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Introduction.

Let k be a field. An affine algebraic k-group G is said geometrically reduc-
tive if for any surjective homomorphism of k-G-modules V- k-0, where k is a
trivial 1-dimensional k-G-module, there is an integer >0 such that the induced
homomorphism SV — S7k — 0 splits, where S”V denotes the »'* symmetric power
of V. The following are examples of geometrically reductive k-groups:

(1) GL(2) (Seshadri [8]).

(2) Finite groups (2.2). (An affine group G is finife if and only if its Hopf
algebra O(G) is finite dimensional.)

(3) Linearly reductive groups. (An affine group G is linearly reductive if
and only if any k-G-module is a direct sum of irreducible k-G-modules.)

(4) An affine algebraic k-group which is isogeneous to some geometrically
reductive k-group (2.4).

(5) The A-subgroups of a geometrically reductive k-group (Theorem 1.7). (A
closed subgroup H of an affine algebraic k-group G is called an A-subgrouyp if the
homogeneous space G/H is affine.) (ef. Bialynicki-Birula [1] and Popov [6])

Suppose that k is algebraically closed. An affine algebraic k-group G is called
reductive if it is reduced and its unipotent radical is {¢}. Mumford [4] conjectures
that reductive k-groups are geometrically reductive. Nagata and Miyata [5] prove
that reduced geometrically reductive k-groups are reductive, In view of the prop-
erties (4) and (5) above, the Mumford conjecture will follow from the following
two conjectures:

C.. GL{n) are geometrically reductive.

C.. Any almost simple affine algebraic k-group is isogeneous to an A-subgroup
of GL(n) for some n>0.

In this short note we shall nof treat the conjecture C; but solve partially the
conjecture C,. As is well-known the almost simple k-groups are characterized up
to isogeny by their Dynkin diagrams. We shall prove that the almost simple k-
groups of types A,, B, C; and D, satisfy the condition C,. The case of groups
of exceptional types is still open.
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§1. The A-subgroups of a geometrically reductive k-group

In the following k denotes a fixed ground field.

1.1 DEFINITION. Let C be a k-coalgebra, A a k-algebra and W a left C-
comodule and a right A-module. We say that W is a (C, A)-bimodule if one of
the following equivalent conditions holds:

(i) The module structure map WZ A - W, w@arwa is a left C-comodule
map.

(ii) The comodule structure map p: W—>C@W is a right A-module map.

1.2 DEFINITION. Let C be a k-coalgebra. Let V be a right C-comodule and
W a left C-comodule. Let p,: V- V@C and py : W CRXW denote the comodule
structure maps. The kernel of the diagram

or® 1y
VW
1:@pw

VRCRW

is denoted VJ.W and called the co-tensor product of V and W.

1.3 Let C be a k-coalgebra and A a k-algebra. Let V be a right C-
comodule and W a (C, A)-bimodule. Since

(VOWNRQA=VIAWRA)
clearly, we can well-define a map

(VO W)DA=VOLW@A) — % VW

where w: WRA - W, wda— wa, which makes V[I:W into a right A-module as
is easily checked.
Let U be a left A-module. Then the composite

Pu

WRU —— ((RQW)@.U=CWR.LU)

where py: W— CQW denotes the comodule structure map, makes W®,U into a
left C-comodule.
PROPOSITION. With the notations as above we have

(VON)RU=VOWRLU)

if U is a flat A-module.
Proor. Apply the exact functor ?®,U to the following exact sequence:
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oLy
VOcW — VW I3 TERCRW .
1, Qo
14 Let C and D be two k-coalgebras. Let W be a left C-comodule and a
right D-comodule. We say that W is a (C, D)-bicomodule if one of the following
equivalent conditions holds:
(i) The left C-comodule structure map p,: W— CQW is a right D-comodule
map.
(ii) The right D-comodule structure map p,: W— WD is a left C-comodule
map.
If W is a (C, D)-bicomodule and V a right C-comodule, then the composite

1Dcﬁr
VOcW ——— VO(WED)=(VI.W)RD

makes VI, W into a right D-comodule.
Let #: D— C be a coalgebra map. Then D becomes a (C, D)-bicomodule via

e,=4:D->DRD and

4 @1
0.:D DRD > CRD

where 4 is the comultiplication of D. Hence V[1.D is a right D-comodule for
any right Ccomodule V. On the other hand the exact sequence

PV®10

V-2 vece VRCRC

1

implies an isomorphism of right C-comodules

V" VO .
The composite
100
V.C —[—j-i* VO.C=V

is a right Ccomodule map and satisfies the following UMP: For any right D-
comodule U we have

Comod (U, V1,D) —— Comode (U, V) .
This can be easily verified.

