A note on geometrically reductive groups

By Mitsuhiro TAKEUCHI

(Communicated by N. Iwahori)

Introduction.

Let k be a field. An affine algebraic k-group G is said geometrically reductive if for any surjective homomorphism of k-G-modules $V \to k \to 0$, where k is a trivial 1-dimensional k-G-module, there is an integer r > 0 such that the induced homomorphism $S^rV \to S^rk \to 0$ splits, where S^rV denotes the r^{th} symmetric power of V. The following are examples of geometrically reductive k-groups:

- (1) GL(2) (Seshadri [8]).
- (2) Finite groups (2.2). (An affine group G is finite if and only if its Hopf algebra O(G) is finite dimensional.)
- (3) Linearly reductive groups. (An affine group G is *linearly reductive* if and only if any k-G-module is a direct sum of irreducible k-G-modules.)
- (4) An affine algebraic k-group which is isogeneous to some geometrically reductive k-group (2.4).
- (5) The A-subgroups of a geometrically reductive k-group (Theorem 1.7). (A closed subgroup H of an affine algebraic k-group G is called an A-subgroup if the homogeneous space G/H is affine.) (cf. Bialynicki-Birula [1] and Popov [6])

Suppose that k is algebraically closed. An affine algebraic k-group G is called reductive if it is reduced and its unipotent radical is $\{e\}$. Mumford [4] conjectures that reductive k-groups are geometrically reductive. Nagata and Miyata [5] prove that reduced geometrically reductive k-groups are reductive. In view of the properties (4) and (5) above, the Mumford conjecture will follow from the following two conjectures:

- C_1 . GL(n) are geometrically reductive.
- C_2 . Any almost simple affine algebraic k-group is isogeneous to an A-subgroup of GL(n) for some n>0.

In this short note we shall *not* treat the conjecture C_1 but solve partially the conjecture C_2 . As is well-known the almost simple k-groups are characterized up to isogeny by their Dynkin diagrams. We shall prove that the almost simple k-groups of types A_t , B_t , C_t and D_t satisfy the condition C_2 . The case of groups of exceptional types is still open.

§ 1. The A-subgroups of a geometrically reductive k-group

In the following k denotes a fixed ground field.

- 1.1 DEFINITION. Let C be a k-coalgebra, A a k-algebra and W a left C-comodule and a right A-module. We say that W is a (C, A)-bimodule if one of the following equivalent conditions holds:
- (i) The module structure map $W \otimes A \to W$, $w \otimes a \mapsto wa$ is a left C-comodule map.
 - (ii) The comodule structure map $\rho: W \to C \otimes W$ is a right A-module map.
- 1.2 DEFINITION. Let C be a k-coalgebra. Let V be a right C-comodule and W a left C-comodule. Let $\rho_V: V \to V \otimes C$ and $\rho_W: W \to C \otimes W$ denote the comodule structure maps. The kernel of the diagram

$$V \otimes W \xrightarrow{\rho_{V} \otimes 1_{W}} V \otimes C \otimes W$$

is denoted $V \square_c W$ and called the co-tensor product of V and W.

1.3 Let C be a k-coalgebra and A a k-algebra. Let V be a right C-comodule and W a (C,A)-bimodule. Since

$$(V \square_c W) \otimes A \cong V \square_c (W \otimes A)$$

clearly, we can well-define a map

$$(V \square_c W) \otimes A \cong V \square_c (W \otimes A) \xrightarrow{V \square_c \omega} V \square_c W$$

where $\omega: W \otimes A \to W$, $w \otimes a \to wa$, which makes $V \square_c W$ into a right A-module as is easily checked.

Let U be a left A-module. Then the composite

$$W \otimes_{A} U \xrightarrow{\rho_{W} \otimes 1} (C \otimes W) \otimes_{A} U \cong C \otimes (W \otimes_{A} U)$$

where $\rho_W:W\to C\otimes W$ denotes the comodule structure map, makes $W\otimes_{\mathbb{A}}U$ into a left C-comodule.

