Schwargzian equations

By Yasutaka IHARA

Introduction

The purpose of this paper is to provide an algebraic basis for the theory of
Schwarzian differential equations defining uniformizations of algebraic curves.

In §1, we define the Schwarzian derivatives and the “S-operators” under an
abstract setting. The well-known basic properties of Schwarzian derivatives are
stated and verified under this abstract setting. Some examples in characteristic
p>0 are given.

In §2, the equations defining uniformizations, or the canonical S-operators,
are defined, and the main known results are reviewed.

After these expository parts, in §§3, 4, we state and prove the “k-rationality
theorems” {Th. A, Th. B), whose corollary (Th. C) asserts that if Ik is the
Shimura’s canonical model of the quotient of the complex upper half plane by an
arithmetic fuchsian group (which is defined over a certain classfield k), then the
equation defining the uniformization of ¢ is also “defined over k”.

Most part of this paper eame out of Ch. 2 of Vol. 2 of my previous lecture
note [2.1].

In a forthcoming paper, we shall study more arithmetic properties of the
equation; in particular discuss the “p-integrality” of the equation and algebraic
solutions of its reduction mod p. Some of these results appeared in my previous
notes [2.2], [2.8], [2.4] (available at Univ. of Tokyo).

§1. The S-operators.

§1-1. Differentials. Let K be a field. We shall fix a one dimensional vector
space D(K) over K and a differentiation

d:Kw— DK},
which, by definition, satisfies
dz+y)=dz+dy, dey)=zdy+ydr (=,yekK).

For each k=1, let D*XK) denote the tensor product of h copies of D(K) over K,
and put D*(K)=K. Call an element of D{K)=D'(K) a differential of K, and
an element of D*K) a differential of K of degree h. Put D(K)y =D(K)—{0},
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and let £e D(K)<. Then, cach element 5 of D*K) (h=1) is expressed uniquely
in the form 7==a-&* (g€ K), where £*==£%) - - - ¢ (h copies). We shall then write
a=7nj¢*. The kernel of d is a subfield of K, called the constant field, and is
denoted by k;

ke:{z € Kldx=0} .

In the following, we shall assume that d=£0; or equivalently, k%K.

§1-2. The symbol <5, &>. For each £, ne D(K)*, an element {, & of D*K)
will be defined by

2w,y —3wi L,
<7/) §>:‘d‘ e 'Tz";m; .5“ [
Wi
where
W= nfE, W= dw/e (Gz1).

This is an abstract definition of the Schwarzian derivative. The following Prop-
ositions are well-known for the classical (analytic) Schwarzian derivatives:

ProrositioN 1. {n, &—<&, L=y, &).

COROLLARY. <&, p=—{y, &; <&, &)>=0.

PrROPOSITION 2. Let &, ne D(K)*. Then the necessary and sufficient con-
dition for {y, £>==0 18 the following.

(i) If &is exact, i.e., £=dx (x€ K), then the condition is that p=dy, where
y is some linear fractional transform of x over k.

(i) If & is nonm-exact, then the condition is that p=a-& with some a € k"

Proor or ProrositioNn 1. Put

wy=ple Wiy =dwlE ,
ay=8e, i"iﬂ:;di?illg f
=l Yenr=0aY/C ,

(1=-1,2,8). Then w==pfry, we=(dw/OIE =2 @ —x0),  we=(dw:/0)/E/0)
smey Mg (0 o — s ) — Bty vy e —awy)}. It is enough to prove

(1) 2y Byt | Zwyre—B0f | 2003k .

H H wi

But (1) becomes an identity between the two rational functions of 2, and
(1si59), if we substitute our formula for w; (by z; and ¥, on the right side.
Q.E.D.
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PROOF OF PRoPosITION 2. First, assume that the chavacteristic of & is dif-
ferent from 2. If z=da, then {p, £>==0 is equivalent to 2w, w0 ==3(w{)*, and hence
to (2/)?=2z2", where z=w;! and ’/ denotes the differentiation by x. Differentiating
the last equation by z, we obtain 2///=20; hence z==Aa*-- Ba--C with A, B, Cek.
But in order that 2z satisfy (2/)?=22zz'’, it is necessary and sufficient that z is of
the form z=a(bx-+o)* (e, b, c€k). But this is also equivalent to 7==dy with some
linear fractional transform y of © over k. Now, let & be non-exact. It is clear
that the condition is sufficient. Conversely, suppose that we had {p, £==0 but
w € k. Then wws=(3/2w}; hence d{w,ws)==w;:*(wi--w;w:)i=(—1/2)§; hence § is
exact, which is a contradiction. Hence w,€k. In the case of characteristic 2,
<y, £5=0 is always equivalent to w, €k, and when Z=:dx, this is also equivalent
to p=dy with a linear fractional transform y of x over k.

(Note that K?ck if p is the characteristic.) Q.E.D.

§1-3. S-operators. By Proposition 1, <7, £> behaves like the difference »—¢&.
So, we shall introduce the following notion of the S-operator.
DEFINITION. A map

S: D(K)Y* -»> D¥K)
will be called an S-operator (of K) if
S —SKE>=<x, &

holds for all &, n€ D(K)*.

Let ¢ be any fixed element of D(K)*. Then the map S; defined by Si(&
=¢¢, > gives an S-operator (Proposition 1). By the definition of S-operators, the
difference of two S-operators is a constant; hence all other S-operators arc given
by S<&>==Se>+C, where C is an arbitrary constant in D*K). An S-opcrator of
the form S; is called an inner S-operator (w.r.t. {). An S-operator S is inner

if and only if
SEH=0

holds for some (€ D(K)*. (Then S is inner w.r.t. {.) In general, not all S-
operators are inner. This is equivalent to saying that not all elements of DHK)
are of the form <& &> &, e D(K)®).

Let ¢ be an automorphism of K over k, commuting with the differentiation
d: i.e., (dy/dey=dy)/d=z?) (x,yeK,xek). Then ¢ acts on DYK) by ge=yldw)t
— gr=yo(d(z°))*. Since ¢ commutes with d, <y, &°={y", &> holds for any ¢,
n€D(K)*. Let S be an S-operator of K. Then the map S°: D(K)* - D¥K)
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defined by S7¢&>==8¢&">""" is again an S-operator of K. We say that S is o-in-
variant if So==8.

