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Introduction. In this paper we continue our investigations of finite fusion
simple and, in particular, simple groups of 2-rank 3 or 4, [7], [8], [9], [10], [11].
Here we study the case of finite groups with Sylow 2-subgroups S of type PS4, q),
qodd, (that is, S is isomorphic to a Sylow 2-subgroup of PS,(4, q) for some odd g).

Such a 2-group S can be described as follows: S contains a normal subgroup
of index 2 which is the central product of two generalized quaternion 2-groups @,
Q. with @, Q. being interchanged under conjugation by an involution of S.

We have already studied the case {S|=64 (and @,, Q. quaternion) in some
detail in [8]. In particular, we note that, in addition to the groups PS,4, q)
themselves with ¢=38, 5 (mod8), the fusion-simple groups A,;, A4,, A,-E{, and
GL(3,2)-E{’ have Sylow 2-groups of this type. Here A;-E{Y and GL(3,2)-E®
denote, as usual, respectively the unique nontrivial split extension of an elementary
abelian group E of order 16 by A, acting nontransitively on the involutions of E
and of an elementary abelian group of order 8 by GL(3, 2).

Our main result is the following:

THEOREM A. If G is a perfect fusion-simple group with Sylow 2-subgroups
of type PS,(4,q), q odd, then G 1is isomorphic to either A, A, As ED,
GL(3,2) - E, or PS,4,q) for some odd q.

In particular, if G is a simple group with such Sylow 2-groups, then G must
be isomorphic to As, A4,, or SP,(4,¢q), ¢ odd. On the other hand, if G is an
arbitrary such fusion-simple group (and hence not necessarily perfect), then
essentially the same result holds except that the last alternative now reads that
G is isomorphic to a subgroup of PI'S,{4, ¢) containing PS,(4, ¢} for some odd q.

Harris {14] bas recently obtained a characterization of the groups PS,(4,¢),
g odd, which extends an earlier characterization of these groups established by
Wong [17]. Using Harris’ result, we obtain Theorem A as a corollary of the
following theorem:
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THEOREM B. If G i3 a fusion-simple group with Sylow 2-subgroups of type
PS4, q), q odd, then one of the following holds:

(i) Ge2As, Ay, As-ESY, or GL3,2)-E{V; or

(i) If z is an involution in the center of a Sylow 2-subgroup of G and
M=Cy(z), then

(1) O(M)==1;

(2) M contains a normal subgroup which is the central product of two
subgroups L,, L, isomorphic to SL(2, q) for some odd g ;

(3) M/L,L, has Sylow 2-subgroups of order 2 and M contains an involution
which interchanges L, and L, under conjugation.

Using [8, Theorem A¥*] together with the classification of groups with Sylow
2-subgroups of type D,»xD,» obtained in [10], we shall show that either part (i)
of Theorem B holds or else that M=M/O(M) satisfies conditions (1), (2), and (3) of
part (ii) of Theorem B. This will have the effect of reducing Theorem B to the
proof of the single assertion that O(M)==1.

We use essentially the same procedures as in our previous papers to obtain
the desired conclusion. However, in the present case, as in [10], the concept of
ordinary balance is inadequate. Indeed, the groups PS,(4,q), q odd, themselves
are, in general, not balanced. This comes about because PS,(4, q), g odd, possesses
two conjugacy classes of involutions and except when ¢ is 2 Fermat or Mersenne
prime or 9, the centralizer of an involution in the second class has a nontrivial
core. It turns out that the notion of 2-balance, introduced in [6], is the proper
concept to work with in the present situation.

We conclude this discussion by introducing some terminology which will be
important in the ensuing analysis. First we recall from [8], that a group G is
said to have the inwvolution fusion pattern of the group X if there exists an
isomorphism ¥ of a Sylow 2-subgroup S of G onto a Sylow 2-subgroup of X such
that two involutions a, b of S are conjugate in G if and only if the involutions
al’, bF of ST are conjugate in X.

In the present context, the class of groups which will act as “prototypes” for
our fusion-simple group G with Sylow 2-subgroups of type PS,4, ¢), ¢ odd, are
the groups X which contain a normal subgroup Y of odd index isomorphic to
PS4, q) for some odd g with Cx(Y)=1. Any such group X is isomorphic to a
subgroup of PI'S,4, q) containing PS4, ¢). In addition, X has the involution
fusion pattern of PSy(4, ¢). In particular, X has exactly two conjugacy classes of
involutions. Furthermore, if z is a central involution of X, then Cz(z) satisfies
the conclusions of part (ii) of Theorem B. On the other hand, if z is a noncentral
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involution, then Cz(2)/O(Cx(z)) possesses a normal subgroup of index twice an odd
number isomorphic to PSL(2, q)X D,», where n is determined by the condition that
a Sylow 2-subgroup of X has order 2****, (In addition, O(Cy(2)) is cyclic of order
(q+6/27, where 6==x1 and ¢+4d=0 (mod 4)).

Now let G be a fusion-simple group with Sylow 2-subgroup S of type PS4, ),
g odd. In view of the preceding remarks, we shall say that the centralizer of an
involution i of G is of type PS,(4, g) if ¥ is a central involution and Cy{y)/O(Cy{y))
has the structure given in part (ii) of Theorem B for the specified value of q or
if ¥ is a noncentral involution and Ca(y)/O(Cy(y)) contains a normal subgroup of
index twice an odd number isomorphic to PSL(2, q)X D,», where |S|==0n+2,

Finally we shall say that G has the centralizer of involutien pattern of
PS4, q) for some odd ¢ provided the following conditions hold:

(1) G has the involution fusion pattern of PS,(4,q); and

(2) The centralizer of every involution of G is of type PS,(4, q).

In such a case, the integer ¢ will be called the characteristic power of G.

An essential step in the proof of Theorem B is the assertion that either part
(i) of Theorem B holds for G or else G has the centralizer of involution pattern of
PS,4, q) for some odd g. This will be established in Section 3.

Finally we remark that the reason we are able to establish 2-balance in G is
that we can reduce the problem to the verification of a specific property of certain
proper subgroups K of G (the usual covering local subgroups). Because G will be
a minimal counterexample to Theorem B, X=K/O(X) will have the structure of
one of our “prototypes”. To establish 2-balance, it turns out to suffice to prove
that the following condition holds for any four subgroup 7 of X:

Ax( T)::‘ nTSO(Cx(t))'": 1.

To see that this is indeed the case when X contains a normal subgroup Y of
odd index isomorphic to PS,(4,q), ¢ odd, with C(Y)=1, we clearly need only
treat the case that O(Cy(t))#1 for each ¢t in T*, otherwise the assertion is obvious.
In particular, each involution £ of T is then noncentral and ¢ is not a Fermat or
Mersenne prime or 9. However, as O(Cy(t)) is cyclic 4,(7T) is characteristic in
O(Cx(t)) and so is normal in C,(t) for each t in T% Thus

A T)LCx()2 e TE> .

On the other hand, as Y==PS,(4, ¢), it is easily verified that Y=<C,{t)ite T.
Likewise we have that X=YC,(T) and consequently {C{t)lte T%>=X. Therefore
45(T) is, in fact, normal in X. Since O(X)=1 and [4(T)| is odd, the desired
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conclusion 4,(7j=1 now follows.
In general, our notation is standard and includes the use of the bar convention
for homomorphic images.

2, Assumed results. We assume the reader is familiar with the notions of
balance, connectedness, 2-generation and p-stability with respect to a p-sub-
group. However, we note that the original definition of p-stability with respect
to a p-group, given in [2], has been emended in [18]. Proofs of the following two
theorems can be found in [6] or [13] and in [18] respectively.

THEOREM 2.1. If G is a balanced, connected group of 2-rank at least 3
with O(G)=1 in which the centralizer of every involution 1is 2-generated, then
O(Cy(z))==1 for every involution z of G.

Next we state the extended form of Glauberman’s ZJ-theorem.

THEOREM 2.2. If H is a group with O,(H)#1, p odd, which is p-constrained
and is p-stable with respect to the p-subgroup P of H, then

H=0,(H)Ng(Z(J(P))) .

We recall some terminology from [6]. We let &.(G) denote the set of elementary
abelian 2-subgroups of rank k of the group G. Moreover, if Te &,(G), we set

4T) = ﬂ, O(Ce(t)) .
T4

te

With this notation, we say that G is k-balanced if for each 7 in #.(G) and each
involution b of G which centralizes T, we have

4o(T)HN Co(b) = O(Co(b))

Our concern here will be with the case k=2. If G is a 2-balanced group and
A is an elementary abelian 2-subgroup of G of rank at least 4, it is shown in [6,
Section 5.1] that if we define for each a in A*

0(Co(a))=<Co(a) N4 T)| T € #£:,(A)> ,
then ¢ is a solvable A-signalizer functor on G (that is, 68(C,(a)) is an A-invariant
solvable subgroup of Cyla) of odd order such that (Cy(a) N Ca(bYS O Colb)) for each

a, b in A*%). Hence using Goldschmidt’s version of the signalizer functor theorem
[4], we have

THEOREM 2.3. If G is a 2-balanced group and A is an elementary abelian
2-subgroup of G of rank at least 4, then the subgroup
Wa=Ldo(T)I T e & A
of G is of odd order.
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In addition, the argument of [8, Section 4.1} yields
THEOREM 2.4. If G, 4, and W, are as in the preceding theorem, then for
each B in &4 (A), we have
N{BYSNH(W .

Finally we state Harris’ theorem {14].

THEOREM 2.5. Let G be a fusion-simple group with Sylow 2-subgroups of
type PS,(4,9), q odd. If z is an involution in the center of a Sylow 2-subgroup
of G and if Cy(2) is of type PS,(4, ¢) with O(Cy(z))=1, then G possesses a normal
subgroup of odd index isomorphic to PS, (4, q) for some odd q.

In particular, if G is perfect, then G=PS,4, q).

3. The involutions of G. Let G be a fusion-simple group with Sylow 2-
subgroup S of type PS,(4,¢q), g odd.

We shall use the following precise description of S. S is generated by six
elements a,, ., by, by, f, u with a,, a, of order 2! for some integer n=2 and b,,
b, t, u of order 2 which satisfy the following relations:

( ap=a,, by=b, ali=a;!, bi=ab;, i=1,2, and

S [Kas, 0,5, <az, b>1=1t, u]=1.
(The action of ¢ on a, is given implicitly since we have bib,=a,, whence a!=bb{=a;",
1=1,2.)

We note that in the case of n=2, our notation here differs from the descrip-
tion of S given in [8]. We have the following correspondence of generators: a,,
by, az, by, t, u correspond respectively to ¢, da, ca, dab, f, e.

We have that S has order 2*"** and S is of 2-rank 4. Moreover, SCN(S) is
empty if n=3, while SCN,(S) is nonempty if n=2. However, S is connected for
all values of n. The maximal subgroup R=<a, a,, b;b,, t, u> is the central product
of its subgroups @Q,=<thb,, ubb,2;> and Q,=<{ta,b;b,, uz,>, which are generalized
quaternion and are interchanged by the involution b,. Hence S has the structure
stated in the introduction. The integer = will be called the height of S.