PROPOSITION. With the notations as above we have

$$(V \square_c W) \otimes_{\mathsf{A}} U \cong V \square_c (W \otimes_{\mathsf{A}} U)$$

if U is a flat A-module.

PROOF. Apply the exact functor $? \otimes_{\mathbf{A}} U$ to the following exact sequence:

$$V \square_c W \longrightarrow V \otimes W \xrightarrow{\rho_r \otimes 1_W} V \otimes C \otimes W.$$

- 1.4 Let C and D be two k-coalgebras. Let W be a left C-comodule and a right D-comodule. We say that W is a (C, D)-bicomodule if one of the following equivalent conditions holds:
- (i) The left C-comodule structure map $\rho_i:W\to C\otimes W$ is a right D-comodule map.
- (ii) The right D-comodule structure map $\rho_r: W \to W \otimes D$ is a left C-comodule map.

If W is a (C, D)-bicomodule and V a right C-comodule, then the composite

$$V \square_{c} W \xrightarrow{1 \square_{c} \rho_{r}} V \square_{c} (W \otimes D) \cong (V \square_{c} W) \otimes D$$

makes $V \square_c W$ into a right *D*-comodule.

Let $\pi: D \to C$ be a coalgebra map. Then D becomes a (C, D)-bicomodule via

$$\rho_r = \Delta: D \to D \otimes D$$
 and

$$\rho_t: D \xrightarrow{\Delta} D \otimes D \xrightarrow{\pi \otimes 1} C \otimes D$$

where Δ is the comultiplication of D. Hence $V \square_c D$ is a right D-comodule for any right C-comodule V. On the other hand the exact sequence

$$V \xrightarrow{\rho_{V}} V \otimes C \xrightarrow{\rho_{V} \otimes 1_{C}} V \otimes C \otimes C$$

implies an isomorphism of right C-comodules

$$V \xrightarrow{\cong} V \square_c C$$
.

The composite

$$V \square_c C \xrightarrow{1 \square_c \pi} V \square_c C \cong V$$

is a right C-comodule map and satisfies the following UMP: For any right D-comodule U we have

$$\operatorname{Comod}_{\mathcal{D}}(U, V \square_{\mathcal{C}} D) \xrightarrow{\cong} \operatorname{Comod}_{\mathcal{C}}(U, V)$$
.

This can be easily verified.

1.5 Let G be an affine algebraic k-group. We do not assume that G is re-

duced. Let O(G) denote the Hopf algebra of G. By definition a (left) k-G-module means a right O(G)-comodule. We view always k as a trivial left and right O(G)-comodule. If V is a k-G-module with $\rho_{\nu}: V \to V \otimes O(G)$ the O(G)-comodule structure map, then V^{G} the space of G-invariants in V is by definition

$$V \square_{o(o)} k = \{ v \in V | \rho_v(v) = v \otimes 1 \}$$
.

Let H be a closed subgroup of G. Suppose that the quotient k-sheaf G/H (see [3, III, §3] for the definition) is affine. (Such a subgroup is called an A-subgroup of G.) Let $\pi: O(G) \to O(H)$ be the canonical projection of Hopf algebras. By (1.4) O(G) is naturally an (O(H), O(G))-bicomodule. Since $G/H \xrightarrow{\cong} H/G$, $g \mapsto g^{-1}$, H/G is also affine and its k-algebra O(H/G) clearly equals

$$k \square_{o(n)} O(G) = \{x \in O(G) | \rho_t(x) = 1 \otimes x\}$$

where $\rho_t: O(G) \to O(H) \otimes O(G)$ denotes the left O(H)-comodule structure on O(G). Notice that O(G) is a faithfully flat $O(H \setminus G)$ -algebra [3, III, § 3, 2.5]. If we view O(G) as a right $O(H \setminus G)$ -module, then O(G) becomes an O(H), $O(H \setminus G)$ -bimodule in the sense of (1.1). Observe the following isomorphism of k-schemes:

$$H \times G \xrightarrow{\cong} G \times_{I \cap G} G, (h, g) \mapsto hg, g$$
.