§1-4. Effect of separable extensions. Let K, D(K), d be as in §1-1, and
let L. be a separably algebraic extension of K. Put D(Ly=D(K)®L. Then the
differentiation d : K-> IXK) can be extended uniquely to a differéntiation d,: L
-» D(I). This corresponds to {and follows immediately from) the well-known fact
that any derivation of a field can be extended uniquely to that of any separably
algebraie extension. If f(x)=x"-+a,2* ' --- 4-a,==0 is the monic irreducible
equation for z€ L over K, then dz is given by —f’(x)~*{z*"'da,4- - - - +-da,}, where
Sl @)=nan - (n—Da, 2 - - (3=0). Sinee z*, -.-,1 are linearly independent
over K, we have dz=0 if and only if da,== --- =da,==0; i.e., if and only if % is
separably algebraic over k. Therefore, the constant field of L coincides with the
separable closure of k in L.

Let S be an S-operator of K. Then it can be extended uniguely to an S-
operator S, of L. Indeed, S;{&>=(& O+ gives the desired extension S,
where &, { are any elements of D(L)*, D(K)* respectively.

§1-3. Connection with linear differential equations of degree two. Here,
we assume that the characteristic of K is different from 2. For each e D(K)*,
D, will denote the derivation of K over k defined by = — dz/2. For each £e D(K)*
and A, BeK, [¢; A, B] will denote the differential equation

(2) (D{+A-De+B)-u=0.

The differential equations of the type [¢; A4, B] will simply be called equations.
Let ¢,7€ D(K)<, and put w=np/¢, w.,=dw/¢ (iz1). Then D;=w,D, and Di=
=wil;-+w. D, ; hence the equation [§; A, B] may be rewritten as {7; A4, B},
where
(3) c=Awl G wawrt, Bi=Bwt.
We shall always identify two such equations (and consider them as different ex-
pressions of the same equation).

Let Ce K<. Then the equation obtained by substituting u by v C '« in (2)
will be denoted by ~ C[2; A, B]. More explicitly,

VClg; A, Bl=ls; A, B,

with
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A':A—D—-*—-ef) :
) DAC) ,  2CD3(C)~3{D(C)
pop- B a- OO

This definition of ~ C-multiple of an equation is independent of the way of ex-
pressing the equation. The two equations are called equivalent if one is a
~/C-multiple of the other for some Ce K*. This is an equivalence relation. Each
equivalence class will be called a class of equations.

An equation will be called of Schwarzian type if it has an expression of the
form {£; 0, B] (for some choice of &). In this case, such a differential ¢ is deter-
mined uniquely up to k*-multiples. Indeed, by (3), [&; 0, B}=[y; 0, B,] implies
w,=0; hence p/¢€k*. By a simple calculation, we obtain

(5) v@idle; 0, Bl=[»; 0, B]],
for any &,7e D(K)* and Be€ K, where B/ is given by
(6) 4Byt =&, p+4Bg* .

Therefore, v C-multiples of Schwarzian type equations (for any C€ K*) are again
of Schwarzian type. Hence we may speak of Schwarzian type classes. Equations
in a fixed Schwarzian type class are in one-to-one correspondence with D(K)*/k*,
by {¢; 0, Bl » ¢ (mod k%).

PROPOSITION 3. (i) Let S be an S-operator of K, and for ecach &€ D(K)*,
put S(E>=—4B:-&* (B;€K). Then the class §& of the equation [&; 0, B] is
independent of &, and S-> 8§ gives a one-to-one correspondence between the set
of all S-operators of K and that of all Schwarzian type clusses.

PrROOF. By (5), (6), and by S{(pD—S{&=(y, £, we have

V@iole; 0, Bld=In; 0, Bjl;
hence the class ® of [£; 0, B;] is independent of & That S+ is onc-to-one
follows immediately. Q.E.D.

We shall call the class & corresponding to S the class of type S.

Now let K., be the separable closure of K. Then the derivations and the
S-operators of K are uniquely extended to those of K-

PROPOSITION 4. Let S be an S-operator of K, and fix £€ D(K)*. For euch
ne DK)*, put p=v"%-£ (V€ K,p). Then n is a solution of S<{pp==0 if and only
if v is a solution of [£; 0, Be].

PROOF. Put w,=9/t=v"2, wy =dw/é¢ (#=1). Then w,=—2v" Dw, and
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wy==6v"4(Dev)?—2v"*(DEv). Hence y, &y=—4&"-Divfv. But S{p={y, &+8&>
=y, £—-4B¢-£%; hence S(yy=0 if and only if Div+ B v==:0. Q.E.D.

COROLLARY. The mnotations being as in Proposition 4, suppose that K
satisfies K*==K~**-k”. Let 7 be the vector space over k of all solutions ve K
of the equation [&; 0, B;]. Then

dim 7" :=0 &= S¢7>=0 has no solutions € IX(K)",

dim # =1 4= S{»>==0 has a non-exact solution 7,
and dim # =:2 &= 8{;»+=0 has an exact solution 7.

In the last case, the general solutions n of S{pp=0 are also given by d(v,/vy),
where v, v, are any k-basis of 77,
This follows immediately from Propositions 2, 4.