In this section, we shall study the fusion pattern of involutions of G, the
approximate structure of the centralizers of the involutions of each class, and some
related local structure. Our primary aim will be to show that either Theorem B
holds or G has the centralizer of involution pattern of PS,(4, ¢) for some odd q.

The center of S is of order 2 and we let 2 be the involution of Z(S). We set
M=C42) and fix this notation.

We first restate some of the results of {8] for the case that S is of height 2,
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in which case S is also of type A,.

ProrosITioN 3.1, If S has height 2, then one of the following holds:

(iy Ge2As, Ay, As-ESY, or GL(3,2)-E; or

(i) G has the involution fusion pattern of PS4, ¢) with ¢=3, 5 (mod8).

This is [8, Theorem A*]. In addition, we have proved [8, Propositions 3.1, 3.2
and Corollary A*]:

ProprosiTiON 3.2. If S has height 2 and G has the involution fusion pattern
of PS,/4,q) with g=3, 5 (mod 8), then

(i) M 18 of type PS4, q) for some ¢=3, 5 (mod 8);

(i) If ¢=3, then G=PS,4, 3).

In view of Propositions 3.1 and 3.2, we see that either Theorem B holds or
else G has the involution fusion pattern of PS,(4, q), ¢=3, b (mod 8), M is of type
PS,i4, ¢) for some ¢=3, 5 (mod 8) and ¢=5. As a consequence, we shall make the
following assumption throughout the balance of the paper:

If 8 i3 of height 2, then G has the involution fusion pattern of PS,(4, q),
q=3, 5 (mod 8), M is of type PS4, q) for some q=3, b (mod 8), and ¢g=5.

We note finally an additional result established in the course of the proof of
[8, Propositions 3.1 and 3.2], which we shall need.

LEMMA 3.3. If S is of height 2 and A is an elementary abelian subgroup
of 8 of order 16, then N (A)O(Ng(A))=A, - E{.

REMARK. If in Lemma 3.3, G is not fusion-simple, but satisfies the weaker
condition that Z*(G)==1, then [8, Proposition 3.9] and the remark following it yield
the weaker result that Ny(A)—Cg(A) eontains a3 3-element which acts regularly on 4.

Our principal objective in this section is to establish the following result:

PROPOSITION 3.4. G satisfies the following conditions:

(i) G has the centralizer of involution pattern of PS,4, q) for some odd
qzb;

(i) If A is an arbitrary elementary abelian subgroup of G of order 16,
then Ng(A)/Ce(A) is isomorphic to A, or S, according as n=2 or n=3.

The proof of the proposition is long and will be divided into a number of
lemmas. Because of our assumption in the case n=2, part (i) of the proposition
will hold once we show that the centralizer of every noncentral involution of G is
of type PS,{4,q). Moreover, part (ii) of the proposition holds by Lemma 3.3.
Hence the bulk of the proof will deal with the case that n=3.

Thus in Lemmas 3.5-3.18, we assume that n=3.

Furthermore, for our subsequent analysis of the subgroup structure of G, we
shall need some information about arbitrary groups with Sylow 2-subgroups of
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type PS,(4,q), ¢ odd, and hence not necessarily fusion-simple.
Thus in Lemmas 3.5-3.12, we drop the assumption that G is fusion-simple.
We introduce some additional notation (in all cases). First of all, we recall
from [11] that a 2-group T is called a crown product if T is of the form
(D, % D )y>, where D, is dihedral, ¥ is an involution which normalizes D, and
F,=DZy> is dihedral, i=1, 2. We write T=F AF:. We note that if D,, D, are
each four groups, then T=Z.X Z.{Z..

R={ay, 02, bibs, £, wd, Ai={bib:, 2, 2>, A=Ky, ahs, 21, 200, Q=tbyby, ub,boz >,
and Q,=dta.b;b,, uz,>. The following properties of S and its subgroups are easy
consequences of the definition of S. We leave their verification to the reader.
LeMMA 3.5. The following conditions hold:
(i) Z2(8)={>=2,.
(ii ) g HS)=<2, 2> and S'=<a,, a:, bib>.
(iii ) S has mine conjugacy classes of involutions represented by z, z,, by,
bz, bib., abbe, t, u, tu.
(iv) If » is an involution of S distinct from z which 1s not conjugate
to b, or bz, then r is conjugate to vz in S.
(v) (1) Cse)=<as, by, s, b, t5=XD, >=T;
(2)  Cs(b)=Cs(b2)=<b,, 2.>X<as, bp=Z: X ZyxX Dyny
(8) Cs(bibs)==<by, 24, b, 20, up=Zy X Z:f Z,
(4) Cs(abiby)=<ab,, 21, be, 2., tud>=7, % Z.SZ,;
(5) Csty=<t, u, z,, 2:.0=Z. X Dy
(6) Cs(u)=<¢t, u, bibs, 0,002y X Dynvr;
(1) Csuwy=<{t, u, a,a:", b18:b, >822 X Dyn+1,
(vi) The centralizer of every involution of S hus 2-rank three or four.
(vii) S is connected of 2-rank 4.
(viii) g HCsu) =" (Cs(tu)=<2> and g NT)=2(T)=Z.
(ix ) Every elementary abelian subgroup of S of order 16 18 contained in
T and is conjugate in S to A, or A..
( x) NJA)=DyfZ,;, Cs(A)=A4A,, and NJAYIA=D,, 1=1, 2.
(xi) R=Q,Q:=Q*Qr=2Q.~-1#Q;=+1, and b, interchanges @, Q. under con-
jugation. Furthermore, Q=<_t, u>°.
(xii) T=Dynei ADinet and 15 the unique maximal subgroup of S with a
noneyclic center.
(xiii) Aut(T) and Aut(S) are 2-groups.
(xiv) Aut(S) contains an element which interchanges A, and A. and an
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element which interchanges b, and b;z.

(xv) Zi{z> 18 the center of S|K{zD.

(xvi) | Ng(Cp(by)): Crlby)i=2.

(xvii) <D, ups=x<D, tud=D,f{Z..

REMARK. We note that (x), (xiii), and (xv) as well as the assertion g™ %(S)
=={z,, 2,y do not hold if n=2.

We first prove.

LEMMA 3.6. N,(Z) has a normal 2-complement.

Proor: Clearly 7T is a Sylow 2-subgroup of H=Cy(Z). But T=IXt>=
Dynit ADyn+1 by Lemma 3.5 (xii). It follows therefore from [11, Lemma 8.5] that
H has a normal subgroup K of index 2 with Sylow 2-subgroup D. But D=D,» X D.n,
nz3, and Z=2(D)S Z(K). We conclude therefore from {11, Lemma 8.4] that K
has a normal 2-complement. Hence H also has a normal 2-complement. But
Aut(T) is a 2-group by Lemma 3.5 (xiii) and so Ng(Z)/H is a 2-group by the
Frattini argument. Thus also Ny(Z) has a normal 2-complement, as asserted.

Now we begin our analysis of the fusion of involutions.

LEMMA 8.7. 2z i3 not conjugate to z,, u, or tu in G.

PRrROOF: Suppose z!=z for some g in G. We can choose g so that Cs(z,)?
=7T9<8, Since T is the unique maximal subgroup of S with a noncyclic center,
Te="T, whence g€ N(T)SNy{Z). Since Ng(Z) has a normal 2-complement by the
preceding lemma, we clearly have a contradiction. Thus z is not conjugate to z
in G.

Suppose next that u’==z for some ¢ in G. We can assume Cs(u)&S. By
Lemma 8.5 (ii) and (viii), we have g {Cs{u)=<¢2)> and g~ (S)=2Z, so €2
={z,, z.>. Hence by the preceding paragraph, we must have 2=z, contrary to the
fact that w*==z. Thus z is not conjugate to u in G. Similarly using the fact
that also " '(Cs(tw))=<z>, we conclude that z is not conjugate to tu in G.

LEMMA 3.8. Any two elementary abelian subgroups of S of order 16 that
are conjugate in G are conjugate in S.

Proor: Let A, B be two such subgroups of S that are conjugate in G. By
Lemma 3.5 (ix), A and B are conjugate in S to A; or 4.. Hence to establish the
lemma, it will suffice to prove that A, and A. themselves are not conjugate in
G ; so assume the contrary.

Using Alperin’s fusion Theorem, [1 or 5, Theorem 7.2.6], it follows that S
contains a subgroup S,, satisfying

(@) S24;;

(b) S#¥=Ny(S) is a Sylow 2-sabgroup of N4(S));
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{¢) A7 is conjugate in S to A, for some x in Ng(S,).

By Lemma 3.5 (xiii), S;cS and consequently S¥>8S,.

Let 7, be the subgroup of S; generated by its elementary subgroups of order
16, so that T, contains A, and A,=A7. Since T,C T, 2(Z(T,))=Z. Suppose that
QUZT)H2Z. Since T, is not elementary of order 16, it follows from Lemma
8.5 (v) that £,(Z(T,)) contains an involution b which is conjugate in S to b,. Clearly
we can assume without loss that b=}, in which case 7, & Cr(b)=<by, 2,>x<as, b>.
Since A, T, and 4, is not conjugate to A4, in S, we must have that {4,, 4>
=Cp(b,) and hence that T,=Cb,).

By Lemma 8.5 (xvi), |Ng(Ty): T)]=2. Since T, is characteristic in S, and
S#58,, we conclude now that S,=7,. Thus S;=Z.XZ;XDyn. It is easily seen
from the structure of Aut(S,) that any element of Ng(S,) of odd order necessarily
leaves invariant every elementary subgroup of S, of order 16. Hence A;=Ai=A}
for some ¥ in S¥*< S, which is not the case. We conclude therefore that 2,(Z(T)))=2.

Hence N (S)SN,T)ESNsZ). However, by Lemma 3.6, Ny(Z) has a normal
2-complement and we reach the same contradiction as in the preceding case.

LEMMA 3.9. If A is an elementary abelian subgroup of S or order 16 and
an involution a of A is conjugate to z in G, then a is conjugate to z in Ng(A).

PROOF: As usual, a?==2 for some ¢ in G such that Cs(@)<SS. Hence A'SS.
By the preceding lemma, A=A for some s in S. Since a%=2z*=2, our assertion
is proved.

