 1 o%u O ou

A g +x2 +C

T2 M aman T % em TO%, =0

Here .47, is defined at 2¥=(0; dx,) and .#7, is isomorphic to %%, for any
integer [.

REMARK 3.9. When V is a Lagrangean manifold (i.e. d=n+41), the equations
arc maximally overdetermined systems. Then, Theorem 3.7 (or Theorem 3.6) says
that they are characterized by the number € modulus Z. (Cf. S-K-K, Chapter II,
§4).

REMARK 3.10. We have studied pseudo-differential equations in the complex
domain. But also in the real domain, if their supports in the pure imaginary

“cosphere bundle are real (c¢f. S-K-K, Chapter II, §2.1), we have a similar result
by the same argument. In fact, both Theorem 8.5 and Theorem 3.6 hold and Theorem
3.7 changes a little in the real domain (¢f. Theorem 2.10 and Remark 2.19).
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