§1-6. Examples. Let k, be an algebraically closed field of characteristic
p>0, #£2. Let K=k,t) be the rational function field. Let IX(K), d: K — D(K)
be the space of differentials and the differentiation of K, in the usual sense.
Then k== Ker (d)==K*». The S-operators S of K and the elements F of K are in
one-to-one correspondence, by S<dt>=F.(dt)*. Let ve K* and put n=v~2-d{. Then
the two equations

@ Sp=0,
dfe  F
(b) Eﬁ - z‘v“‘o ’

are equivalent, and since K<=K<*.k*, the Corollary of Proposition 4 can be
applied. We shall be concerned with the space 77 of all solutions v€ K of (b).
Note here that separable extensions of K will not increase the dimension of
the solution space of (b). In fact, let L be a separable extension of K, and l=L?
be its constant field. Then L is a p-dimensional vector space over [, spannned
by [1,¢, ---,t2]; hence L=K®!. Let 4v denote the left side of (b). Then the
map » +~4v is an {-linear endo;norphism of L, and it maps K into itself. Hence
Ker (), i.c., the solution space of (b) in L, is spanned by Ker (d) N K=2"%.
Hypergeometric cases. This is the case where F' is of the form

ot 8ty
I,L%(;*:g.t, @ B, 1€k -

*  The same holds when I is the completion K, of K at a prime divisor P of Kk,
or more generally, when L is any separable extension of K,. Thus, for p>0, thereis no
essential distinetion between local and global solutions.
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First, we check that dim # 21 if and only if a+1, a+B+7+1 and y+1 are
square elements of the prime field F,. In fact, put

420 —1)2- A1, 8, -, 2771 =[1, ¢, -, 7714,

A=(4;,) being a square matrix of degree p over k. Then 4, are given by

A =417 s 0275 p-1,
Ajpr,=—8j(j—1)—8 e 0mjsp-2,
=(~8j(j—-D—-pHt* ---- j=p—1,
Ayer,;=45(7—1)—a <o 0895938,
=4j(j-D—atr ... j=p=2, p—1,
2”=0 . ?;3#_7', j+1, .7+2,

the subscripts i, 7 being counted mod p. Therefore, |4] is of the form |A|=P¢r
+Qi*+R, with P, Q, Rek,. The explicit values of P, P4+Q-+R, R are given
respectively by

P

T {@i—12—1—a—F—1} ,

£umQ

”HO (@i—1)—1—a} ,

I {@i—1)—1~7} .

420

Therefore, |4|=0 if and only if a+1, a4 5+r+1 and 741 are square elements of
F,. Thus our assertion is proved.

Now put a+1=p%, a+B+r+1=p} r+1=p}, the signs of p, being arbitrarily
fixed. Assume p,€ F, (1=0, 1, c0), 8o that dim #"=21. Put

A=L0-ppp) . BepU—p—ptp) . C=l-p,
and

ey gy
e LT § T s S YA

Thus, % is an element of K defined modulo k*-multiples. It is easy to check that
v is a solution of (b) if and only if u is a solution of the equation

' § 2% e ag LUy .
o) HL—8) S+ (C—(A+ B4 57 —ABu=0.

Let 4*u denote the left side of (8), and put

A1, 8, -, =1, 8, -, PR



104 Yasutaka IHARA

with A*=(1%), %, €k. Then, 1% are given by
=3+ A)G+B), =i —140),

and 4%=:0 for i:£7, 7—1. In particular, 4* is upper triangular, and the diagonal
element 2% vanishes if and only if j==—A or —B. Therefore, if A=B, rank (1%
=p-—1. On the other hand, if A+#B, say —~A<—B, then rank (4%)=p—2 if and
only if 2%, ,=0 for some j with —A<j=—B. Here, where inequalities are con-
cerned, the numbers of F, should be replaced by the corresponding integers in the
interval [0, p). It is more convenient, however, to choose the representatives
from (0, p]; we shall denote the representative of Xe F, in (0, p] by X'. Since
dim 7 ==p-- rank (4%), we conciude that:

dim # =1 &= one of the two intervals [1, C'), [C", p] contains both A" and B".

dim #7==2&=> A", B" are separated by these two intervals.

The solutions % of (g) are explicitly given by the following table.

Cases Dirgz?:it?gng futhe Basis of solutions
A', B'€[C’, p] 1 f(4,B; C; 1)
A, Bel, ¢ 1 t-¢f(A-C+1,B=C+1;2-C; t)
. f(A, B; C; 1)
erwis 2
otherwise #-Cf(A—C+1, B—C+1; 2—C; t)

Here, in general, f(4, B; C; t) is a polynomial of { defined by the hypergeome-

tric series

A(A+D B(B+]) 4,
1-2C(C+1)

where we stop the series as soon as the numerator vanishes. As can be checked

1+

t+ +oen,

A-B
1-C
easily, in cach of the above cases, the denominator does not vanish before the
numerator does. When they vanish at the same time, we stop the series right
before that term.

For a numerical example, let a=y=-1, 8=1, so that p,=p,=p.=0. Then
A=B=1/2, C==1, so that the interval [1,C") is empty. Therefore, dim # =1.
The solutions u, v, 7 of (&), (b), &), xvhiph are determined up to k*-multiples,
are given by w=f(1/2,1/2; 1; t)=§%<:)—t" (where r=(p—1)/2), v={{1—1)}""u,
and p={t(1—t)}"'u-dt. Since dim # =1, the differential 7 is non-exact in K,
and also in the separable closure L of K. Actually, there is a special solution
7, of &) in D(L)*, characterized up to Fj-multiples by the condition that it is
logarithmically exact (i.e., n,=2"'dz with some z€ L). It is given by
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Po={t(l—t)}'u T dt {up to Fj-multiples) .

The logarithmic exactness of », is proved later in a succeeding paper, and the
significance of 7, will become clear there.

§2. The canonical S-operator.
§2-1. The definition. Let Gx=PSL,(R) act on the complex upper half plane
H={reC|Im >0} by

~ _art+b _fab
T gT= orrd’ g»—(c d)eGR.

Let 4 be a fuchsian group of the first kind, i.e., a discrete subgroup of G, with
finite volume quotient. Then by the compactification of 4\ H, we obtain a compact
Riemann surface &

The canonical S-operator with respect to 4 is a certain S-operator on the
fleld of automofphic functions with respect to 4. Let K be the field of automorphic
functions with respect to 4, identified with the field of meromorphic functions on
&, and let D(K) be the space of all differentials of K, identified with that of
meromorphic differentials on &. Let d: K — D(K) be the (usual) differentiation.
To define the canonical S-operator, we need to consider the field K of all meromorphic
functions on H, and the space D(K) of all meromorphic differentials on H. The
action of Gg on H induces that on D*(K), denoted by £->¢7 (g€Gx). Let h20.
Then, by the covering map H — 4\ HG ¥, we may identify D*(K) as a subspace
of DMEK) consisting of all seDh(IZ) that are 4-invariant and that have at most
poles at each cusp of 4. Let * be any lincar fractional function of , considered
as an element of K. Let S be the inner S-operator of K defined by

SKey=<g, de*> .