LEMMA 3.10. If N{A)ZCslz) for i=1 or 2, then we have

(1) NSA)ZCul2) for both i=1 and 2;

(ii) N(A)/Ca(A) i8 isomorphic to either S or to a Sylow 3-normalizer of
As, i=1 and 2;

(iii) With a suitable choice of motation, we have

1) z~b,z and z;~by;
(2) bibi~z o7 2z, and a,biby~z o7 25

ProoF: By Lemma 3.5 (xiv), Aut(S) contains an element which interchanges
A; and A,. Hence by symmetry, we can assume without loss that N (A4 Cx2).
Set H,=N,(4,) and C;=C4(4,). By Lemma 8.5 (ix) and {x}), Ns(A,) is a Sylow
2-subgroup of H, and a Sylow 2-subgroup of H,/C, is isomorphic to Ds. Moreover,
z is not conjugate to z, in G by Lemma 3.7, so H, does not act transitively on
A%, Now Ng(A,) acts on A} with orbit lengths 1, 2, 4, 4, 4. Since 2z is not con-
jugate to z, and since 13==1-+4+4+4 does not divide the order of H,==H,/C,, which
is isomorphic to a subgroup of GL(4,2)=4,, we see that z has precisely 5 or 9
conjugates in A% Correspondingly, 5 or 9 divides 14,1
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We note next if H, contained a subgroup isomorphic to A, or Z;X 4,, then
H, would act transitively on A%, which is not the ease. Examining the subgroups
of A, having a dihedral Sylow 2-subgroup of order 8, we conclude easily that H,
is isomorphic to S; or to a Sylow 3-normalizer in A,.

Since a Sylow 2-subgroup of Ng{A,) is a 2-group of type A,, by Lemma 3.5
(x), we can apply a result by Kondo [15, Lemma 3.2] to obtain that z,~b, if and
only if 2~biz. On the other hand, by the structure of H,, H, has exactly two
orbits on A%, one containing z and the other containing z,. Hence b~z or 2; in
H,. But b,~bz in Aut(S) by Lemma 3.5 (xiv). We conclude therefore that for a
suitable choice of notation, we have z,~b, and z~b,;z in H,. Clearly bb;~z or z,.

Since z~bize A,, it follows from the preceding lemma that Ns(A.) ZCe(2).
Hence repeating the analysis for A;, we obtain that Ny(4.;)/Ce¢(A.) is also isomor-
phic to S, or to a Sylow 3-normalizer in A,. Likewise Ng(A4,) has two orbits in
its action on A%, again represented by z and z, so a,bb,~z or z,. All parts of
the lemma now follow.

REMARK. We note that at this point we cannot yet assert that Ng(A,)/Co(A4,))
=N, (A)/C(A,). This we shall prove later.

Lemma 3.11. If G has no isolated involution, then N(A)ZCs(z) for any
elementary abelian subgroup A of S of order 16.

Proor: In view of the preceding lemma and Lemma 3.5 (ix), it will be
enough to prove that Ny(A4.)ZCy(z), 7=1 or 2, under the given assumption. Since
z is not conjugate to 2z, % or tu by Lemma 3.7, z must be conjugate in G to b,
bz, bbe, a;biby, or t by Lemma 8.5 (iii) as z is not isolated in S with respect to
G. Each of the first four elements lies in A4, or 4,. Hence if z is conjugate to
one of them, then the desired conclusion will follow from Lemma 3.9. Thus to
establish the lemma, it will suffice to show that if z~t in G, then 2z is also con-
jugate to one of the first four elements listed.

As usual, there then exists ¢ in G such that t*=z and Cs(i)<S. Then
(Cs(t)Y)P= 8. But ze Cs(t) and S'={a,, a., b,0.> by Lemma 3.5 (ii) and (v). We
conclude at once from this and the fact that z is not conjugate to z, that z must
be conjugate to b,b, or a,bb,.

Combined with Lemma 3.10, Lemma 3.11 has the following corollary :

LEMMA 3.12. If G has no isolated involution, then for a suitable choice of
notation, z~bz and z,~b,.

Henceforth, we assume that G is fuston-simple. In addition, we assume the
notation so chosen that z~b,z and z,~b,.

LEMMA 3.13. The following conditions hold:
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(i) G has exactly two conjugacy classes of involutions represented by z
and z;;

(i1) z~u~tu.

Proor: The conjugacy classes of involutions of S intersecting D nontrivially
are represented by 2, z;, b, bz, bib: and abb.. Lemmas 8.10 and 3.12 show that
each of these six elements is conjugate in G to z or z;. Hence every involution
of D is conjugate in G to z or z,. We shall argue now, that also one of ¢, u, or
tu is conjugate to z or z, in G. Assume false, Since <D, > is maximal in S and
G is fusion-simple, Thompson’s fusion lemma implies that ¢ must be conjugate to
% in G. Since u is not conjugate to z or 2;, we conclude easily from Lemma 3.5
(v) that « is extremal in S; that is, Cs{w) is a Sylow 2-subgroup of Cy{u). Hence
there exists g in G such that ##=wu and Cs(t) S Cs{u). But Cs{t)={¢, u, 2,,2.> =Z: X D,
and Cs(uw)={, u, bby, a.a.>=Z, X Dyn+1 by Lemma 3.5 (v). Hence {t, u,2>* and
{t, z,, 2,7 are elementary subgroups of Cs(u) of order 8. Moreover, as n=3, they
are, in fact, conjugate in Cs(u). We conclude therefore that {¢, u, z) is conjugate
to {t,2,,2.> in G, which clearly implies that ¢, u, or tu is conjugate to z or z,.
Thus we have shown that ¢, %, or tu is conjugate to z or z, in G.

Hence all the involutions of (D, £>, <D, w>, or <D, tu> are conjugate to z or
2, in G. However, each of these groups is maximal in S and we conclude now by
another application of Thompson’s fusion lemma that ¢, u, and tu are conjugate
to z or z, in G. Lemma 3.5 (iii) together with Lemma 3.7 now yields that G has
exactly two conjugacy classes of involutions, represented by z and z,. Further-
more, by the same lemma, z i3 not conjugate to % or tu in G, so we also have
Zy~t~tu.

LEMMA 3.14. We have z,~u~tu in M.

Proor: We have already shown that these elements are conjugate in G, so
there exists g in G such that w=2z, and Cs(uySCs(z))=T. (Here we have used
the fact that 7' is a Sylow 2-subgroup of Cgz,) as z, is not conjugate to z in G).
By Lemma 3.5 (viii) we now have (&= Cs(u))y S HT)=Z. Since 2z is
not conjugate to 2, or to z,, if follows that 29==2, so g€ M. Similarly z, is con-
jugate to tu in M.

LEMMA 8.15. R i3 a Sylow 2-subgroup of OX(M). In particular, | M : OX(M)|==2.

ProoF: Set K=0*M). In view of the preceding lemma, M does not have a
normal 2-complement and hence neither does M=M/{z). Thus K is of even order.
Since KM, it follows that Z(§)N E=1. But Z=Z(5) by Lemma 3.5 (xv) and so
Z< K. Similarly (>=2Z(S)SK and hence Z&K. But now w and tu are also in
K by the preceding lemma. However, R=(f, u>° by Lemma 8.5 (xi). Since
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SNK4S, we conclude therefore that K< XK. Hence either the lemma holds or
Sc K, in which case M=K=0%M).

Consider the latter case. Then as M has no normal subgroups of index 2 and
S==R¢b,> with R maximal in S, Thompson’s fusion lemma implies that 5, must
be conjugate in M to some involution r of R. Certainly » is not conjugate in S
to b, or bz, so by Lemma 3.5 (iv), » is conjugate to 7z in S. Since r"=b, for
some m in M, we have {(rz)"=r"z"=bz as m centralizes z. Thus b,~r~rz~bz2.
But by Lemma 8.12, b, is conjugate to z;, while bz is conjugate to z. Since z
and 2, are not conjugate in G, we have a contradiction and the lemma is proved.

REMARE. R is also a Sylow 2-subgroup of OM) when n=2, as follows
directly {rom Proposition 3.2 (i}.

LEMMA 3.16. The following conditions hold:

(i) z~t~bba~ahb, in M

(i) Either M i8 of type PS,(4, q) for some odd ¢ or Cs(z;) involves A,.

ProOF: Let K=0%M) and M=M/O(M) and set M=M/<z>. Then E is a Sylow
2-subgroup of K, O(K)=1 and O¥K)=K. But as R=Qu+xQur+1, R=2DynX Dy,
Since n =38, it follows from the main result of {10] that RcK’ and that K'=L,x L,
where L,>2PSL(2, q), g, odd, or A, 1=1, 2. If L; denotes the inverse image of
L. in K, then by the structure of B (=%R), L, does not split and so by the results
of Schur F,=SL(2, ¢,) or /L, where /i, denotes the unique perfect central exten-
sion of A, by Z., i=1, 2. Since E is a Sylow 2-subgroup of L,L,, it follows that
R is the central product of RNL, and BNL. each of which is generalized
quaternion. But R=Q,Q. is the unique representation of B as a central product
of generalized quaternion subgroups. Henee for a suitable choice of the number-
ing of I.,, [, we have Q@=Rn£L, i=1, 2. Since b, interchanges Q, and @, it
follows that b, interchanges L, and L, Thus L,=L, and so either LA, or
SL(2, ¢) for some odd g (=¢,=¢.), t=1, 2. In the latter case, we conclude at
once from the definition that M is of type PS,(4, ¢). On the other hand, if L.=A4,,
we see that C7,iy(b,)=2Z, X 4, inasmuch as b, interchanges L;, L. and so centralizes
the “diagonal” of L,[.. Thus it follows in this case that Cy(b,) involves 4,. Since
by~z,, we conclude that Cy(z;) involves 4,. We have therefore established (ii).

Finally in either case it follows from the structure of L,L. that all noncentral
involutions of 1 are conjugate in M. Indeed, every involution of B—<{Z> is con-
tained in a subgroup V of I isomorphic to Q*Qs and, moreover, |Nu(V)/Ca(V)]
is divisible by 9. Hence all involutions of V—<3> are conjugate in M. From this,
we easily obtain our assertion. In particular, we have 'z“1~i~5152~d,5152 in M,
which implies (i).
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We have now established a major step in the proof of Proposition 3.4.
LEMMA 3.17. G has the involution fusion pattern of PS,(4,q) for some
odd g, namely

2~bizlay~b~t~u~tu~b b ~aybibs .

PrOOF: Given the assumed normalization of the notation for the elements of
S, Lemmas 3.12, 3.13 and 3.16 together show that G has the specified involution
fusion pattern. In particular, this involution fusion pattern is uniquely deter-
mined. On the other hand, we can choose ¢ so that G*=PS,(4, ¢) has a Sylow
2-subgroup S* isomorphic to S. Since the preceding discussion applies as well to
G* as to G, we see that, again for a suitable choice of notation, ¢ and G* have
the “same” involution fusion pattern. Hence G has the involution fusion pattern
of PS,(4,q) for some odd ¢, as asserted.

We next prove

LEMMA 3.18. Setting Hi=NyA,) and H;=H,/C,A), i=1,2, we have

(i) H,=S,, i=1, 2;

(ii) H. contains ¢ subgroup X, of order 3, i=1, 2, such that X, and X,
centralize <{z,, b,2> and normalize, but do not centralize <(b;,z.> and <a:b:, 2>
respectively ;

(iii) Any subgroup of H, of order 3 invariant under a four subgroup of
SAH, centralizes some involution of Z, i=1, 2;

(iv) ueO*(H)) and tueO(H,);

(v) <z, b2> and <b, 2> are conjugate in H,.

