On the trace formula for Hecke operators

By Hirofumi ISHIKAWA

{Communicated by Y. Thara)

§1. Introduction and theorem.

1.1. Let H be the complex upper half plane, and G:==SL(2, R). We regard
G as a group of transformations on H. Let I" be a subgroup of G operating on
H discontinuously, with a fundamental domain of finite volume. Assume that I”
-1, 0

0, —1

al'a™' is commensurable with I°, and denote by 77 the subgroup of G generated
by I" and a. Let % be a representation of /7 by unitary matrices of degree v<oo,
We assume that .

. -1,

@ #(( 0, )=t

(i) the kernel I of 7 in [" is of finite index in 7.

Let T=T({al') be the Hecke operator acting on the space of cusp forms
with respect to I” and ¥, and of dimension —k (see below). The trace of 7 has

contains the element ( ) We fix once for all an element « in G such that

been explicitly calculated in most of cases, but as far as we know, not yet for
the case of k=2 and v>1. In this note, we follow the method of A. Selberg [8],
and calculate the trace for the above remaining case, making reference to the
method of H. Shimizu [10] and of T. Kubota. The result is as follows.

1.2. By a cusp form with respect to I" and 7 of dimension -—~k, we under-
stand a function F(z) on H taking values in the representation space of %, which
satisfies the following conditions:

(i) F(z) is holomorphic on H,

(i) FOay=x(0ilr, 97 F(z), for rel,

(iii) in the case I'\H is non-compact, F(z) is regular at every parabolic point p

of I'’, and a constant term in the Fourier expansion of F’ at 9 vanishes.
Here, j{g, 2) denotes (cz+d)~* for g=< Z” Z

sisting of all F(2) is denoted by SSI" , l;, x). We now define the Hecke operator

T(ral) in S, k, 7). Let I'al'= U a,.l” be the right [-coset decomposition of
=1
Tall’. For FeS(I, k, ), we set ’

>eG and z€ H. The linear space con-

tB) Tal)F@= 3 taile, 2)Fley's) .
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THEOREM. In the case k=2, the trace of T(I'al') is given by the following
Sormula:

i ’ Pl =6 -2 gl 'y 7(g,) -+ p e o fy
(1.2) Tr T al)=6 = (" H)tr 2(go)+ gZul T(g): 2] 1= tr z(g)

= 2 tr Jloz(“ﬂ) Y ‘m“}n‘:(l‘/‘li‘%i:“[)“ tr z{g)
o=l [g.-¢3 lA"“/. '

A

S0l s ] (@7

L T tr 2(g) + oo > ceot| & )tr 1) ¢ .
50 2, tgte BT g '2\/ 17‘*'%0)EB».?/"‘£ o g)j

toraard
The notations used in this formula are defined as follows:

(1---wel’,
5-:_:,
g---ael,
M,=~{ee C*{1p)e==C, for yel?l,
¢s; an element of the group Z(/"), which consists of the elements
(1, O) and (~—1, O)’
0, 1 .0, -1
(I H):; the volume of a fundamental domain of I' in H relative to the

de(fgi (z=x+1y),

invariant measure dz==
g, £; the eigenvalues of an elliptic element g of G and supposed that
g U L (z0€ H is the fixed point of g),
gz—7% 2— %
i, 1'; the eigenvalues of a hyperbolic element g of G,
d; the number of right ['~cosets in [al’,
[g): the equivalence class of ¢ in I'al”, where the equivalence relation
is defined by: g~¢g’ &= g¢'==+ygr?, for some yerl’,
©, (resp. €;); a complete system of inequivalent elliptic elements (resp. hyper-
bolic elements leaving a parabolic point of I" fixed) in I'al’,
I'(g)={y e llg==+rgr~*},
Ky, *++, £y ; repregentatives of all [/-inequivalent cusps.