Then by Propositions 1, 2 (§1-2), S is independent of the choice of ©*; hence we
may replace t* by the identity function z. Putting £=¢£(r)dr (€(r)€ K*), we have

(7) S¢ed= 26(7)5"(’5):36’(?)2 (do)?
£(z)
where 7 is the differentiation with respect to r.

It is classically known (modulo difference of formulations) that S induces an
S-operator of K. This can be checked immediately as follows. Let de€4. Then
{dr,dt%>=0, since % is a linear fractional transform of r. Thercfore, S¢&>*
=<8, d(z)> =g, dr>=§<€"> for any £¢€ D(K)*. Hence d-invariance of ¢ implies
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that of S<&>. On the other hand, it can be checked immediately by using (7)
that if & has at most poles at cusps, then S<£> also has the same property.
Therefore, S maps D(K)* into D*K). The equality §<7)>~—§<5>:<77, &> is satisfied
for all &, 7€ D(K)*, since it is satisfied for all &, ne D(K)*. Therefore, § induces
an S-operator S of K. We shall call this special S-operator S of K the canonical
S-operator with respect to 4.

REMARK. For cach hz0, the differentials &€ D*(K) are in one-to-one corre-
spondence with meromorphic automorphic forms £(r) with weight —2h with respect
to 4, by &=:£(z)(dz)*. Hence the above fact (that SCD(K)Y<>c DHK)) is equivalent
to the fact that if £(z) is an automorphic form of weight —2, then 22(z)&"/ (z)—32(z)?
is also an automorphic form of weight —8.

The following proposition follows immediately from the definition of the
canonical S-operator and Proposition 2 (ii).

PRrRoroOSITION 5. Let 4 and 4 be fuchsian groups of the first kind, with
dcd. Let K, K’ be the corresponding fields of automorphic functions, with
the natural inclusion KCK’. Let S, 8 be the canonical S-operators with
respect to 4, 4. Then (i) S is the unique S-operator of K’ that extends S;
(i) 2f 4 normalizes &, then S is invariant (in the sense of § 1-3) by the Galois
group of K’|K (isomorphic to 4/d').

§2-2. Some other formulations (A). Consider the pair {¥” ¢} of a compact
Riemann surface «" and a Z*U(co)-valued function ¢ on % satisfying

(el) e(P)==1 for almost all Pe <,
(¢2) 29—2+ 3 (1-1/e(P)) >0,

where g is the genus of . The two pairs {%, ¢}, {&/, ¢/} are called isomorphic
if there is an isomorphism ¢ of «” onto &/ satisfying e’oc=e. Let 4 be a fuchsian
group of the first kind, and let ¢° be, as before, the compatification of 4\ H. For
cach Pe«’, let e(P) be the order of ramification of the covering map H-—»
AN\NHC < at P. Thus, e(P)==co if P is a cusp, 1<e(P)<1 if P is an elliptic point,
and e(P)=1 for all other P. Then by classical results on fuchsian groups, e
satisfies the conditions (el) (e2), and 4 —{%, ¢} gives a one-to-one correspondence
between the set of all fuchsian groups of the first kind 4 (counted up to conjugacy
in Gg) and that of all pairs {¥”, ¢} of compact Riemann surfaces & and Z* U (o0)-
valued functions ¢ on % satisfying (el), (¢2) (counted up to isomorphisms). If 4
corresponds to {%, ¢} and 7" is an element of Gy such that 7-'47=4, then 7 induces
an automorphism of {¥ e}. Let N{(4) be the group of all such 7y (i.e., the
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normalizer of 4 in Gg). Then (N(4): 4) is finite, and the quotient N(J/4 is thus
identified with the group of all automorphisms of {7, ¢}.

Now, take any {%, e}, and let K be the field of meromorphic functions on <.
Then the canonical S-operators S with respect to {7, ¢} is an S-operator of K
defined as follows. Let 4 be the corresponding fuchsian group and identify
and e with the compactification of 4\ H and the ramification index of the covering
H s &, respectively. Then K is identified with the field of automorphic functions
with respect to 4, and S is by definition the canonical S-operator with respect
to 4. This definition is independent of the above identifications, since S is invari-
ant by the automorphisms of {%, ¢} (above remark on N(4)/4, and Proposition 5 (ii)).

Take two {&, ¢}, {¥7,¢’}. An admissible covering f:{«7, ¢’} {7, ¢} is by
definition a finite covering %"/ &, satisfying e(P)=e/(P)p(FP'/P) for any
Pre%”’, where P=f(P’) and p(F’/P) is the ramification index. Fix {+’, ¢} and
let 4 be the corresponding fuchsian group. Then it is clear that the Galois theory
holds between admissible coverings of {%”, ¢} and the subgroups of 4 of finite
indices. Therefore, a translation of Proposition 5 reads as follows:

PROPOSITION 5. Let S be the canonieal S-operator of {77, ¢}, and let
{#7, e’} - {¥, ¢} be an admissible covering. Then (i) the (unique) extension of
S to {#7, €'} is the canonical S-operator of {&7,¢'}; (1) S is tnvariant by the
automorphisms of {%, e}.

We note finally that %7 may be replaced °by equivalent algebraic objects;
algebraic curves over C, or algebraic function fields of one variable over C. Thus,
we use the notations and the terminologies: D*(¢”) and the canonical S-operator
of {#, e}, or {K, ¢} and the canonical S-operator of {K, e} cte., in an obvious sense.

§2-3. (I). Generalized algebraic function fields of one variable. Beforc
giving another formulation of the eanonical S-operator, we need some definitions.

Let & be any field of characteristic 0. By a generalized algebraic function
field of one variable (abbrev. g.a.f.f.} L/k, we mean a one-dimensional extension
L of k, not assumed to be finitely generated, satisfying the following conditions
(LO), (L1), (L2):

(LO) k is algebraically closed in L.

(L1) Let §(L) be the set of all intermediate fields K of L/k such that K/% is
finitely generated and L/K is normally algebraic. Then %(L) is non-empty.