ProoF: The proofs being entirely similar for A, and A4,, we treat only the
case of 4,. Set C,=Cy(4,), so that H,=H,/C,. By Lemma 3.10, H, is isomorphic
to S, or to a Sylow 8-normalizer in 4, To prove (i), we need only rule out the
latter possibility. However, in this case, a Sylow 3-subgroup of H, is clementary
of order 9 and acts on A? in orbits of length 8, 3, and 9. On the other hand, it
follows from the preceding lemma that z has five conjugates in A? and 2, has ten
conjugates in Al Since z and z, are not conjugate, this is clearly impossible.
Thus H,==S;, as asserted.

Since 2, has ten conjugates in H,, it follows now that Cy(z) contains a 3-
element z, with z,¢ C,. Since z has five conjugates in A}, x, must centralize two
of them. Thus C,,(x,) is a four group containing 2, and two involutions conjugate
to z. One checks that the only possibility is <z;, b:2).

Setting D,=<by, a3" ">x by, 08" "> and S,=DKu), we have that S,=Ns(4,)
2D,fZ, and that S, is a Sylow 2-subgroup of H,. Then {z>=Z2(S,). Since 2, is
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not conjugate to z in H, and z, is in Z(D,), it follows that D, is a Sylow 2-sub-
group of Cyz,). But Dy=D,xD; and so Ny (D)/Cy(D,) is a 2-group. We con-
clude therefore by the Frattini argument that C; (z,) cannot be isomorphic to A4,.
Since #,€ Cy,(z,), this in turn implies that {&#,>=Z, is a normal 2-complement in
Ci fz).

Now A,=<z,, b2>x B,, where B,==[4,, &,] is a four group. Since D, normalizes
(%> by the preceding paragraph, D), also leaves B, invariant and consequently
B,<{D,. But all involutions of B, are clearly conjugate in H,. Furthermore, we
have z~b,z~bz,~b,z,~b,z with the remaining elements of 4! all conjugate to 2,
as Ny(A,) has exactly two orbits on A% This implies that B, necessarily contains
a conjugate of 2, and so B, contains no conjugate of z. But B,NZ(D,)#1 and
Z(D)==<2,, 2,>. Since z,¢ B, by the given decomposition of A4,, it follows that
z2.€ B,. We conclude now that <b., 2,> is the unique possibility for B,. Thus (i)
also holds.

Next let V be a four subgroup of S; and let V be the subgroup of S;=SNH,
containing A; which maps on V. Since S,=D,fZ., one checks that either V=D, < D;
or that V is of type As Since Z=Z(D,), it also follows in either case that
Z(V)<Z.

Suppose now that V normalizes a subgroup ¥ of order 8. Since H, acts
intransitively on A%, BlmC,u(Y) is a four group. Since V normalizes Y, we see
that B, qV, whence B,NZ(V)#1. Since B,NZ(V)cZ, we conclude that (iii) holds.

Assume next that Vo H!=A4,. Then V is normalized, but not centralized by
a 3-element of H! and so V is normalized, but not centralized by a 3-element of
H, by the Frattini argument. Since Aut (DX D) is a 2-group, it follows in this
case that V is of type 4s. However, one checks directly that S; possesses a unique
subgroup of type Aq containing A, : namely, <{b;, 2, b, 2, ai"_sa?"s, #>. In particular,
ue V. Since VCH/{, we obtain (iv).

Finally 2¥=b, for some y in H,. Then the 8-element x! centralizes b, and
reasoning as with x,, we check that C, (Y) is a four group containing b; and two
involutions conjugate to z. The only possibility is <{b,, 2>. Hence {z,, b;2">={b;, 2>
and (v) also holds.

REMARK. Part (v) of the lemma also holds when n=2. Even though H ,=A4,
in this case, z; and z still have 10 and 5 conjugate respectively in H,, so the same
proof applies.

We set N=C,x(z,) and fix this notation for the balance of the paper. We now
drop the assumption that n=8.
We next prove
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LEMMA 3.19. The following conditions hold:

(i) M and N are of type PS,4, q) for the same odd g=5;

(i) If N=NJ/O(N), N=(G.z, @ >x O(N)E> and {d., b.y is a Sylow 2-subgroup
of O*N).

Proor: We first treat the case n=2. By Proposition 3.2, G has the involu-
tion fusion pattern of PS,(4,q) and M is of type PS,(4,¢) for some ¢=3, 5 (mod
8). From this information and for a suitable choice of the generators of S (note
that z,=a,, t=1, 2, in this case), we can assume that

z2~bizlz ~ b~ t~u~tu~ bbb~ 20,0, .

We also have that R=Q.*Q@; is a Sylow 2-subgroup of O%M) and that
M=0*M)}Xb,>. Setting M=M/O(M), we know that M possesses a normal subgroup
of the form IL,I,, where L,=SL(2, q), i=1, 2, and [L,, [.]=1 with b, interchang-
ing L., L. under conjugation. Hence Ci,i,(5:)=Z.XxPSL(2,¢q) and consequently
Culb,y, 2)=Cu(b,) involves PSL(2, ¢q). Sinee b,~z;, we conclude that also N involves
PSL2, q).

Setting A=<z, 2., by, by> and T'==AL{t>, we see that T=Z,X Z.{Z, and that T
is a Sylow 2-subgroup of N. Hence by [7, Lemma 4.4], N has a normal subgroup
K with Sylow 2-subgroup A. Since z and z, have 5 and 10 conjugates in N,(4)
respectively, |Ng(A)/Cs(A)| is not divisible by 9. Since K involves PSL(2, q), it
does not have a normal 2-complement and consequently O*K) is of index 4 in K.
Hence by the main theorem of [3] or [16] we have that K=K/O(K) possesses a
normal subgroup F=PSL(2, ) for some r=q and that F centralizes a four sub-
group B, of A. We have A=B,X B,, where B,=ANF.

We know the fusion pattern of involutions of A*: namely, 2~b,2~b,z,~b;z~b.2,
with the remaining elements of A% conjugate to z,. It follows therefore as in the
preceding lemma that B,=<Z, b,z> and B,=<b,, z.>. Hence (ii) holds. Further-
more, we have that Cy(b2) involves PSL(2,7). Since biz~z, M also involves
PSL(2, 7). But r=q and we conclude at once from the structure of M that r=¢q.
It follows at once now from the definition that N is of type PS,(4, ¢), so (i) also
holds in this case.

Next assume n=3. By Lemma 3.18 (ii), <bs, 2:>E0%Cs{<zy, b,2)>)) and conse-
quently <bs, 2,0SK=0%N). Since TN and <{a,, b;> is the normal closure of
by, 2> in T, it follows that <a,, b.>SK. On the other hand, T=xDpn+iADpn+t is a
Sylow 2-subgroup of N as TSN and z is not conjugate to 2. But now [11,
Lemma 8.5] implies that N has a normal subgroup H of index 2 with Sylow 2-
subgroup D={a,, b,> x<as, b>. Clearly O*(H)=K and so D K==D;x<{a,, b.), where
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D=={a,, >N K. By [10, Lemma 38.13], D, cannot be eyclic, otherwise X would
have a normal subgroup of index 2. On the other hand, if D,=D;;, then by [10,
Propogitions 3.2 and 3.7] K does not possess an isolated involution. However,
this is impossible since z,€ Z(N) and z;€ K as D, is noncyelic. We conclude that
{az, b;> is a Sylow 2-subgroup of K.

Setting N=N/O(N), it follows now from [12] that either K=A4, or K contains
a normal subgroup F of odd index with F=PSL(2, ) for some odd 7. However,
¢ acts on F and <d,, b,, i3=¢D;n11. This shows that F cannot be isomorphic so 4,
otherwise F<I>==S,, contrary to the fact that S; has Sylow 2-subgroups isomorphic
to Z.x Dy. Thus F=:PSL(2, ).

We next determine the structure C¢(F). Sinee {dy, b> centralizes the Sylow
2-subgroup {d., b> of F, it follows from the structure of PI'L(2, r) that any in-
volution of D not contained in FC(F) necessarily induces a nontrivial field auto-
morphism of F. Suppose b,¢& FC:(F), in which case Ci{by=PGL(2, r,), where
ri==r. But then we see that there exists a 3-element of Ny(4.,)—Cy{(A) which
centralizes {z,,b,>, i=1 or 2. However, the involutions of <z,,b,> are all con-
jugate to z,. On the other hand, by the preceding lemma, every 3-element of
Ng(A;)—Co(A,) centralizes some involution conjugate to z. This contradiction
shows that b, € FCx(F).

We argue next that §,3¢e Cx(F). Obviously Z, centralizes F. Since (z,, b.>SF,
it follows from the preceding paragraph that 4,=¢,, %, b, bOS FC(F). Setting
B—mC’;;l(F‘), we see that B is a four group containing Z,. Hence if B denotes the
inverse image of B in A, and H,=N,(A,), we conclude that Cu,(2:) contains a 3-
subgroup Y which centralizes B, but does not centralize 4,. On the other hand,
if F,=H,/Co(A)), Lemma 3.18 implies that Cy,(Z) is isomorphic to Z,XS, and
its unique subgroup of order 3 centralizes bz. Hence C,(Y)={z,, b2>=B, which
shows that b,ze Cx(F).

Observe next that as §,::<d1,51§> is the normal closure of <z, 62> in T, it
follows that S,SCx(F). We have S,=D.» and that S, is a Sylow 2-subgroup of
Cx(F). Since % is isolated in Cg(F), this implies that Cs(F) has a normal 2-
complement. Since O(N)=1, we obtain that C:(F)=S,. Since K/F is of odd order,
we conclude that K centralizes S-l.

Since N does not involve A4,, Lemma 3.16 (ii) yields that M is of type PS4, 9)
for some odd ¢. Furthermore, to complete the proof that N is of type PS4, q),
it remains only to show that r=q. Since 5,z centralizes F, C,(bz) involves
PSL2,7). But bz~z and so M involves PSL(2, ), whence »<gq. On the other
hand, as in the case n=2, C,(b,) and hence N involves PSL(2,q). so g<». Thus
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q=r and all parts of the lemma hold.

The preceding lemmas establish Proposition 3.4. Indeed, G has the involution
fusion pattern of PS,(4,¢) for some odd ¢ by assumption if n==2 and by Lemma
3.17 if nz3. Furthermore, M and N are of type PS,(4, ¢) for the same odd ¢ by
the preceding lemma. Thus G has the centralizer of involution pattern of PS,(4, ¢).
Moreover, if n=2, then ¢=5 by assumption. Finally if A is an elementary
abelian subgroup of G of order 16, N (A)/Cs{A)=A, if n=2 by Lemma 8.3, while
N A)/Ce({A)==8, by Lemmas 3.5 (ix) and 3.18.