1.5 Let G be an affine algebraic k-group. We do not assume that G is re-
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duced. Let O(G) denote the Hopf algebra of G. By definition a (left) k-G-module
means a right O(G)-comodule. We view always k as a trivial left and right o(G)-
comodule. If V is a k-G-module with p, : V— VZO(G) the O(G)comodule strue-
ture map, then V¢ the space of G-invariants in V is by definition

VOowk=1{v € Vlp,(v)=v&1} .

Let H be a closed subgroup of G. Suppose that the quotient k-sheaf G/H
(see [8, 1II, §3] for the definition) is affine. (Such a subgroup is called an A-sub-
group of G.) Let z:0(G)— O(H) be the canonical projection of Hopf algebras.
By (L.4) O(G) is naturally an (O(H), O(G))-bicomodule. Since G/H — H\G,

~
Y

g g, H\G is also affine and its k-algebra O(H\G) clearly equals
Eoun0(G)={z € 0(G)lpfr) =18z}

where p,: O(G) — O(H)RO(G) denotes the left O(H)-comodule structure on O(G).

Notice that O(G) is a faithfully flat O(H\G)-algebra [3, 1II, §3, 2.5]. If we view

0(G) as a right O(H\G)-module, then O(G) becomes an (O(H), O(H\G))-bimodule in
the sense of (1.1). Observe the following isomorphism of k-schemes:

HXG"i GXII‘\GGy (hy g)"“"h/gv g) .

1f we let H act on HXG and GX ,3,G from the left via

HX(HXG)—> HXG, (h, (R, g)) > (RK/, g) and
HX(GX 73,0 = GX 3G, (b (g, g')) = (hg, 97)

then the above isomorphism commutes with the H-action. This means that the
representing isomorphism of k-algebras

O(H)RO(G) —— O(G)®ouii:0(G)

is a left O(H)-comodule isomorphism, where the both hand sides are left O(H)-
comodules via

4R1 : O(HYRO(G) - O(H)YR(O(H)YRO(G)) and
@1 : 0(G)Rouiam0(G) = OH)D(O(G) R0 OG)) -
PROPOSITION. The left O(H)-comodule O(G) 1is coflat, that is the functor
eanO(G) is exact.

PrROOF. Let V be a right O(H)comodule. It follows from Proposition 1.3
that
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(Vo 0GRy G =V oun(O(G)Ro e O(G))
=V (OHIRQOGH =(V Doy H NRQO(G)
=VRO(G) .
Since O(G) is a faithfully flat O(H?\G)-algebra, this means that the functor
?0oun0(G) is exact.
1.6 COROLLARY. Let G be an affine algebraic k-group and H an A-subgroup
of G. Then for any right O(H)-comodule V, the canonical homomorphism

VOowyO(G) = VI DounO(H )=V
18 surjective.

Proor. Let O(H (G) act on O(H) from the right trivially. Then O(H) be-
comes an (O(H), O(HKG))—bimodule in the sense of (1.1) and the canonical projection
7: O(G)~ O(H) is easily seen to be a homomorphism of (O(H), O(H \~G))-bimodu1es.
Since O(G) is a faithfully flat O(H\G)-algebra, it is enough to show that the

induced homomorphism
(VomO(GNR0uiiar OG) = (VDounyOH ) Ro i3y O(G)
is surjective. But since we have a commutative diagram

HXG=GX 136G
) U
HX H=HX ,;j;G=HxH ,

it follows that
O(HYR0()=0(G)Rourae)O(G)
195 17@1
O(H)QO(H)=0(H)®0ur6)0(G) .
Hence we have
(VDo OHNRO(G) =V ounO(G)Rouiin O(G)
1®xl Jamx)@
(VDounOHNQOH )Y=(V DO H ) Qo uiis HG)
Since 1 is surjective, the proof is done.
1.7 The definition of geometrically reductive k-groups is given in Introduction.
THEOREM. The A-subgroups of an affine algebraic geometrically reductive

k-group are geometrically reductive.
FrooF. Let G be an affine algebraic geometrically reductive k-group and H
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an A-subgroup of . Let ¢: V—>k—0 be a surjective homomorphism of k-H-
modules. Then we have 2 commutative diagram