(L2) Let K be any element of %(L), and for each prime divisor P of the
algebraic function field K/k, let e(P) denote the ramification index of P in L/K.
Then e(P)=1 for almost all P, and the quantity
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1
K)=2g—2- . .
#(K)=2g - ;} (1 e(P))degP, (g: the genus of K/k)

is positive.

This concept of generalized algebraic function field of one variable is a formal-
ization of the field of automorphic functions, in the following sense. Take any
fuchsian group of the first kind 4, and let {4;} be any lattice of normal subgroups
of finite indices of 4. Then the composite L of the fields of automorphic functions
K, with respect to 4, is a g.a.f.f. over C, and conversely, all g.a.f.f. over C can
be obtained in this manner. Since we are only considering the fields of character-
istic 0, these exhaust essentially all examples.

The following elementary properties of L/k are well-known for the case k=C.

(i) For K, K'eF() with KcK’, we have u(K")=[K’: Kl(K); by the
Hurwitz formula. (Hence the conditions in (L2) are satisfied for all Ke§(L) if
so for one Ke€F(L).)

(ii) @(K)z1/42 for any K€ F(L) (Siegel); in particular, §(L) satisfies the
minimal condition.

Let G be the group of all automorphisms of L over k. Then G carries a
unigue topology with which Gal (L/K) (K€ &(L)) are open subgroups. With this
topology, G is locally compaect, and the elements of F{(L) correspond in one-to-one
manner with open compact subgroups of G.

Now let V==Gal (L/K) (K€ %(L)) be any open compact subgroup of G.

(iii) Let N(V) be the normalizer of V in G. Then (N(V): V)<oco.

In fact, the group of automorphisms of K/k leaving e(P) invariant is finite;
since by (L2), the sum of deg P for all such P that e(P)=£1 is at least three for
g==0 and at least one for g=1.

(iv) V is topologically finitely generated.

This follows immediately from the well-known theorem for the case of r=C,

(v) V is contained in at most finitely many compact subgroups of G.

This follows direetly from (i) (ii) (iii) and (iv).

(vi) G/V is at most a countable set.

In fact, the number of gV with given group index (V: VNgVg) is finite,
by (iii) (iv) and (v).

(vii) There exists a G-invariant subfield L’ of L such that L’-k=L and that
L’Nk is of at most countable transcendence degree over the rationals.

This follows direetly from (iv) and (vi).

Now, by (i) (i), F(L) contains at least one minimal element.

DEerFINITION. We call L stmple if $(L) contains only one minimal element,
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and ample (or arithmetic) if otherwise.

If Lk is finitely generated, then L€ F(L) and #(L) >0, so that the genus of
L is at least two; hence G is finite and its fixed field is the unique minimal
element of F(L). Thus, such an L is simple.

In general, if L is simple and K, is the minimal element of §(L), then F(L)
consists of all finite extensions of K, in L. In this case, G coincides with Gal (LIK,)
and hence G is compact. (In fact, G leaves the unique minimal field K, invariant,
and hence (G : Gal (L/K,))<co by (iii); hence G=: Gal (L/K,) by the minimality of
K,.) On the other hand, if L is ample and K,, K’ arc two distinet minimal
elements of (L), then K,N K/=k. In this case, the subgroup of G generated by
Gal (L/K,) and Gal (L/K?), and hence also G itself, are non-compact. Therefore,
L is simple (resp. ample) if and only if G is compact (resp. non-compact). In the
case where k=C and L is obtained from the system {4;} of all normal subgroups
of 4 of finite indices, L is ample if and only if the “commensurabilizer”

{g€ PSL,(R); g7 'd4g~4} (~: the commensurability relation)

of 4in PSL,(R) is dense in PSL,(R). As is well-known, this condition is satisfied
by all arithmetically defined fuchsian groups. (This is why it may also be
proposed to call arithmetic instead of ample.) Some of the related literatures
are [8], [2-1] I, Ch. 11, and {7-2].

(II). Some other formulations (B). Let L be a generalized algebraie function
field of one variable over C. Take any Ke F(L), and for each prime divisor P of
K, let e(P) be the ramification index of P in L/K. Then e satisfies (el) (e2);
hence the canonical S-operator S¥ of {K, e} is defined. The (unigque) extension S
of S¥ to L is independent of K, as is clear by the definition of e and Proposition
5 (). We shall call S the canonical S-operator of L. Invariance of S by auto-
morphisms of L/C is proved in §4-8 (the Corollary of Lemma B).

§2-4. Local properties. Let {Z, ¢} be as in §2-2, and let S be the canonical
S-operator. Then we have the following:

PROPOSITION 6. Let Pe % and ¢ I(F)*. Then
(i) ord, KH=z-2
(i) Put e=e(P), n=ords&; take t€ K such that ord, t=1, and put

E=ct*(1-+tet+ ---)dt, ¢#0, ¢, ¢ -+ €C.
Then

S@={%+% 4
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s, L for any P,

with ( 1
{1, e

o= —2ne, ctf e(P)=1.
Proor. Let v be any rational number, and consider a Puiseux series:
pldt==CrQ-=Citt -y C#0,C,---€C .
Then a straightforward computation shows
{py A= {4 20) +-2C b+ - - - H(dtft)? .

But if »==£, then v==n and C,==¢,; and if »==dr, then v==(1/¢)~~1. Since S{(&
={€, dty-~<{dr, dt), our Proposition follows immediately. Q.E.D.

REMARK. Put S{&>==-4B.-£%. Then, Proposition 6 is equivalent to the
following assertions on the properties of the equation [£; 0, Be] of §1-5.

(i) The equation [£; 0, B;] is fuchsian, i.2., regular at each P€ %"

(ii) At each P, the exponents are given by

1 1 1 1
(1Ent =), (14— ).
2< nFe)' 2( ke e>

(iii) Unless e(P)=oo, the local solutions of the equation do not contain
logarithms.

Since {p; 0, B,J=+7/¢[¢; 0, B] for any n€ D(Z")*, the exponents of [7; 0, By]
are obtained by adding %ordpv to the exponents of [2; 0, Bg]. Hence [7; 0, By]
satisfies (i)~ (i) if and only if [£; 0, B,] does. This shows that the assertions of
Proposition 6 are independent of &; i.c., if any S-operator S of ¢ satisfies the
assertions for one &, then it satisfies the assertions for all &.