Proposition 3.4 has a number of elementary consequences which we shall need
for our further analysis.

LeMMa 3.20. The following conditions hold:

(i) If A s an elementary abelian subgroup of S of order 16, N, (A)/Cu(A)
=d, or S, according as n=2 or nz3;

(i) Every T-invariant subgroup of M of odd order lies in O(Cy(Z)O(M);

(iit) Cu(Z) has a normal 2-complement;

(iv) Every T-invariant subgroup of N of odd order lies in O(Cx(Z))O(N);

(v) M=MOM)=L,L0(Cx(R)S, where Li=SL(2, q), 1=1, 2, L, centralizes
L., and [.L; is normal in M;

(vi) N=N/ON)=FO(CHT)T, where F=PSL(2, q) and F is normal in N;

(vii) The normal closure of %, in M contains L.L.:

(viii) The normal closure of z in N contains F.

ProoF: We know that M is of type PS,(4,¢) and that R is a Sylow 2-
subgroup of O*M). Moreover, the structure of N is given in Lemma 3.19. The
various parts of this lemma follow directly from the specified structures of 3 and N,

We also have

LeEMMA 8.21. Ewery prime divisor of |O(M)| is also a prime divisor of
[O(N)].

ProoF: Set d=|Cour,(z)| and e=|M: L,L.S|, so that d and ¢ are both odd.
The proof will depend upon the following two assertions:

(a) Every prime divisor of |O(M)| is a prime divisor of d;

(b) O(Cx(Z)) bhas order dividing e(g+4), where é=+1 and ¢=48 (mod 4).

Indeed, suppose (a) and (b) hold. Since L,L.2=2SL(2, )*SL(Z, q), Ci,7,(2) has
a normal 2-complement of order (¢+46)%/2*". Hence by Lemma 3.20 (v), C#(Z,) has
a normal 2-complement of order e(q-+48)%/2*" and consequently Cy(2))=MN N=CyZ)
has a normal 2-complement of order de(qg+6)?/2:". But O(C,(Z)) maps onto HCi{(Z),
which by (b) has order dividing e(g-+4)/2*. These conditions thus imply that d
divides |O{N)|. Hence by (a), every prime divisor of |O(M)| is a prime divisor of
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[O(N)1.

To prove (a), let P be an S-invariant Sylow p-subgroup of O(M) for some
prime p dividing O(M), so that P+#1. Our assertion is obvious if z, centralizes
P, s0 assume the contrary. By the Frattini argument My=N,(P) covers M/O(M).
Since z,¢ Cy(P), we conclude at once from the structure of M, and hence of M,,
that the image Z, of z, in M,=M,/Cy(P) is not contained in Z(M,). This clearly
implies that Z, does not invert P and consequently Cp(2,)==Cp(Z)+:1, as required.

As for (b), it will suffice to prove that |N:FT|=e, where ¢, divides e.
Indeed, if this is the case, then as F==PSL(2, q), it will follow from Lemma 3.20
(vi) that Cw(Z) has a normal 2-complement of order e,(¢+6)/2* and so (b) will
hold. Observe now that Ny(A,) contains a nontrivial 3-element which centralizes
<2y, b;z>. Moreover, Lemma 3.18 (v) together with the remark following it implies
that {z,, bj2>"=<z, b,> for some w in Ng(A,). Since 2, and b, are the only non-
central involutions of {z,, bz and <z, b,> respectively, we have 2¥=>,. Hence if
Ny==Cy(by), then N;=N* and so if N,=N,/O(N,), then we have N,=N. Thus we
need only show that |N,|=2"*1¢,| PSL(2, @) with e,je. Moreover, by the structure
of N and N,, this will follow if we prove that |0*(N,)|=e,|PSL(2, q)| with ele.

By Lemma 3.19, <z,, b,Z> centralizes O*(N) and consequently <z, b,> centralizes
O*N,). Hence if we set C=C,(<z, b), we have that CSN, and that C covers
O%N,). This in turn then implies that O*C/O(C))=0%N,). However, by the strue-
ture of M, b, interchanges I and L, Hence Cz,z,(b)=<Z>X L, where L=
PSL(2, q). Furthermore, if we set E=0(Cw(R)), Lemma 3.20 (v) together with
the definition of e implies that |E|=e¢ as ENL,L,=1. Therefore if we set
E,=C5(b,), then E, is of order ¢, dividing e. Moreover, no element of £} centralizes
Ly and consequently O(Cz(h,))=1. But clearly CSM and C=Cy(b,). We conclude
therefore that O(C)=1 and that O%C)=L,E, is of order e,|PSL(2, @) with e¢le.
Henece 0*C/O(C))=¢0*N,) has the same order and (b) is proved. This completes
the proof of the lemma.

Finally we prove

LEMMA 3.22. The following conditions hold:

(i) The centralizer of every involution of G is 2-generated:

(i) If ¢>9, then N=(Cy(B)|Be (A, >T.

ProoF: Since O(M)=(Cou(B)IB& F:(A,))> with a similar generation for O(N),
it will clearly suffice to prove that M and N are 2-generated and that
N=(Cys(B)|Be #,(A)>T when ¢>9. Since Cr,z,(5,) = Cr,z,(CZ b)) =<E>x Ly,
where L[,=PSL(2,q), we conclude at once, using Lemma 3.20 (v), that
M={Nu(R), Cr,1,(¢z, b>)> and so M is 2-generated. Likewise N=0XN)T and
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{#,, b,z> centralizes O3N) by Lemma 3.19, so N is also 2-generated. Thus (i) holds.

Suppose finally that ¢=9. By Lemmas 3.19 and 3.20 (iv), we have N=FQ(Cx(4,)) T
and s0 to establish the desired conclusion, we need only show that FC
(C+(B)lBe #(4,)>. However, A,=<z,, 6,2>X<{% b.>, where the first factor cen-
tralizes F and the second is a four subgroup of F. Hence if we set X:»”(zg, b.>,
it will suffice to prove that F=(Cr(@)lie Z%. But as F=PSL(2, q) with ¢>9,
this follows from standard properties of the groups PSL(2, ¢).

REMARK. Actually part (i) of the lemma is needed only in the case that ¢ is
a Fermat or Mersenne prime or 9 and, in particular, when ¢=9.

4. Subgroup structure of G. Henceforth we assume that our fusion-simple
group G with Sylow 2-subgroup S of type PS,(4, ¢), ¢ odd, is 2 minimal counter-
example to Theorem B. If follows then that G has the centralizer of involution
pattern of PS,(4, q) for some odd ¢=5. In particular, M=C,(z) is of type PS,(4, q).
Since G does not satisfy the conclusion of Theorem B, we must therefore have
that O(M)=1. Our goal in the balance of the paper will be to derive a contradic-
tion from these conditions.

In this section, we shall obtain such further information concerning the sub-
group structure of G as we shall need to show that G is 2-balanced.

We begin with a result about subgroups H of G having <D, u> or <D, tu> as
Sylow 2-subgroup. By Lemma 3.5 (xv), these groups are isomorphic to DinfZ,.
Even though there exist simple groups with Sylow 2-subgroups of type DinfZ,
(the groups PSL(4,q), g=—1 (mod4) and PSU(4, q), ¢=1 (mod4), for example),
we do not require any general results about groups with such Sylow 2-subgroups
in the present situation. Instead we utilize the fact that H is a subgroup of a
group G with Sylow 2-subgroups of type PS,(4, q).

We shall prove

ProPOSITION 4.1. If H is a subgroup of G with Sylow 2-subgroup <D, u> or
<D, tup, then H/O(H) i3 not fusion-simple.

ProoF: The proofs being entirely similar, we treat only the case that F=<D, w
is a Sylow 2-subgroup of H. If n=2, F=Z,X Z,fZ, and the result follows from
another application of [7, Lemma 4.4]. Hence we can assume that =3 and that
H is fusion-simple.

We shall study the structure of N,(A4,). We set K=Ny(4,) and C=Cu(A,).
We claim first that Np(A4,)=<b,, ai" "> X<azbe, a5 *>=Dy X D; is a Sylow 2-subgroup
of K. Indeed, F' has two conjugacy classes in S=(F, t> of elementary subgroups
of order 16, represented by A4, and A4,. Moreover, INHADI>INA). If No(A4y)
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were not a Sylow 2-subgroup of X, it would then follow that A4, and A, are con-
jugate in {H, t>. But then they would be conjugate in S by Lemma 3.8, which
is not the case. This proves our assertion.

Since Ny{(A.)/Cs(A.)=S, by Lemma 3.18 (i) and since Aut{D;x D)} is a 2-group,
we see that either K/C=Z.<XZ, or Z,xS;. In the first case, it is immediate that
b,z is not conjugate in K to any clement of {z, 2., a,b,>. We argue that we can
reduce to the same situation in the second case as well. Indeed, in this case
Lemma 8.18 (iii) implies that a 3-element ¢ of K—C centralizes some element of
Z*  But N (A)YCu{A)=S, by Lemma 3.20 (ii). Since K/C=2Z,%x S;, it follows
that v € M and so z centralizes 2z, or 2.. But 2, and 2z, are conjugate by the element
tu of N4, as NH{A)/Ci(A)=S,. Moreover, F' is a Sylow 2-subgroup of H™
as =D, u><{S. Hence replacing H by H'™, if necessary, we can assume without
loss that = centralizes z,. Now Lemma 3.18 (ii) yields that z also centralizes b2
and again we conclude that b,z is not conjugate in K to any element of {z,, z,, b,b:>.

Observe next that if we use Alperin’s fusion lemma as we did in Lemma 3.8,
we easily obtain that any two elementary subgroups of F' of order 16 are conjugate
in H if and only if they are conjugate in F. Hence as in Lemma 3.9 if 2z were
conjugate to bz in H, it would be conjugate to b,z in K. Thus b,z and z are not
conjugate in H.

We shall now contradict this last conelusion. Set E=<a,, a,, b/b,, 1D, so that
L is a maximal subgroup of F. We check that u, b.b,, bb.a,, bb.a,a., 2z, 2 are
representatives of the conjugacy classes in F' of the involutions of E. Since H is
fusion-simple, Thompson’s lemma implies that the involution b,z of F—E is con-
jugate to one of the involutions listed. However, u~bb~bb.a,~bb,a,a.~2; in
(G, while byz~z in G, by Lemma 8.17. Since z and z; are not conjugate in G, we
must have bz~z in H, giving the desired contradiction.

Recall now that T={(D, t>=Dm+1ADyn+1. We next prove

PROPOSITION 4.2. If H is a proper subgroup of G containing T, then one
of the following holds:

(i) H contains an isolated involution;

(ii) n=2, D 1is elementary of order 16, and H=0(H)N D); or

(iii) H contains a Sylow 2-subgroup of G and HJO(H) possesses a normal
subgroup of odd index isomorphic to PS,4, r) for some odd r.