If we let H act on $H \times G$ and $G \times_{H \setminus G} G$ from the left via

$$H \times (H \times G) \to H \times G$$
, $(h, (h', g)) \mapsto (hh', g)$ and $H \times (G \times_{I \cap G} G) \to G \times_{I \cap G} G$, $(h, (g, g')) \mapsto (hg, g')$,

then the above isomorphism commutes with the H-action. This means that the representing isomorphism of k-algebras

$$O(H) \otimes O(G) \stackrel{\cong}{\longleftarrow} O(G) \otimes_{\sigma(H \setminus G)} O(G)$$

is a left O(H)-comodule isomorphism, where the both hand sides are left O(H)-comodules via

$$A \otimes 1 : O(H) \otimes O(G) \rightarrow O(H) \otimes (O(H) \otimes O(G))$$
 and $\rho_i \otimes 1 : O(G) \otimes_{\sigma(H \setminus G)} O(G) \rightarrow O(H) \otimes (O(G) \otimes_{\sigma(H \setminus G)} O(G))$.

PROPOSITION. The left O(H)-comodule O(G) is coflat, that is the functor $\bigcap_{G(H)}O(G)$ is exact.

PROOF. Let V be a right O(H)-comodule. It follows from Proposition 1.3 that

$$(V \square_{o(H)}O(G)) \otimes_{o(H \setminus G)}O(G) \cong V \square_{o(H)}(O(G) \otimes_{o(H \setminus G)}O(G))$$

$$\cong V \square_{o(H)}(O(H) \otimes O(G)) \cong (V \square_{o(H)}O(H)) \otimes O(G)$$

$$\cong V \otimes O(G).$$

Since O(G) is a faithfully flat $O(H \setminus G)$ -algebra, this means that the functor $? \square_{O(H)} O(G)$ is exact.

1.6 COROLLARY. Let G be an affine algebraic k-group and H an A-subgroup of G. Then for any right O(H)-comodule V, the canonical homomorphism

$$V \square_{o(H)} O(G) \to V \square_{o(H)} O(H) \cong V$$

is surjective.

PROOF. Let $O(H \setminus G)$ act on O(H) from the right trivially. Then O(H) becomes an $(O(H), O(H \setminus G))$ -bimodule in the sense of (1.1) and the canonical projection $\pi: O(G) \to O(H)$ is easily seen to be a homomorphism of $(O(H), O(H \setminus G))$ -bimodules. Since O(G) is a faithfully flat $O(H \setminus G)$ -algebra, it is enough to show that the induced homomorphism

$$(V \square_{o(H)} O(G)) \otimes_{o(H \setminus G)} O(G) \rightarrow (V \square_{o(H)} O(H)) \otimes_{o(H \setminus G)} O(G)$$
,

is surjective. But since we have a commutative diagram

$$H\times G\cong G\times_{H\ \ \cap G}G$$
 \cup
 $H\times H\cong H\times_{H\ \ \cap G}G=H\times H$,

it follows that

$$O(H) \otimes O(G) \cong O(G) \otimes_{O(I) \setminus G} O(G)$$

$$1 \otimes \pi \downarrow \qquad \qquad \downarrow \pi \otimes 1$$

$$O(H) \otimes O(H) \cong O(H) \otimes_{O(I) \setminus G} O(G)$$

Hence we have

$$(V \square_{o(H)} O(H)) \otimes O(G) \cong (V \square_{o(H)} O(G)) \otimes_{o(H \setminus G)} O(G)$$

$$1 \otimes \pi \downarrow \qquad \qquad \downarrow (1 \square \pi) \otimes 1$$

$$(V \square_{o(H)} O(H)) \otimes O(H) \cong (V \square_{o(H)} O(H)) \otimes_{o(H \setminus G)} O(G) .$$

Since $1 \otimes \pi$ is surjective, the proof is done.

1.7 The definition of geometrically reductive k-groups is given in Introduction.

THEOREM. The A-subgroups of an affine algebraic geometrically reductive k-group are geometrically reductive.