Unfortunately, Proposition 6 does not characterize S. In fact, the S-operator
SIE> =8>+ C (Ce D2(e7)) also satisfies the assertions if and only if (C)> 1H IP“,
where (C) is the divisor of C. By the Riemann-Roch theorem, the dim;n;i)on of

the space of such differentials C is given by
p=23g—3-+-8{Ple(P)>1} .

Therefore, the only case where Proposition 6 characterizes S is that of ¢=0. This
case is called the triangular case. It is the case of ¢g==0 and #{Ple(P)>1}=3.
(Note that if ¢g==1 and e(#)==1 for all P, then ¢ does not satisfy (¢2).) If {¥, ¢}
is triangular, then we may assume that % is the rational x-curve, and the three
points P of e(P)>1 are those with 2(P)==0, 1, co. Call those points P,, P, P.
respectively, and put e;==e(P,) (i=0 1, o). Then
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COROLLARY. The notations being as above, the canonical S-operator for
the triangular {&, ¢} is given by
R R ax*+brtc . . v
SO=, dad+ ————Z(dw)*, (e D)),
2} (1—xz)®
where

a,:l——l, a,+b+c::~1§~~«1, ::—17-—1.

o

€ €1 €5
As far as the author knows, the combinations of Proposition 5 and this
corollary are the only known methods for the explicit determination of S.
§2-5. Example (R.A. Rankin, M. Eichler). Let 4” be the algebraic curve
over C defined by the equation
yr=at(@r—-1)7,

where m, n, p, ¢ are integers with m, »>0, n, ¢=0, (m, n, q)=1. Then,
1
g= —2~{(m—(m. p-—(m, n)—(m, pg-+-n)+2} .

Let g=2 and put ¢(P)=1 for all P€%. Let ¥, be the rational x*-curve, and let
P,, Py, P. be the points on %, at which 7=0, 1, oo respectively. Put e¢,(P)=:1
for Pe &, with P#P,, P,, P., and put

el P, mp

eg(Py) = mp eo(Py) = LS e} =2 m .

(m,n) ’ (m, q) ’

Then {#,, ¢,} is triangular, and (z, ¥) = 2” gives an admissible covering {# ¢} =
{%,, e)}. Therefore, by Proposition 5 and the corollary of Proposition 6, we
immediately obtain an explicit formula for the canonical S-operator of {47, ¢}, It
is given by

SKE>=<¢, dad>+ ‘%2%5%Q (dey?, (e D(=)),

where
A=(m, pg+n)*—m?,  A+B+C=((m, q)*—~m?)p*,
C=(m, n)*—m? .

§3. The k-rationality theorems, and an application

§3-1. The first formulation. (I) Let 4 be a fuchsian group of the first kind,
and let € be a compactified quotient of H modulo 4, considered as an algebraic
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curve over C. Let k (cC) be a field of definition of ¢, and let S be an S-
operator of . We shall say that S is k-rational if S(&> is k-rational for any
k-rational differential £:£0. Let ¢ (#£0) be a fixed k-rational differential of 7, so
that S(€>==(¢, &>+ C with some C€ D¥(¥”). Then, S is k-rational if and only if
C is so. One might conjecture that the canonical S-operator is k-rational if
(=" is defined over k& and) morcover all points Pe 7% with e(P)>1 are k-rational.
But we find no reasons to expect this to be true.

We shall prove the k-rationality of the canonical S-operator in the following
cases. Put 4==4,, «’=%,, and S=§8,. Assume that there is another fuchsian
group 4,, such that the two groups 4, and 4, are commensurable and generate
a dense subgroup of Gp=PSL,(R). Put dy=4,N4,, and for each 1=0, 2, let «,
be an algebraic curve corresponding to 4,. Then we have canonical projections
pro: Wy e 7, (11, 2).

dy=4,0 4,
~

%
pr, / \pr-.: AN
Let S, (i==0, 2) be the corresponding canonical S-operators. We know that S, is
the unique extension of S, to % for i=1, 2 (Proposition 5 (i) of §2-1).

THEOREM A. The notations and assumptions being as above, let &k be a
common field of definition of &, (1=0,1,2) and of pr, (1=1,2). Then S,
(1==0, 1, 8 are k-rational.

(I1) A slightly weaker version, which is more convenient for applications, is
the following. Let 4;, ¥°,. pr; etc. be as above, and assume moreover that 4. is
of the form 4,=¢ 'die (¢€Gp). Then the automorphism = —er of H induces an
isomorphism o: €, —» %5. Let ¢ be the rational map of %, into & X % defined
by

@(P)==pri(P) Xcopr, (P) , (P€ &%) .

Then ¢ induces a birational morphism of <5 onto its image X¥=¢(%,). X is an
irreducible algebraic curve on @ X %, and can be considered as an algebraic cor-
respondece of <.

COROLLARY. Let k be a common field of definition of & and X. Then S
is k-rational.

Indeed, if & and ¥ are defined over k, then one may re-select k-rational
models for &, (1=0, 2) and pr; (¢=1,2). This corollary has an application to all
arithmetic type fuchsian groups (§3-8).
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REMARK. Actually, the assumption “4; and e7'd;z generate a dense subgroup
of Gr” can be weakened to “4, and ¢ generate a dense subgroup”, by some minor
modifications of the proof (see §4-2).

§3-2. The second formulation. The readers are advised to recall the de-
finitions of ample fields and the properties of invariant subfields of the ample
fields (§2-3, 1).

THEOREM B. Let L/k be a generalized algebraic function field of one
variable. Suppose that L is ample, and let @ be any open non-compact subgroup
of Aut, L. Then (i) there exists a unique @Q-invariant S-operator S of L; (i)
1f k=C, then S s the canonical S-operator; (iii) if L’ is any ¢-invariant
subfield of L mot contained in k (so that L'k’ is again an ample field, where
K=L'Nk), then S 1is k'-rational <n the sense that S<&>e€ DL’y for any
ée D(LY)~.

This can be applied, for example, to the G,-fields of characteristic 0 ([2-1],
Vol. 1, Ch. 2).