$01
Ve HG) — k[ 001,0(G)
P Px
L
where p, and p, denote the canonical projections. By Proposition 1.5 and Corol-
lary 1.6, the diagram consists of surjective homomorphisms. The map¢(Jl:

Voo O(G) = ECpuny(G) is a k-G-module map. Notice that

EounO(GY=0(H\G)  (as right O(G)~comodules).

It is easy to see that the composite

- »
O(H\G)=koun0(G) — k
coincides with the restriction of the structure map
e OG- k.

Since the element 1€ O(H QG) is G-invariant and e(1)=<1, it follows that there is a
G-invariant element ¢ of k[T, 0(G) such that ple)=1. Put

V=(¢J1)"*(ke) .
Then V is a sub-k-G-module of VOoyO(G) and we have a commutative diagram

_ s71

V——lke—0

l pv.;s Zlm

Ve k—0.

Since G is geometrically reductive, there exists an integer >0 such that the
induced homomorphism of k-G-modules
— Sr !‘"1
s 7299 sy — 0
splits. This implies immediately that the induced homomorphism of k-H-modules
S'¢
SV—>8k—90

splits. Therefore H is geometrically reductive.

§2. A program for solving the Mumford conjecture

In the following % is a fixed ground field.
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2.1 PRrOPOSITION. Let G be an affine algebraic k-group and N a closed
normal subgroup of G. Then G is geometrically reductive if and only if N
and G7N are both geometrically reductive.

PROOF. Suppose that G is geometrically reductive. Then N is geometrically
reductive, since it is an A-subgroup of G. On the other hand G7N is clearly
geometrically reductive. Conversely suppose that N and G/N are geometrically
reductive. Let V ->k— 0 be a surjective homomorphism of k-G-modules. There
is an integer r>0 such that the induced homomorphism S*V — Stk -» 0 splits as
a k-N-homomorphism. Let V be the N-invariant elements in S'V. Then the
induced homomorphism V- S7k—0 can be seen as a k-G/N-homomorphism.
There exists an integer s>0 such that the induced homomorphism SV —S(S'k)
— 0 splits. This means that the homomorphism of k-G-modules S™V — S~k — 0
splits. Hence G is geometrically reductive.

2.2 An affine algebraic k-group G is said to be finite if the Hopf algebra
O(G) is finite dimensional.

PROPOSITION. Finite k-groups are geometrically reductive.

ProoF. Let K]k be a field extension. Then if GRK is a geometrically re-
ductive K-group, then the k-group G is clearly a geometrically reductive k-group.
Hence we can assume that % is algebraically closed. Let G be a finite %-group.
Let G° denote the connected component of G at 1. We have only to prove that
G® and G/G°® are geometrically reductive. Since G° is infinitesimal, it is geometri-
cally reductive by Lemma 2.3. Since k is algebraically closed, G/G® is a constant
k-group scheme I, for some finite (abstract) group I'. Since k-I',-modules are the
same as k-I-modules, it follows easily that I', is geometrically reductive. Hence
G is geometrically reductive.

2.3 An affine algebraic k-group G is said infinitesimal if the algebra O(G)
is finite dimensional and local.

LEMMA. Infinitesimal k-groups are geometrically reductive.

PROOF. We can assume that char (k)=p>0. Let G be infinitesimal and put
I=Ker (¢ : O(G) — k), where ¢ is the structure map. Then there is an integer >0
such that z# =0 for all xe€l. Let V be a k-G-module with p: V— VROXG) the
O(G)~<omodule structure map. Then the element v?" of S”V is G-invariant for
any v€ V, since

p(v”)=p(v)" € S”VRk .

Hence if V= k — 0 is a surjective homomorphism of k-G-modules, then the induced
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homomorphism SV — S*k — 0 splits. Therefore G is geometrically reductive.

2.4 Two affine algebraic k-groups G and G’ are said to be isogeneous if there
are an affine algebraic k-group G’/ and two finite closed normal subgroups N and
N’ of G’ such that G=2G"]N and G’'=G"']N".