Bi={ge Il |gs=r,, parabolic or “‘E(é (1))} '

I'i={ge llgr=ri,
MN=kerxNTl,,
r=Il,: T,

#(g) is defined by gziq‘,(l’ Fgﬁ]))o,,

0 ;!, where o, is an element of G such that

G,o0= 1k, o‘ZI’;a.ﬁ{:’:(l’ n)ine Z}.
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We shall prove this theorem in the following sections. KEspecially, in the
case v=1, we regain the results of M. Eichler [1] and of H. Saito [7). The author
wishes to express his sincere thanks to Prof. Y. Thara and to Prof. H. Shimizu
who encouraged him with many suggestions.

§2. The Hecke operators.

2.1. Let H be the complex upper half plane, and H=Hx(R/2=%) with
elements (z, ), where we will identify ¢ and ¢-+2z. Let G=SL(2, R) be the
special linear group and G=G x(R/2=7) with elements (g, 0), where g is a matrix
(j, ?i) with determinant 1 and 4 a real number, and it act on the space (z,¢)
as:

(g, 0)(z, ¢) ;;(E.’?.‘ilb, , &+ arg {cz-+d)— ()) .
ce+d

Let " be a subgroup of G operating on H discontinuously with a fundamental

X _-3: (1)) Then the sub-
group ['=I'x{0} of G acts on H discontinuously with a fundamental domain of
finite volume. We identify I" with /; so we shall write I” instead of . We
assume that the fundamental domain of I' is non-compact. We fix once and for
all an element « in G such that al'a”' is commensurable with I, and denote by
I’ the subgroup of G generated by I” and o. Let ¥ be a representation of 7 by
unitary matrices of degree v, satisfying the conditions given in §1.

Let Lz(ﬁ, I") be the space of functions Flz, ¢) on H taking values in the
representation space of ¥ and satisfying the following conditions:

domain of finite volume and consisting the element <

(1) Flz, {5):( :
N fy(Zr QJ’)
values in C;

(i) Fllz, =1 Flz, ¢), for rel’;

), each fiz,¢) is a measurable function on H taking

(iii) S _F(z, ) Flz, $)dz dp<eoo, where dz = d;;dy is a G-invariant measure

nu

on H (z=z-+y).
Let P be the set of all parabolic points of ™, and put

ro={gerllgp=piN kery, (peP).
Define the subspace LA, I of L*H, ') by the additional condition:
1
(iv) S Flo,(z, #)de=0, for all pe P,
9
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where ¢,€G satisfies that o,20=p and that

o, M, = S(L(é ’f)%ne Z} )

Let C”(f) be the space of C”-class functions on H taking values in C. As is
well-known that the ring of all G-invariant differential operators on H is generated
by

op gzt oy ox 09
Generally, for a G-invariant differential-integral operator L in C*(H) and Flz, ¢)
e LA}(H, I, we define LF(z, ) simply by

Lfi(z, ¢)
LF(z, ¢)= .
-Lfv (Zv ¢)
When LF(z,)e L*(H,I'), we can regard L as an operator in LH,T). Thus
77%’ J, and ete. will also be considered as operators in L¥H,I'). From now on,

for simplicity, let us write simply as “an operator” instead of “an operator in
L*H, )", unless otherwise specified.

2.2, The classification of eigen spaces in Li(H, T is given by Kuga [6] in the
compact fundamental case. We follow the method of Gel'fand and Pyateckii-
éapiro [2], who treated this in the compact fundamental case, with the aid of the
representation theory of groups, and see that it is true in the non-compact
fundamental case. To do this, we need some propositions.

ProPosSITION 1. (Bargmann). Irreducible wunitary representations of the
group G=SL(2, R) are of the following types.

(i) Principal series: ¢! (s=purely imaginary). This representation
is realized in the space of functions on the real line with summable square.
The representation operators are defined by:

T(Q)%(f}:):—"sﬂ([?::; )lbw+d15~* ., for g::-(::" l; ) eG.