§3-3. An application to Shimura curves. As an application of the corollary
of Theorem A (§3-1), we shall prove that the canonical S-operators of arithmetic
fuchsian groups are k-rational with respect to Shimura’s models &/k. Let F be
a totally real algebraic number field of finite degree, and let o be the ring of
integers of F. Let F',, denote the multiplicative group of totally positive elements
of F, and let 0%, be the group of totally positive units of F. For each integral
p-ideal ¢, C(F,¢) will denote the classfield over F' corresponding to the ideal group

{xolxe F.,, =1 mod* ¢} ,
where mod* denotes the multiplicative congruence. Let B be a quaternion algebra
over F, and let © be a maximal o-order of B. For each prime divisor y of F
which is unramified in B, we fix an Fj-isomorphism B@F,gMg(F’,). Here, Fy
denotes the completion of F with respeet to p. If v is finite, this isomorphism
can be so chosen that ©®o, corresponds to M,(o,), 0, being the p-adic completion
of 0. This isomorphism islduces an injective isomorphism of B*/F* into PL(F}),
which will be denoted by ¢. Now, put B,,={x€ Bllgﬂx)eﬂo}, and let ¢ be an
infinite prime divisor of F unramified in B. Then ¢, induces an isomorphism of
B.,/F* into the subgroup G,=PSL.,(R) of PL.(R). Let ¢ be an integral two-
sided $3-ideal, and put c==eNo. Let 4=4(T, ¢) be the quotient of the group
{6e DIHZ/\/'F(B) €0%,, =1 mod* ¢} ,

modulo its center
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{eov*i6=1 mod*} .

Assume now that B is unramified ai exactly one infinite prime divisor ¢ of F.
Then by ¢,, 4 can be regarded as a subgroup of Gy, which is a fuchsian group
of the first kind. For such a fuchsian group 4, Shimura proved the existence of
a very nice complete non-singular model V of 4\ H, which is defined over the
classfield C(F, ¢} ([7.1] Main Theorem I; p.73). Here, we call it & instead of V,
to correspond with our previous notations. Our theorem is as follows:

THROREM C. Let S be the canonical S-operator with respect to 4=4(0, e),
and let % be the Shimura model of 4\H defined over the classfield k=C(F, ).
Consider S as an S-operator on %. Then S 18 k-rational.

Proor. In view of the Corollary of Theorem A, it suffices to find an element
¢€ (G, such that the two groups 4, e"'4e are commensurable and generate a dense
subgroup of G, and that the correspondence ¥ (§3-1) is also defined over k. First,
take any e€ B.,/F*, and identify it with an element of G by ¢,. Then 4 and
¢~1de are commensurable. Let ID(B/F) denote the discriminant of B over F, and
let » be any prime ideal of o not dividing ¢- D(B/F). Put

pip) == D P, D(D)—__—;C@D(b) s
0

20
and let 4% be the quotient of the group
{Be-D‘WIB%(é) en'®*, =1 mod* ¢},
modulo its center
{6eo»*|d=1mod*c} ,

where pl¥*==p®x*n F.,. By the isomorphism ¢, 4% is embedded into PLy(F3). The
p-adic closures of ¢p(4%) (resp. «(d)) contain PSL,(Fy) (resp. PSLy(05)), by the
Eichler-Kneser approximation theorem. Take any e€ 4% such that «(e) € PL(0p).
Let I be the subgroup of 4 generated by 4 and e'4e. Then the closure of
(") contains U==PSL,(0p) and U’=e,(e) ' Ueple). Since ¢,(e) € PL,(0s), the two sub-
groups U, U’ of PSL.(Fy) do not contain each other. But U is a maximal sub-
group of PSL(Fy); hence U and U’ generate PSL.(Fy). Therefore, (I': d)=c0;
hence, as a subgroup of G (by the embedding ¢,), I" is dense. Now, let X be the
correspondence of & defined in §3-1 with respect to such an element e. Then ¢
is coprime to ¢D(B/F)D (in the sense of [7-1] 2-14, p. 71); hence by 11.4 of {7-1},
X is defined over k=C(F, ). Q.E.D.
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§4. Proof of the theorems

§4-1. The key lemma (A). Let pr,: & — %7 (i=1,2) be as in §3-1 (1).
Then, pr¥ gives a natural inclusion D*(%5) G D (€5) for hz20, i=1, 2.

LEMMA A. DM&)NDNF)=1{0} for h>0.

As in §3-1 (I), let S; be the canonical S-operator with respect to 4; (i=20,1, 2).
Then we obtain the following algebraic characterization of S,:

COROLLARY. The canonical S-operator S, is the unique S-operator of <%

satisfying
SLD(E)H>c D%,
for both =1, 2.

PROOF OF THE COROLLARY. Since S, is the (unique) extension of S, to ¢
for i==1, 2, we have SKD(Z)>cD¥¥%) (i=1,2). On the other hand, suppose
that §,+C (Ce D*(¥,)) also satisfies this condition. Then Ce€ D*(%,)N D&% ;
hence C=0 by Lemma A. Q.E.D.

ProoF OF LEMMA A. Let Ce D*(F)ND*%2), and put C=C(r)(dr)*. Then
C(r} is a meromorphic automorphic form of weight —2h with respect to both 4,
and 4,. But since 4, and 4, generate a dense subgroup of G, by assumption,
C(z) must satisfy the functional equation Clgz)=(cz+d) **C(z) for all g€ G,. In
particular, C(z) must be invariant by all translations r > z--b (be R). But since
C(r) is meromorphic, C(r) must be a constant. But C(—z )=z-2*C(z), and h>O0.
Therefore C=0. Q.E.D.

§4-2. Proof of Theorem A. Let K, (resp. K¢) be the fields of k-rational
(resp. C-rational) functions on %, (i=0, 1, 2).