FROOF. Let G be an affine algebraic geometrically reductive k-group and H

an A-subgroup of G. Let $\phi: V \to k \to 0$ be a surjective homomorphism of k-H-modules. Then we have a commutative diagram

$$V \underset{O(H)}{\square_{o(H)}} O(G) \xrightarrow{\phi \sqsubseteq 1} k \underset{O(H)}{\square_{o(H)}} O(G)$$

$$\downarrow p_{\iota} \qquad \qquad \downarrow p_{k}$$

$$V \xrightarrow{\phi} k$$

where p_{ν} and p_{k} denote the canonical projections. By Proposition 1.5 and Corollary 1.6, the diagram consists of surjective homomorphisms. The map $\phi \square 1$: $V \square_{\sigma(H)} O(G) \to k \square_{\sigma(H)} O(G)$ is a k-G-module map. Notice that

$$k \square_{O(H)} O(G) \cong O(H \backslash G)$$
 (as right $O(G)$ -comodules).

It is easy to see that the composite

$$O(H \backslash G) \cong k \square_{O(H)} O(G) \xrightarrow{p_k} k$$

coincides with the restriction of the structure map

$$\varepsilon: O(G) \to k$$
.

Since the element $1 \in O(H \setminus G)$ is G-invariant and $\varepsilon(1)=1$, it follows that there is a G-invariant element e of $k \square_{O(H)} O(G)$ such that $p_k(e)=1$. Put

$$\widetilde{V} = (\phi \square 1)^{-1}(ke)$$
.

Then $ar{V}$ is a sub-k-G-module of $V \square_{o(H)} O(G)$ and we have a commutative diagram

$$\begin{array}{ccc}
\overline{V} \xrightarrow{\phi \square 1} ke \longrightarrow 0 \\
\downarrow p_{\nu} & \downarrow \downarrow p_{k} \\
V \xrightarrow{\phi} k \longrightarrow 0
\end{array}$$

Since G is geometrically reductive, there exists an integer r>0 such that the induced homomorphism of k-G-modules

$$S^{\tau} \overline{V} \xrightarrow{S^{\tau}(\phi \square 1)} S^{\tau}(ke) \longrightarrow 0$$

splits. This implies immediately that the induced homomorphism of k-H-modules

$$S^{r}V \xrightarrow{S^{r}\phi} S^{r}k \longrightarrow 0$$

splits. Therefore H is geometrically reductive.

§2. A program for solving the Mumford conjecture

In the following k is a fixed ground field.

2.1 Proposition. Let G be an affine algebraic k-group and N a closed normal subgroup of G. Then G is geometrically reductive if and only if N and \widetilde{GN} are both geometrically reductive.

PROOF. Suppose that G is geometrically reductive. Then N is geometrically reductive, since it is an A-subgroup of G. On the other hand G/N is clearly geometrically reductive. Conversely suppose that N and G/N are geometrically reductive. Let $V \to k \to 0$ be a surjective homomorphism of k-G-modules. There is an integer r > 0 such that the induced homomorphism $S^*V \to S^*k \to 0$ splits as a k-N-homomorphism. Let V/N be the N-invariant elements in V/N. Then the induced homomorphism V/N can be seen as a V/N-homomorphism. There exists an integer V/N such that the induced homomorphism V/N is clearly geometrically V/N splits. This means that the homomorphism of V/N splits. This means that the homomorphism of V/N-modules V/N splits. Hence V/N is geometrically reductive.

2.2 An affine algebraic k-group G is said to be *finite* if the Hopf algebra O(G) is finite dimensional.

PROPOSITION. Finite k-groups are geometrically reductive.