Proor: Suppose first that 7T is a Sylow 2-subgroup of H. If n=z3, [11,
Lemma 8.5] implies that H has a normal subgroup K of index 2 with Sylow 2-
subgroup D. On the other hand, if n=2, we reach the same conclusion by [7,
Lemma 4.4] as then T=Z,XZ,fZ,. Consider the case that n=2, whence D is
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elementary of order 16. It follows from Proposition 3.4 that N (D)/O(Ne(D))
=A,-E%, which implies that Ng{D) does not possess a 3-element which acts
regularly on D. Hence by the classification of groups with abelian Sylow Z2-sub-
groups [3], [16], either K has an isolated involution or O(H)D is normal of index
5 in K. Correspondingly, we conclude that (i) or (ii) holds.

Hence we may suppose that n=3. We may assume that 2, and 2z, are not
isolated in K, otherwise (i) holds. Sinece Ny{(D)=DCr(D) as D=:Dy»X D;», it follows
from a result of Burnside that no two involutions of Z=2Z2(D) are conjugate in
K. Hence there exist elements z, in D with «, € Z such that a,~z, in K, i=1, 2.
Clearly there then exist elementary abelian subgroups X, of order 16 in D contain-
ing <Z, x>, =1, 2. As shown in [10, Lemma 3.1}, two eclementary abelian sub-
groups of D of order 16 are conjugate in K if and only if they are conjugate in
D. We conclude from this exactly as in the proof of Lemma 3.11 (as z,€ Z(D))
that z, is conjugate to 2z, in Ng(X)), 1=1, 2. It also follows that Np(X)=Dsx D,
is a Sylow 2-subgroup of K,=Ni(X)), i=1, 2

On the other hand, we know that Nu(X.)/Cs(X,)=2S, by Proposition 3.4, i==1,
2. Comparing the structure of a Sylow 2-subgroup of K, with that of Ng(X)),
we see that there is only one possibility for the structure of E=K,JCu(X),
namely K;=2Z,XS; (ef. proof of Lemma 3.18). Hence O(K,) is of order 3 and is
invariant under DN K;, which is a four group. It follows therefore from Lemma
3.18 (iii) that O(K,) centralizes some involution of Z. If O(K,) centralized z, then
MN K, would cover K,=Z,xS,. However, this is impossible as Nu(X,)/Cu(M)=S,
by Lemma 3.20 (i). Furthermore, O(X;) does not centralize z, as then z, would
not be conjugate to x; in K;. Hence, in fact, O(K,) centralizes 2, 15, 121, jE2.
We conclude therefore that Ck(z,) covers K, i#j, 1514, j=2.

The structure of N=C,{z,) is given in Lemma 3.19. Since z.=z{, we also
have the structure of C,{(z). In particular, <ay, b> is a Sylow Z-subgroup of
0% Cslz,)), 17, and it follows from this that O(K,) normalizes but does not centralize
Y,=X,n<a;, b, 1=1, 2. Thus the four group Y,SO0%K), =1, 2. However, it
is immediate from the structure of 7T that (Y, Y.)'=D. 8ince TNOYK){T,
this implies that DSOK). Since D is a Sylow 2-subgroup of K, we conclude
that K=0%K).

But now [10, Theorem A*] is applicable to K and it is a consequence of this
result that Nc(A)/Cx(A) is divisible by 9 for any elementary abelian subgroup A
of order 16 in K. In particular, this is true of X,, contrary to the fact that
N X)/Co(X)=2Ss. This completes the proof of the proposition when T is a Sylow
2-subgroup of H.
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Suppose next that T is not a Sylow 2-subgroup of H, in which case H contains
a Sylow 2-subgroup of G. Since T is the only maximal subgroup of S with its
structure by Lemma 3.5 (xii), we can assume without loss that S itself is a Sylow
2-subgroup of H. We can also suppose that H does not satisfy (i) or (ii). If 4
is an elementary abelian subgroup of S of order 16, we know from Proposition 8.4
that N,(A4)/C.(A)==A, or S;. In addition, N,(A) acts intransitively on A% and so
N, (A)—~C,(A) does not possess a 3-element which acts regularly on A. Since H
has no isolated involution, we conclude therefore from the remark following
Lemma 3.3, if n=2, that N,(A)/Cy(A)=A, and from Lemmas 3.10 and 3.11, if
nz3, that N, (A)/C,(A)=S;. Hence in either case, Ny(A4) contains a 5-element
which acts regularly on 4, which implies that ACK=0*H). But as D=D;»X D;,
D is generated by its elementary abelian subgroups of order 16 and consequently
D< K.

Suppose D is a Sylow 2-subgroup of K. If n=3, we again use [10, Theorem
A*] and reach a contradiction as above. On the other hand, if n=2, it follows as
in the first paragraph of the proof that O(H)D is normal of index 5 in K as K
has no isolated involution and so (ii) holds in this case.

Hence we can suppose that D is not a Sylow 2-subgroup of K. Since Q¥ K)=K,
it follows once again from [11, Lemma 8.5] and [7, Lemma 4.4] that T=<(D, t> is
not a Sylow 2-subgroup of K. For the same reason, the preceding proposition
shows that <D, #> or {D, tu> are not Sylow 2Z-subgroups of K. The only possi-
bility is therefore that S is a Sylow 2-subgroup of K, in which case H==K. Setting
H=HJ|O(H), we see that H is fusion-simple. Furthermore, the involution fusion
pattern in H is the same as that in H. Since the involution fusion pattern of G
is that of PS,(4,q) for some odd ¢, H is not isomorphic to A, A, As-EY or
GL(3,2)- E® if n=2. (A4,-EY is excluded by our assumption that H is not of
the form (ii).) Since G is a minimal counterexample to Theorem B, it follows
therefore that part (ii) of Theorem B holds for H. Thus Ci(Z) is of type PS,(4, 7)
for some odd 7 and O(C7(z))=1. But now Theorem 2.5 yields that H contains a
normal subgroup of odd index isomorphic to PS,{4, ) and so (iii) holds.

As a corollary we have

LeMMA 4.3. If H 13 a proper subgroup of G containing T, then we have

(i) Every T-invariant subgroup of H of odd order lies in O(H)O(Cx(Z));

(i) Any two mazximal T-invariant p-subgroups of H, p odd, are conjugate
by an element of Cu{(T).

Proor: Clearly (ii) will follow immediately from (i). Let then X be a T-
invariant subgroup of H of odd order. Setting H=H/O(H), we thus need only
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show that X<O(C#(Z)). Suppose H has an isolated involution Z/, whence H=C5(z").
We have that z/=Z,, 2., or Z. Furthermore, if 2’ denotes the inverse image of
z’ in S, then X,=C,(z’) maps onto X. Thus X, is a T-invariant subgroup of
J=Cg(z’) of odd order. But 2’=z,, 2., or z and 2z,~z: by an element of S which
normalizes T. It follows therefore from Lemma 3.20 that X, SOW)O(C(Z)). On
the other hand, J=Cgx(z’) maps onto H=C;(z') and consequently O(J)=1. Thus
X=X,20(C,(Z)S0(C5(Z)), as required. Hence (i) holds in this case.

Assume next that H satisfies part (ii) of Proposition 4.2, in which case DG H
and C,—,(l-)):[-). Since X is D~invariant, it follows that X centralizes D, whence
X=1 and again (i) holds.

Suppose finally that part (iii) of Proposition 4.2 holds for H, in which case H
contains a normal subgroup K isomorphic to PS,(4, r) for some odd ». In particu-
lar, H satisfies the conclusion of Theorem B, so Ci(z) is of type PS,4, r) with
O(Ci(z))=1. Since H is fusion-simple with the involution fusion pattern of PS,(4, 7),
Lemma 3.20 applies to H and, as O(C7(z))=1, we conclude that C5(Z) has a normal
2-complement which contains every T-invariant subgroup of C7(%) of odd order. In
particular, C()SO(CH(2Y). Since X=<{Cxz(), C(7), Cx(Z.)>, it remains to show
that X,=C3Z)S0(Cx(Z)), i=1, 2.

Again as Z,~% by an element of S which normalizes 7, we need only treat
the case t=1. Setting ]\7,=C’,;(21), we apply Lemma 3.20 once again to conclude
that X, SON)O(C5(Z)). Thus it suffices to prove that O(V,) centralizes Z. But
as H is isomorphic to a subgroup of PI'S,(4, 7) containing PS,(4, ), we know that
O(N,) is eyclie.  Furthermore, the structure of N, is described in Lemma 3.19, and,
in particular, <{d,, b,>SO¥N,). Since O(N,) is eyclie, it follows at once that {d., b.>
centralizes O(N,). Since 7, €<d,, b.> and 7, obviously centralizes O(N,), we conclude
that Z=<%,, z,> centralize O(N,) and the proof is complete.

As a corollary, we have

PROPOSITION 4.4. Any two mazimal T-invariant p-subgroups of G with a
nontrivial intersection, p odd, are conjugate by an element Cy(T).

Proor: In view of the preceding proposition, we obtain this result by exactly
the same argument as established [11, Proposition 5.5].

Finally we prove

LEMMA 4.5. Let H be a p-local subgroup of G, p odd, with the following
properties:

(a) H contains T and covers M/O(M) or N/O(N);

(b) H i3 p-constrained and O, (H)SO(H).

If P is a maximal T-invariant p-subgroup of H, then
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H::OP'(H)NI!(Z(J(P)) .

Proor: The proof is essentially identical to that of {11, Lemma 5.6]. Further-
more, this time no exceptional case arises as both “components” of M/O(M) are
isomorphic to SL(Z, ¢) for the same value of ¢ in the present situation. Again
we argue that H is p-stable with respect to P and then apply the extended form
of Glauberman’s ZJ-theorem, Theorem 2.2 above. We shall limit ourselves to a
few comments.

The verification that P satisfies conditions (a) and (b) in the definition of p-
stability with respect to P goes through without change. We note only that as-
sumption (a) of the lemma together with Proposition 4.2 imply that either z or z,
is isolated in H or else H==H/O(H) contains a normal subgroup of odd index
isomorphic to PS,(4, r) for some odd r. Likewise we use Lemma 4.3 in place of
[11, Lemma 5.4]. Moreover, if z or z, is isolated in H, we have that H=M/O(M)
or NJO(N) respectively and it follows correspondingly from Lemma 3.20 (v) or (vi)
that H=L,L.0(C#Z)8S or H=FO(Cw(Z))T, where L,=SL(Z, q), i=1, 2, [L,, L.]
=1, [,L,qH or F=PSL(Z, ¢) and F{H. This result replaces the use of [11,
Lemma 4.7 (i)].