The wnner product is defined by:
(@1, )= S on@da .
(ii) Second Principal series: 5#°; (s=purely imaginary). This representa-
tion is realized in the same space as in (i) with the same inner product. The
representation operators are defined by:
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T(g)p(x)zef(“"

+C et o )
bx%d)%bx LAl sign (bakd) .

(i) Supplementary series: ¥, (—1<s<0). The representation is realized
in the space as above, but with another inner product given by:

(¢1, %)zr r [, ey (@) o) d dis

—oa Jco

The representation operators are defined as same as in (i).

(iv) Discrete series: ¥'; (n=0, rational integer). The representation is
realized in the space of analytic functions on the upper half-plane with finite
norm. The representation operators are given by:

T(g)e(2) '—t@(%%)(bwd)“"“’ :

The inner product is defined by :

@, ssz)zg @@y dedy, (1),

Imz>0

Gopd=ln|  c@pby iy, @=0.
Ima>0

£

(v) Second Discrete series: oz, (020, rational integer). The representa-
tion is realized in the space of analytic functions on the lower half-plane with
finite norm. The representation operators are givem by the same as an (iv).
The inner product is also defined by an analogus formula.

PROPOSITION 2. (Godement). Li(H,TI") decomposes into the sum of a counta-
ble number of irreducible unitary representations. Each irreductble representa-
tion enters into Li(H, ') with a finite multiplicity.

Now, to each element g€ G, we correspond a unitary operator T in LiH, I
of the following kind:

Tz g Y=z " (g'9)) ;

coref b x)(?/!/z' 0 )(00995' ——sin¢>__,) 2=x+1y, ¢) is the canonical
where z: g (0’ WMo 42 Neing,  cosd ( Y, ¢

isomorphism of G onto H. Let K be SO(2, R) and denote a one-dimensional irre-
ducible representation of K by

am:kﬁ(c?so’ —sin ﬁ)aexp(mimﬂ), for ke K, (me Z).
gin 8, cos

The next proposition is well-known for G=SL(2, R).
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ProrosiTiON 3. Let (T, #) be an irreducible unitary representation of G.
Put
wlo=lee. 7 | Tlke=0,k)e, for all ke K}.
Then v 3 #(0,) 18 a dense set of analytic vectors in %7,
Denote b; % the Lie algebra of G and by U(®) the universal envelopping al-
gebra. Then as is known, we can give the differential representation of T in %7
by :

T(X)(;:A<7ddt“ Tz,-spie,i')(j;) . for Xe 63 .

It is well-known that its representation is uniquely extended to the representa-

tion of U(%) and more to that of U(®).=U(®)RC C-linearly. Choose a basis of
‘ 1 0" 0, 1 0, 1 .

) . pasf 7 s —f = ' . e X, 2
¢ as follows: X (0, M1> X, (1, 0) and X; <_‘1’ 0) Put V X
Voez X, -1 X, and D=Xi-Xi—Xi. Let ¢ be an element of # (v.); we get

T(X)e—ime,
TV )€ # (0ner)

For representations of the second principal series and of the discrete and the
second discrete series with even n, T, \F=-—F, for Fe 2% (go:(_(l)’ —~(1) )), 80
that they cannot appear in the decomposition of Li(H,I) into ir;educible re-
presentations. Moreover if #” is an irreducible component of LXH, T, 5#0,)
={0} for all odd m. Firstly, let T be a representation of principal or supply-
mentary series and 7=, or %", respectively. For ¢€ %, the following
equation comes from Gel’fand [2]:

T(D)g==(s"~1)e .
With this, we get
T(V*V )e=(s"—~(m—1)%¢ ,
T(V-V*e=(s—(m+1))¢,
for ¢€ ¥{¢,). As s is purely imaginary or belongs to (—1,0), sﬂ——(m-—l)gq.&(l)
and s*—(m--1)"s40. On the other hand, % (s,)#{0}; for instance, o(x)={(a’+1) 3
belongs to %#7(¢y). Therefore % (o,)%1{0} for all even m. Secondly, let T be a

representation of discrete series and .%’=_%}. Again it follows from Gel'fand
that, for ¢€.%",

T(Dyp=(n'—1)¢ .