PROOF. Let K|k be a field extension. Then if $G \otimes K$ is a geometrically reductive K-group, then the k-group G is clearly a geometrically reductive k-group. Hence we can assume that k is algebraically closed. Let G be a finite k-group. Let G^0 denote the connected component of G at 1. We have only to prove that G^0 and G/G^0 are geometrically reductive. Since G^0 is infinitesimal, it is geometrically reductive by Lemma 2.3. Since k is algebraically closed, G/G^0 is a constant k-group scheme Γ_k for some finite (abstract) group Γ . Since k- Γ_k -modules are the same as k- Γ -modules, it follows easily that Γ_k is geometrically reductive. Hence G is geometrically reductive.

2.3 An affine algebraic k-group G is said infinitesimal if the algebra O(G) is finite dimensional and local.

LEMMA. Infinitesimal k-groups are geometrically reductive.

PROOF. We can assume that $\operatorname{char}(k) = p > 0$. Let G be infinitesimal and put $I = \operatorname{Ker}(\varepsilon: O(G) \to k)$, where ε is the structure map. Then there is an integer r > 0 such that $x^{p^r} = 0$ for all $x \in I$. Let V be a k-G-module with $\rho: V \to V \otimes O(G)$ the O(G)-comodule structure map. Then the element v^{p^r} of $S^{p^r}V$ is G-invariant for any $v \in V$, since

$$\rho(v^{p^r}) = \rho(v)^{p^r} \in S^{p^r} V \otimes k$$
.

Hence if $V \to k \to 0$ is a surjective homomorphism of k-G-modules, then the induced

homomorphism $S^{p^r}V \to S^{p^r}k \to 0$ splits. Therefore G is geometrically reductive.

2.4 Two affine algebraic k-groups G and G' are said to be isogeneous if there are an affine algebraic k-group G'' and two finite closed normal subgroups N and N' of G'' such that $G \cong G'' \cap N$ and $G' \cong G'' \cap N'$.

COROLLARY. An affine algebraic k-group which is isogeneous to some geometrically reductive k-group is geometrically reductive.

2.5 An affine k-group G is said unipotent if the Hopf algebra O(G) is irreducible. Proposition. A unipotent algebraic k-group G is geometrically reductive if and only if it is finite.

PROOF. Enough to prove the "only if" part. Suppose that a unipotent algebraic k-group G is geometrically reductive. G has a central series of closed subgroups

$$G = G_0 \supset G_1 \supset \cdots \supset G_N = \{e\}$$

such that each quotient G_{i-1}/G_i is isomorphic to a subgroup of α_k the additive k-group. Since G is geometrically reductive, it follows that G_{i-1}/G_i are all geometrically reductive. But it is easy to show that α_k is not geometrically reductive. Since any proper subgroup of α_k is finite [3, IV, §2, 1.1], G_{i-1}/G_i are all finite. Hence G is finite.

- 2.6 COROLLARY. If k is algebraically closed, then any reduced geometrically reductive k-group has no unipotent radical.
- 2.7 Recall that the symplectic k-group Sp(2n) and the orthogonal k-group O(n) are defined as follows: Let R be a k-model (, that is a small commutative k-algebra). Let $\phi_R^{(n)}$ and $q_R^{(n)}$ be an alternate bilinear form and a quadratic form on the R-modules R^{2n} and R^n respectively defined by

$$\phi_R^{(n)}(x, y) = \sum_{i=1}^n x_i y_{i+n} - \sum_{i=1}^n x_{i+n} y_i, x \text{ and } y \in R^{2n}$$

$$q_R^{(n)}(z) = \begin{cases} \sum_{i=1}^{\nu} z_i z_{i+\nu} & \text{if } n = 2\nu \\ \sum_{i=1}^{\nu} z_i z_{i+\nu} + z_n^2 & \text{if } n = 2\nu + 1, \ z \in R^n \end{cases}.$$

Then Sp(2n)(R) and O(n)(R) are the groups of R-automorphisms of R^{2n} and R^n which leave fixed the alternate bilinear form $\phi_R^{(n)}$ and the quadratic form $q_R^{(n)}$ respectively.

PROPOSITION. Sp(2n) and O(n) are A-subgroups of GL(2n) and GL(n) respectively.