Next we verify condition (¢) of the corrected definition of relative p-stability:
namely, that H=JN,(JN P) for any normal subgroup J of H. If JNP is a Sylow
p-subgroup of J, (¢) is immediate by the Frattini argument. In particular, this
holds if J=0. .(H); so assume the contrary. Then our conditions imply that .J
contains a normal subgroup L=2SL(2, ¢)«SL2, q¢), PSL(, ¢), or PS4, r), r odd,
with Cz(L)S L. In each case, we easily check that H=LNz(Z), whence H=JN5(Z).
But P is a Sylow p-subgroup of O(Ci(Z)) by Lemma 4.3, so PnJ is one of
JNOCH(Z)). Since the latter group is Ni(Z)-invariant, it follows, again by the
Frattini argument, that H=JNz(JNP). As in the proof of the lemma of [18,
Section 4], this equality suffices to yield (¢).#

Thus we are again reduced to showing that ACL(Py)/Cu(P) SO (Ny{Py)/CulPo))
for each nontrivial subgroup of P, of P for which O, (H)P,<{H and each sub-
group A of P for which [P, 4, A]=1. If the desired conclusion is false, then, as
usual, SL(2, p) must be involved in H. Since N does not involve SL(2, p) by its
structure, H is not isomorphic to NJO(N). At this point, we reduce to the case

# Using [11, Lemma 5.4] in place of Lemma 4.3, we similarly verify that condition (c)
holds for the subgroups H and H, of {11, Lemma 5.6]. Hence those subgroups are p-
stable with respect to the given subgroups P, in accordance with the corrected definition
of this term, and so that lemma holds, as stated.

We take this opportunity to correct an error in [11, Lemma 5.6].
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that z is isolated in H in the same way as in [11}. (This reduction is possible
because the core of the centralizer of a central involution in PS,4, r) is trivial;
see [11, Lemma 5.6]). Hence z must be isolated in H and so H=M/O(M). Now
we reach a contradiction exactly as in the corresponding argument of [11].

5. Covering p-local subgroups. Since G is a minimal counterexample to
Theorem B, we have O(M)#1, as noted in the preceding section. We let = be the
set of primes dividing |O(M)|. If pe=x, we shall say that a p-local subgroup K,
of G is a covering p-local subgroup provided :

(a) K, contains S, an S-invariant Sylow p-subgroup of Q(M), and a maximal
T-invariant p-subgroup of G;

(b) K, covers M/O(M);

(¢) K,/O(K,) is fusion-simple.

Our goal in this section will be to prove that covering p-local subgroups exist
for each p in z. We fix a prime p in 7. We let P, be a maximal T-invariant
p-subgroup of M and set Po=P,NO(M). Then P, is a T-invariant Sylow p-sub-
group of O(M). Moreover, we can choose P, so that P, is S-invariant. We have
already argued in the proof of Lemma 3.21 that Cr,(z)#1. We let Q, be a
maximal T-invariant p-subgroup of N containing Cp,(z,) and we set Qy=@Q,NO(N).
Thus @ is a T-invariant Sylow p-subgroup of O(N). Furthermore, by Lemma
3.21, we have that also @Q,#1. We fix the notation P,, P, Q,, Q.

We first prove

LEMMA 5.1. One of the following holds:

(1) P, is maxzimal T-invariant p-subgroup of G; or

(i) Ng(Py) is p-constrained and O, (Ny(Py)) S O(N(P,).

Proor: The proof is essentially identical to that of [11, Lemma 5.2]. The
key preliminary result for that proof was [11, Lemma 5.4). However, our present
Lemma 4.3 (i) is the direct analogue of [11, Lemma 5.4] and so the argument goes
through without change. We omit the details.

We consider the two possibilities of Lemma 5.1 separately.

LeMMa 5.2. If P, is ¢ mazimal T-invariant p-subgroup of G, then N,(P,)
t8 a covering p-local subgroup of G.

PROOF: Set K=N,(P,), so that K is a p-local subgroup of ¢ which covers
MJO(M) and contains both S and P,. We need only show that z is not isolated in
K, for then K/O(K) will be fusion-simple by Proposition 4.2 and hence K will be
a covering p-local subgroup.

Let Q, be a maximal T-invariant p-subgroup of H==N,(Q,) containing Q, and
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let @ be a maximal T-invariant p-subgroup of G containing Q.. Then QD@2
Crylz)#1 and so PyNQ==1. It follows therefore from Proposition 4.4 that Q=P¢
for some ¢ in Co(T). In particular, z centralizes Q. We shall argue now that z,
also centralizes Q. By Thompson’s A4 X B-lemma, it will be enough to prove that
z;, centralizes Q, (cf. [8, Lemma 8.7)). But @,SO(H)Cz{Z) by Lemma 4.3 as Q.
is T-invariant. Hence, in faet, it will suffice to show that 2z, centralizes @Q;=
Q:NO(H). But @, is a T-invariant Sylow p-subgroup of O(H), 80 Nu(Q,) contains
T and covers H/O(H). However, H covers N/O(N) as @, is a Sylow p-subgroup
of O(N). Hence Ny(Q,) covers N/O(N). By Lemmas 3.19 and 3.20 (viii), <a., b,> is
contained in the normal closure of z in N. Since z centralizes Q; and z:€<a., b,
we conclude that z, does as well. Thus z, centralizes @, as asserted.

We therefore obtain that Z=<(z, z;> centralizes @ and so also 2z, centralizes Q.
Thus QSN and consequently Q=@Q,. Since c€Cy(T)SN, we can assume on
replacing @, by a suitable conjugate that P,=@,. By Lemma 3.15 and the remark
following it, K is a Sylow 2-subgroup of O%M). It follows therefore from Lemma
8.20 (vii) that the normal closure of z, in M contains E. Since Ny(P,) contains S
and covers M/O(M), we see that R centralizes Py. Since S={R, b>=<R, b;z>, this
implies that Poy=[Py, b2]Cp(S). But by Lemma 38.19, [P, bz2]SO(N), whence
[P, :2]=Q,. We thus conclude that P,S@yCr (S).

Finally set E=Cs(S), Ny=Nx(@y), and Co=Cp(Q,). Then C;N,, FSN,, and
N, covers N/O(N). Set N,=N,/O(N,). Since 2 centralizes Q,, the normal closure
of z in N, is contained in C,. It follows therefore from Lemmas 3.19 and 3.20
(viii) that C, contains F, where F=~PSL(2,q), F4N,, and <, b.> is a Sylow
2-subgroup of F. Since E centralizes {(d.,b,> and acts on F, we conclude now
from standard properties of PI'L(2,q) that F,=C(E)=PSL(, q,) for some g,
dividing g and that <{d., b,> is a Sylow 2-subgroup of F,. In particular, it follows
that z is not isolated in <Z>XF,. On the other hand, it is not difficult to see
that C,=C.(E) covers {Z;>X F,. Thus z is not isolated in C,. But C,SCx(Q.E)
S Cy(P,) as P,SQ.FE and consequently C,&Ng(P)=K. Therefore z is not isolated
in K and the lemma is proved.

We next prove

LEMMA 5.3. If Nu(P,) 18 p-constrained with Oy (NP Y SO(Ny(P,)), then also
Ny(Q,) ts p-constrained with Oy (No(Qy))SO(N(Qo)).

PROOF: Again set H=N4Q,) and let @ be a maximal T-invariant p-subgroup
of G such that Q,=QN H is a maximal T-invariant p-subgroup of H. Let P, be
a T-invariant Sylow p-subgroup of O, ,(Ng(Pe)). Then P, P, and by our hypo-
theses on N,{P,), no involution of 7' centralizes B,. However, as P,NQ+1 and



Finite groups with Sylow 2-subgroups 367

P,=B,, we have that P;<Q for some ¢ in Cs{T) by Proposition 4.4. It follows
therefore that no involution of 7 centralizes Q. But now we conclude from
Thompson’s AX B lJemma that no involution of T centralizes Q,. But @,=QsCy.(Z)
by Lemma 4.3, where, as before, @:=Q.NO(H). Thus no involution of Z central-
izes Q;. Since Z=Z(T), this in turn implies that no involution of 7 centralizes
Qs, whence Cy(@;) is of odd order. But @, is a Sylow p-subgroup of O(H) and so
H=0(H)Ng(Q;). Since {Cx{Q;)! is odd, this yields that C,(Q:)<O(H). The lemma
now follows by a standard argument.

Finally we have

LEMMA 5.4. If Ny(P,) is p-constrained with O, (N (P)SO(N(P,)), then
NG Z(J(P))) is a covering p-local subgroup of G for some mazimal T-invariant
p-subgroup P of G.

PROOF: The proof is entirely similar to the corresponding results established
in [7], [8], [9] and [11]. Hence we shall limit ourselves to a sketch of the proof.
First, setting H=Ng(P), we let P* be a TP,-invariant Sylow p-subgroup of
O, .,(O(H)). Then Ny(P*) contains P; and covers M/O(M).

We let K be a p-local subgroup of G such that

(a) K covers M/O(M) and contains T';

(b) O (K)2P* and K22P;

(e) CrO(K)=1;

(d) Subject to (a), (b), (c), a maximal T-invariant p-subgroup of K has
maximal order.

If P is a maximal T-invariant p-subgroup of K containing P,, the argument
of [11, Lemma 6.5] applies with no essential change and yields that P is a maximal
T-invariant p-subgroup of G and that N(Z(J(P))) covers M/O(M). In carrying
through the proof, we make use of Lemma 4.5 (for M/O(M)), which is the direct
analogue of [11, Lemma 5.6). Likewise in analyzing the structure of J== Ny (Z(J(P))),
we make use of Lemma 4.3, which is the analogue of [11, Lemma 5.4], to conclude
that [T, O(K)1SOW).

Next we let H*==Ny(Q,) and let @* be a TQ-invariant Sylow p-subgroup of
O, (O(H*)). Then Ng(Q*) contains @, and covers N/O(N).

This time we let K* be a p-local subgroup of G such that

(a) K* covers N/O(N);

(b) O (K*2Q* and K2Q,;

(e) CHO(K¥)=1;

(d) Subject to (a), (b), () a maximal T-invariant p-subgroup of K* has
maximal order.
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By the preceding lemma, H* is p-constrained and O, (H*)SO(H*). Hence if
@ denotes s maximal T-invariant p-subgroup of K* containing @Q,, the argument
of [11, Lemma 6.5] yields similarly that J*=Ny(Z(J(Q))) covers N/O(N). This
time, we use Lemma 4.5 for N/O(N) and again use Lemma 4.3.

Finally as PN Q,2Cx(2,)#1, we have PNQ+#1 and consequently @°=P for some
¢ in C,(T) by Proposition 4.4. Thus Z(J(Q)¥=Z(J(P)) and consequently (J*)=J.
But as J* covers NJO(N) and contains T, z is not isolated in J*. Since ¢ central-
izes z, it follows that z is not isolated in J. However, J covers MiO(M) and con-
tains T, so J/O(J) is fusion-simple by Proposition 4.2. Moreover, J contains the
T-invariant Sylow p-subgroup P, of O(M).