Kyoommmv e KE
AT
Koo e é”

For each automorphism p of C over k, let # be the unique automorphism of K¢
that coincides with p on C and with the identity on K, Clearly, {?ﬁgmﬁlﬁz,
E‘-::ﬁ“; hence the set of all 5 forms a group. Let K! be its fixed field. Then
KiNC=k; hence K{ and C are linearly disjoint over k. But then, K} and K‘=
K,-C must be linearly disjoint over K,; hence K|=K, On the other hand, we
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have (l(g/;)/d(fﬁﬁj’:(dy/d:',‘-)’; for each =, y€ K¢ with 2€C. This can be checked
immediately if we write down the algebraic relation F(z, y)=0 between z and ¥
over C and perform the two operations on F(z, y)=0, the differentiation and the
isomorphism # in two different orders. Thus, 5 acts on the space of all differentials
(of degree h) on K¢, by {7(d:f)"};:::7;"{d(’c; }*. Since 5 commutes with the differ-
entiation, /f/’,;‘”‘/*‘(/,,v holds for all differentials &, 70 of K§.

Now for cach p, define an S-operator S! of K¢ by S w(f)*::SO(;"”);“. Since g
leaves K¢ invariant for i==1, 2, S{ maps D(K9* into D*KS for both i=1, 2.
Therefore, by the corollary of Lemma A, we conclude Sf=S,; hence S,(&)%==
S,<&">. Now let ¢€ D(Ky)*. Then £7=¢; hence Sel6> is g-invariant. Hence if we
pul S (e>=A8* (A€ K¥), then A is p-invariant for all p; hence A€ K,; hence
Sieve DEHK,). On the other hand, if € D(K)* (i=1,2), then S&>=SLK&

])Q(K) hence S5 3 DHKS)N DHK)==D*K,). This implies the k-rationality
of S, (i==0,1, 2). Q.E.D.

REMARK. We can also prove the corollary of Theorem A with the wealened
assumption given in the remark of §3-1, in a similar way. Namely, for this
proof, it suffices Lo use the following modification of the corollary of Lemma A:

S, 18 the unique S-operator of &, satisfying

So(D() ) DH#)

and

So<fa.>:so<f>°‘ , (€ D(Z;x)A) .
Here, o* is the map

FDME)) — JD”(”( )
h /‘3
induced from ¢. The o¥invariance of S, is obvious, since ¢* is in essence a linear
fractional transform. The uniqueness proof goes exactly as that of Lemma A.

§4-3. The key lemma (B).

LeMma B. Let L/k be ample, and let @ be any open mon-compact subgroup
of Auty L. Let h>0. Then the only @-invariant element of D*(L) is 0.

Proor. Let Ce D*(L) be ¢-invariant. Take an open compact subgroup V,
of Aut, L such that Ce D*(K,), where K, is the fixed field of V,. From the
properties (ii), (iii), (v) of L/k given in §2-3 I, it follows immediately that there
exists some e¢€@ such that V, and ¢ 'V,¢ generate a non-compact subgroup of
Auty L. Put V.=e¢1Vie, V=V NV, and let K, be the fixed field of V, (i=0,1
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2). For each i=0, 1, 2, take a complete non-singular algebraic curve %7 over k
representing K., and for each P€ &, let e{P) be the ramification index of P in
LIK, (i=0,1,2). Let pr; be the canonical projection @4 - €7 (i==1,2). Let k
(ck) be a common field of definition for €75 (:==0, 1, 2), pr; (i=1,2), and C. We
may assume that k, is finitely generated over @ Hence by any embedding of %,
into C, we may regard ¥; and pr; as complex algebraic curves. By the definition
of e, the projections pr; are admissible coverings {5, ¢} — {27, e}. Let 4, be
the fuchsian group corresponding to {5, e}, let 7, be the corresponding covering
H- %, and let 4, be the covering group of prio¢, (3==1,2). Then since V; and
V. generate a non-compact group, 4, and 4, generate a dense subgroup of Gg.
Since C*=C and K.=K:, C belongs to D*(%) for é=1, 2; hence C=0 by Lemma
A.

COROLLARY. Let L/C be ¢ generalized algebraic function field of one
variable, and let S be the canonical S-operator of L. Then, (i) S is Aut¢L-
invariant; (i) let L/C be ample and ¢ be any open non-compact subgroup of
Autc¢ L. Then S is the uniqe ¢-invariant S-operator of L.

Proor. Let Ke$(L) and put V=Autgz L. By its definition, S is an exten-
sion of an S-operator of K ; hence it is V-invariant. If L is simple, take K to
be the unique minimal element of F(L). Then Autc L=V, hence S is Aute L-
invariant. Now let L be ample and let G, be the subgroup of Aut: L gencrated
by all open compact subgroups of Autc L. Then S is Ge-invariant, and moreover
G, is open and non-compact (see §2-3 I). Hence by Lemma B, the only Gy-invari-
ant element of D*(L) is 0. This implies that S is the only G,-invariant S-operator
of L. On the other hand, G, is a normal (and indeed, a characteristic) subgroup
of the topological group Aut: L. Therefore, for each o€ Aut¢ L, S° is again G,-
invariant: hence S’=S. This proves that S is Aut. L-invariant. Now, (ii)
follows immediately from Lemma B. Q.E.D.

§4-4. Proof of Theorem B. In view of the above corollary, it suffices to
prove (i) (iii). However, (ili) is an immediate consequence of (i). Indeed, by (i)
applied to L’/k’, there is a unique ¢-invariant S-operator & of L/. But & can
be uniquely extended to an S-operator S° of L (by S'&>=S(+<& 0, £€ L)Y,
te D(L/)y). Since S is ¢-invariant, we have 8" =8 by (i). Therefore, S is the
restriction of S to L’.

So, it is enough to prove (i). But the uniqueness is immediate by Lemma B.
Hence it is enough to prove the existence part of (i), assuming ¢=Aut, L. In
view of the property (vii) of L/k given in §2-3 I, we may assume that k is at
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most of countable transcendence degree over the rationals. Take any embedding
of k into €. Let L¢ be the quotient field of L@C. Then L¢/C is a generalized
algebraic function field of one variable and Aut¢ L¢ contains ¢ as an open sub-
group. Hence L¢ is ample. Let Sc be the canonical S-operator of L¢. Then by
the corollary of Lemma B, S¢ is @-invariant. It is enough to prove S(D(L)*>
c D). But this can be proved exactly in the same manner as in Theorem A
(use Lemma B instead of Lemma A). This completes the proof of Theorem B.
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