PROOF. For any k-model R, let X(R) and Y(R) denote the set of all alternate

bilinear forms on R^{2n} and the set of all quadratic forms on R^n respectively. Then the correspondences $X: R \mapsto X(R)$ and $Y: R \mapsto Y(R)$ are k-functors (cf. [2, page 57, Prop. 3]). We claim that X and Y are affine algebraic k-smooth k-schemes. Let $\{e_1, \dots, e_n\}$ be the canonical basis of k^n . It follows from [2, page 55, Prop. 2] that the map

$$Y(R) \to R^n \times R^{\frac{n(n-1)}{2}}$$

$$Q \mapsto ((Q(e_i))_i, (Q(e_i + e_j) - Q(e_i) - Q(e_j))_{i < j})$$

is bijective. Hence $Y{\cong}(k^{\frac{m(n+1)}{2}})_a$ is affine algebraic k-smooth. On the other hand X(R) is clearly isomorphic to $R^{\frac{m(n-1)}{2}}$, naturally in R. Hence $X{\cong}(k^{\frac{m(n-1)}{2}})_a$ is also affine algebraic k-smooth. For any k-model R, let X'(R) and Y'(R) denote the set of non-degenerate alternate bilinear forms on R^{2n} and the set of non-degenerate quadratic forms on R^n respectively. Then the k-functors $X': R \mapsto X'(R)$ and $Y': R \mapsto Y'(R)$ are affine algebraic k-smooth k-schemes, since they are principal open subfunctors of X and Y respectively. Now the k-groups GL(2n) and GL(n) acts naturally on X' and Y' respectively and the k-groups Sp(2n) and O(n) are the stabilizer groups of the elements $\phi_k^{(n)} \in X'(k)$ and $q_k^{(n)} \in Y'(k)$ respectively. Let K be a k-model which is an algebraically closed field. Then the action of GL(2n)(K) on X'(K) and of GL(n)(K) on Y'(K) are transitive by [2, page 80, Cor. 1] and by [2, page 70, Cor. 2] respectively. Since X' and Y' are algebraic k-smooth, it follows from [3, III, §3, 2.1] that we have

$$GL(2n)\widetilde{/}Sp(2n) \xrightarrow{\cong} X'$$
 and $GL(n)\widetilde{/}O(n) \xrightarrow{\cong} Y'$.

Since X' and Y' are affine, the assertion follows.

2.8 Suppose that k is algebraically closed. It is well-known [7, page 50] that the k-groups SL(n+1), SO(2n+1), Sp(2n) and SO(2n) are almost simple k-groups of types A_n , B_n , C_n and D_n respectively. Since these are A-subgroups of GL(n+1), GL(2n+1), GL(2n) and GL(2n) respectively, we have proved

THEOREM. Any almost simple k-group of type A_t , B_t , C_t or D_t is isogeneous to some A-subgroup of GL(n) for some n>0.

References

- Bialynicki-Birula, A., On homogeneous affine spaces of linear algebraic groups, Amer. J. Math. 85 (1963), 577-582.
- [2] Bourbaki, N., Algèbre, Chap. 9, Formes sesquilinéaires et formes quadratiques, Hermann, Paris, 1959.

- [3] Demazure, M. et P. Gabriel, Groupes algébriques, tome 1, North-Holland, Amsterdam, 1970.
- [4] Mumford, D., Geometric invariant theory, Springer, Berlin, 1965.
- [5] Nagata, M. and T. Miyata, Note on semi-reductive groups, J. Math. Kyoto Univ. 3 (1964), 379-382.
- [6] Popov, V. L., On the stability of the action of an algebraic group on an algebraic variety, Math. USSR Izvestija 6 (1972), 367-379.
- [7] Satake, I., Classification Theory of Semi-simple Algebraic Groups, Dekker, New York, 1971.
- [8] Seshadri, C.S., Mumford's Conjecture for GL(2) and Applications, Algebraic geometry, Tata, Bombay, 1969, 347-371.

(Received May 17, 1973)

Department of Mathematics Tokyo Metropolitan University Fukazawa, Setagaya Tokyo 158 Japan