COROLLARY. An affine algebraic k-group which tis isogeneous to some
geometrically reductive k-group is geometrically reductive.

2.5 Anaffine k-group G is said unipotent if the Hopf algebra O(G) is irreducible.

PROPOSITION. A unipotent algebraic k-group G is geometrically reductive
if and only if it is finite.

ProoF. Enough to prove the “only if” part. Suppose that a unipotent al-
gebraic k-group G is geometrically reductive. G has a central series of closed
subgroups

G=G,2G,D -+ DGy=1e}

such that each quotient GHTGS is isomorphic to a subgroup of a; the additive k-
group. Since G is geometrically reductive, it follows that G‘_JG‘ are all geometrically
reductive. But it is easy to show that a, is not geometrically reductive. Since
any proper subgroup of a, is finite [3, IV, §2, 1.1}, G,-,/G; are all finite. Hence
G is finite.

2.6 COROLLARY. If k is algebraically closed, then any reduced geometrically
reductive k-group has no unipotent radical.

2.7 Recall that the symplectic k-group Sp(2rn) and the orthogonal k-group
On) are defined as follows: Let R be a k-model (, that is a small commutative
k-algebra). Let ¢ and ¢4’ be an alternate bilinear form and a quadratic form
on the R-modules E** and R" respectively defined by

&% (x, W= I T S 1Tl © and y€ R

PRI - if n=2v
0 @)=
o2zt i n=2v41, ze R*.
Then Sp@n)(R) and O(n)(R) are the groups of R-automorphisms of R*" and R"
which leave fixed the alternate bilinear form ¢4’ and the quadratic form ¢ re-
spectively.
ProposiTION. Sp(Zn) and O(n) are A-subgroups of GL(2n) and GL(n)
res pectively.
ProoF. For any k-model R, let X(R) and Y(R) denote the set of all alternate
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bilinear forms on R and the set of all quadratic forms on R™ respectively. Then
the correspondences X: R+ X(R) and Y: R Y(R) are k-functors (cf. [2, page
57, Prop. 3)). We claim that X and Y are affine algebraic k-smooth k-schemes.
Let {e,, -+, e} be the canonical basis of k». It follows from (2, page 55, Prop. 2]
that the map

nin=—i}

Y(R)— R*x R %
@ (Qe)), (Q(ei+ej)HQ(ei)—Q(ej))i<j)

is bijective. Hence l’g(klg‘z—_i)a is affine algebraic k-smooth. On the other hand
X(R) is clearly isomorphic to RLM-), naturally in R. Hence XE(J’c“ﬂ‘!ﬁ;—U‘)‘l is also
affine algebraic k-smooth. For any k-model R, let X’(R) and Y’(R) denote the
set of non-degenerate alternate bilinear forms on E** and the set of non-degenerate
quadratic forms on R respectively. Then the k-functors X’ : R X’(R) and
Y’: R Y’(R) are affine algebraic k-smooth k-schemes, since they are principal
open subfunctors of X and Y respectively. Now the k-groups GL(2n) and GL(n)
acts naturally on X’ and Y’ respectively and the k-groups Sp(2n) and O(n) are
the stabilizer groups of the elements ¢:" € X’(k) and ¢{” € Y’(k) respectively. Let
K be a k-model which is an algebraically closed field. Then the action of GL(2n)(K)
on X(K) and of GL(n)(K) on Y’(K) are transitive by {2, page 80, Cor. 1] and by
{2, page 70, Cor. 2] respectively. Since X’ and Y” are algebraic k-smooth, it follows
from [3, III, §3, 2.1] that we have

GL(2n)7Sp(2n) =, X’ and GL(n)fO(n) — Y.
Since X’ and Y’ are affine, the assertion follows.

2.8 Suppose that k is algebraically closed. It is well-known [7, page 50] that
the k-groups SL(n+1), SO(2n+1), Sp(2n) and SO(2n) are almost simple k-groups
of types A,, B, C, and D, respectively. Since these are A-subgroups of GL(n-+1),
GL(2n+1), GL(2n) and GL(2n) respectively, we have proved

THEOREM. Any almost simple k-group of type A, B, C, or D, is isogeneous
to some A-subgroup of GL(n) for some n>0.
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