QOur conditions imply that a Sylow 2-subgroup S of J containing T is a Sylow
2-subgroup of G. Then 7T is maximal in S and s0o SCSN(T)SNy(Z). By Lemma
8.6, N,(Z) has a normal 2<omplement. Since SSNy(Z) and also SO T, we conclude
that S===8 for some element & in O(NG(T)) with = centralizing T.

Hence J,== N,(Z(J(P*))) contains S and J,/O(J,) is also fusion-simple. Further-
more, as z centralizes T, x€ M and so J, also covers M/O(M). In addition, P§&J,
and P; is a Sylow p-subgroup of O(M). Since S&J,, an S-invariant Sylow p-
subgroup of J,NO(M) exists and is an S-invariant Sylow p-subgroup of O(M).
Hence J, is a covering p-local subgroup of G. Since P~ is also a maximal T-in-
variant p-subgroup of G, the lemma is proved.

Lemmas 5.1, 5.2, and 5.4 together yield as a corollary

PROPOSITION 5.5. G possesses a covering p-local subgroup for each prime
P n .

Because G has two conjugacy classes of involutions, we require one further
property of covering p-local subgroups.

LEMMA 5.6. A covering p-local subgroup of G also covers N/O(N) and con-
tains a T-invariant Sylow p-subgroup of O(N).

PrROOF: Let K=K, be a covering p-local subgroup for p in x. Then ScKcG
and K covers M/O(M). Thus Theorem B and hence also Theorem A holds for K,
so KJO(K) contains a normal subgroup of odd index isomorphic to PS,(4, ¢) for
some odd ¢. In particular, K has the same involution fusion pattern as G and
N(A)/Cx(A)2=2NH(A)/ColA)=A, or S, according as n=2 or 3. Hence by Lemma
3.18 (v) and the remark following it, <b,, 2>*=<z;, b;z> for some k in K.

Clearly K covers Cy(b,)/O(Cu(by))=Co(<by, 2)/0(Cu(by)). Tt follows therefore from
the preceding equality that K covers Co({zy, b:2D)O(Co(<2s, b120))=Cy(5,2)/O(Cx(bs2)).
However, by Lemma 3.19 (i), O(Cy(b;2))SO(N) and N=Cyr(b,2)TO(N). Since
TeSc K, we conclude that K covers N/O(N).
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If P is a maximal T-invariant p-subgroup of K containing a Sylow p-subgroup
P, of O(M), we have shown above that Cp (2:)=P,NO(N)#1. It follows therefore
from Proposition 4.4 that P contains a maximal T-invariant p-subgroup of N and
hence a T-invariant Sylow p-subgroup of O(N), as asserted.

6. Proof of Theorem B. In this section we shall derive a contradiction from
the fact that O(M)=1. This will show that no counterexample to Theorem B exists
and will thus establish the theorem.

We first treat the case that ¢ is either a Fermat or Mersenne prime or 9.

ProrosITION 6.1. If the characteristic power q of G is a Fermat or
Mersenne prime or 9, then G is balanced.

PrRooOF: We proceed essentially as in [11, Proposition 7.1]. Let 2, ¥ be two
commuting involutions of G. If F=0(Cux))NCs{y), we need only prove that a
Sylow p-subgroup of F is contained in O(Cy(y)) for each prime p dividing |Fl.
Without loss we can assume that 2=z or 2z, and that y€ S. By Proposition 5.5,
G possesses a covering p-local subgroup K=K,. Setting K=K/O(K), we have
that K is fusion-simple. Since K covers M/O(M) and contains S, we see that the
characteristic power of K is also ¢. By our minimal choice of G, K satisfies the
conclusion of Theorem B. Since ¢ is a Fermat or Mersenne prime or 9, it follows
therefore from Theorem 2.5 that K%PS,,M, ¢). This in turn implies that O(Cx(%))==1.

By definition of a covering p-local subgroup and Lemma 5.6, K contains an
S-invariant Sylow p-subgroup of O(M) and a 7T-invariant Sylow p-subgroup of
O(N). According as z==z or z,, let P, be such a subgroup of O(}M) or O(N). Note
that ye T if z=2, as yeCs(x), so y leaves P, invariant in either case. Then
Fo=Cp (y) is clearly a Sylow p-subgroup of F.

Since O(Cz(Z)=1, it follows that F,SO(X). On the other hand, if we set
H=C,(y), we see by the structure of K (and the fact that ¢ is a Fermat or
Mersenne prime or 9) that H/O(H)=Cz(y). Hence Cy(y) covers H/O(H), whence
H=0(HYKNH). Since F,=O(K)NH, this implies that F,CO(H)=0(Cely)), as
required.

As a consequence, we have

PROPOSITION 6.2. The characteristic power ¢ of G s not a Fermat or
Mersenne prime or 9. In particular, ¢>9.

PROOF: Assume the contrary, in which case G is balanced by the preceding
proposition. Moreover, the centralizer of every involution of G is 2-generated by
Lemma 3.22. Since S is connected, as noted at the beginning of Section 3, and
since O(G)=1, we conclude therefore from Theorem 2.1 that O(Cu(2))=0(M)=1,
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which is a contradiction.

We next prove

PROPOSITION 6.3. G is 2-balanced.

Proor: Let X be a four subgroup of G and ¥ an involution of G which
centralizes X. We must show that F=4,(X)NCy)S0(Cs(y)). Again we need
only prove that a Sylow p-subgroup of F is contained in O(C,(y)) for each prime
p dividing [F]. We can suppose that <X, ¥>S8 and that z or z, is contained in
X. Again we consider a covering p-local subgroup K=K, of G and set K=K/O(K).
We conclude now as in the preceding proposition, with the aid of Theorem 2.5, that
K possesses a normal subgroup L of odd index isomorphic to PS,(4,q). Since
O(K)=1, we have that Cw#(Il)==1. But now the discussion in the introduction yields
the important conclusion that 4z(X)=1.

If z€ X, let Py be an S-invariant Sylow p-subgroup of O(M) contained in K,
while in the contrary case, let P, be a T-invariant Sylow p-subgroup of O(N)
contained in K. In the latter case, z,€ X and so <X, yDSCs(x,)=T. Thus <X, v>
leaves P, invariant in either case. Next let F, be an (X, y>-invariant Sylow p-
subgroup of F. Then Fy&ZO(Cy(x)) for each = in X* and consequently F,ZO(M)
or O(N) according as P,GO(M) or O(N). Since P, is correspondingly an <X, y>-
invariant Sylow p-subgroup of O(M) or O(N), we see that F;SP, for some ¢ in
Col{X, ¥>). Since Cy(X) leaves 4,(X) invariant, C,(X, ¥>) leaves F invariant and

so F§ is also an (X, y>-invariant Sylow p-subgroup of F. Hence without loss we
can suppose to begin with that F,&P,.

Clearly O(Co(x)) N KSO(Cr(x)) for & in X* and consequently F,C4.(X). But
elearly 44(X) maps into 4(X). Since the latter group is trivial, we conclude that
Fy<O(K). Again we set H=C,y(y). Since KX has the same involution fusion
pattern as G, y~z or z; in K. But K covers M/O(M) by definition of a covering
p-local subgroup and covers N/O(N) by Lemma 5.6. Hence in either case, it follows
that K also covers H/O(H). Thus H=O(H)}KN H) and we obtain the desired con-
clusion FL,CO(H).

The preceding arguments yield a further coneclusion:

LEMMA 6.4. We have 4,Z)+1.

PrROOF: Choose p in =, let K be a covering p-local subgroup of G, and let
P, be a T-invariant Sylow p-subgroup of O(M) contained in K. Setting K=K/O(K),
it follows once again from the structure of K that O(Cx(%)=1, which implies that
P,SO(K). Furthermore, the argument at the beginning of Section 5 shows that
Fo=Cp (21)=Cry(Z)#1. But now we conclude exactly as in the final paragraph of
the preceding proposition, with y=z, or z., that F,SO(C.(z,)), i=1, 2. Hence
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o .,OZ;O(C“(z’)):JG(Z)‘ Since F,#1, the lemma follows.

We next prove

PROPOSITION 6.5. If we set Wy={d(T)IT,€ s7:.(A,), then W, is a nontrivial
subgroup of G of odd order.

PROOF: Since G is 2-balanced and A, is of rank 4, W, is of odd order by
Theorem 2.3. Since Ze &,(A,), 4(Z)S W, and so W,=1 by the preceding lemma.

Finally we prove

PROPOSITION 6.6. N (W,) i3 strongly embedded tn G.

PRrOOF: Set H=NyW,). By Theorem 2.4, N(B)CH for any subgroup B of
A, of order at least 8. In particular, Ny(4,)SH. Moreover, as ¢>9, we have by
Lemma 3.22

N=(Cy(B)|Be &(A)>T

and consequently O*(N)S H. In particular, {a., b,>SK=0%*H). Since ue Ny(A)TH
and <a,, b>"=<ay, b, it follows that <a,, b,>< K, whence D=<a,, b>x<a., b.>CK.
If n=2, then O*(N4s(A4,)=Ng(A4,) by Lemma 3.3, so ue O*(N.(4,)). On the other
hand, if n=3, we reach the same conclusion by Lemma 3.18 (iv). Hence in either
case, <D, upS K. Since N A)/Ce(A)=A, or S;, O*Ny(A,) contains no isolated
involution and hence neither does K. Thus K=K/O(K) is fusion-simple. We con-
clude therefore from Proposition 4.1 that <D, u) is not a Sylow 2-subgroup of K.
Hence K must contain a Sylow 2-subgroup of G, which without loss we can take
to be S. Moreover, we have K=H and N=0O*N)T<H.

We conclude now, as usual, from our minimal choice of G that H possesses a
normal subgroup L of odd index isomorphic to PS,4,r) for some odd r with
Ci#(Ly=1. Since NS H, we must have r=g¢, whence Cz(2)'=(0*(M/O(M))). Hence
HAM covers (OY{M/O(M))) and so, by Lemma 3.20 (v), we have

M=0(MYHNM)Cy(R)S .
But Cy{(R)CH as AN R is of order 8. Likewise
O(M)=KCou(B)IBe #FlADCH .
We conclude that M< H.

Since z and z, are clearly representatives of the two conjugacy classes of in-
volutions in H, it follows now that H contains the centralizer in G of each of its
involutions. Furthermore, it follows from Lemma 3.5 (xiii) that N,(S)=5C,(S),
so also Ny(S)SH. But H=N,W,) is a proper subgroup of G as O(G)=1 and W,

is a nontrivial subgroup of odd order. We conclude therefore from the definition
that H is strongly embedded in G.

The proposition yields a2 final contradiction at once. For as H is strongly
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embedded in G, it has only one conjugacy class of involutions by {5, Theorem 9.2.1}.
But then z is conjugate to 2, in H, contrary to the fact that they are not con-
jugate in . This completes the proof of Theorem B and hence also of Theorem A.
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