(%
(3]
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Then, we get
TV Vie=n"—{m—17x,

TV Ve = (m-+1) ,

for ¢€ % (s,). On the other hand, it is easily seen that & (v)){0}, ¥ (0. i)
={0} and % (s,..)d(z-+i) 7 V#0. Therefore, 7 (5,)0 for all mznt1, m=:0
(2). Finally, let T be a representation of the second discrete series and .» =+ .
By the same argument as above, we obtain » (5,)5{0} for all m= —(n-+ 1), m=0
(2).

Now, we define the subspace M{m, 4) of L:(H, I') consisting of ¢ which satisfies
the following conditions:

(i) Te=o.lk)e, for ke K,

(i1) T(Dye=4ig.
Let F(z, é)eM(k, —;1{ k— é—k) and put F(2) as follows:

2.1 Fz, )= exp (—ikd)y* " F(z) .

As v M(k, i- . %

k)rfM(I£-2, %f k- _%, lc)c': {01, we get V™ Flz, $)=-0, namely,
2 F(z)=0. Besides
0%

FG2y=23y, 2y ' Flz), for yel'.
Then F(z) belongs to S(I", k, ). Conversely, since F(z) belongs to S(/", k. %) it is
clear that Fl(z, ¢) is contained in M(k, —}f}c: — —;— k); hence M(k, -i—-k‘l m% Ic) is

isomorphic to S(I', k, 7). By the same argument as above, M( -Ic, i It - Aflj Ic) is

isomorphic to S(", k, 7) (anti-linear). Since D and X; have the forms 4d,, o

~
vy

respectively, as the differential operators on H=z(G), we now obtain the following
proposition.

PropPosITION 4. If I" and 7 satisfy the conditions given in §1, the classifica-
tion of the eigen spaces in LiH, Ty for each eigenvalue-pair (--lki, ) of

((%L, J:) is given by the following table. In ihis table, 1, ranges over all eigen-
values of Jr::y3<:;:,, —;0h0> on LHH, ) satisfying MO, 4)/10}, except 2,0
[r3< Gy“

M(k,i—kim %k) is isomorphic to SU,k, 7, M'(—»Jc, ik - é»k) is also iso-

morphic to S, k, 1) (anti-linear).
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Serxes Eigenvalues Eigen spaces

Au (—2ki, i) M@k, )=V MO, i), k=0
70 keZ Mk, 2)= VMO, 1), k<0
(w, (k- 2m)i l; k2. i k) , 1 1 1 1y
Ce e 2 M k+2m, wkz—-—ﬂk):V”ﬁ' ""M(k,—kﬂ«—-k)
. 4 2 4 2
m=0,1,2, .-
(G +2mi, ) M{— G 2m), 5o 5 k)
Ck m::o, 1’ 2, -

AVM( k., wk u»k\

2.3. In order to calculate the trace of the Hecke operator acting on S(I', 2, %),
we shall write down the action of the Hecke operator carried over to the space
M(2,0) by the canonical isomorphism (2,1): M(2, 0)=S(I", 2, 1), and extend it to
the space L*(H,1"). Thus,

(2.2) T alFlz, )= 5‘_, wWa)Fla, (2, 9)) ,

for Fe Le(ﬁ, I'). For the calculation of its trace, we consider a G-invariant
integral operator k, in C”(H) defined by a point pair invariant kernel: for s>0,

i 3 1 P NS ¥4 (yy’)]/2 5 (yy’)&/ﬁ
2 ] 4 ’S/ s e () C RIL AU AP—
(23) k2, §, 7', 9= exp (= 24— (z—2)/21 ] Hz—2)2e "

By the general theory, the eigenvalues of &, only depend on (k, 2. For k=2,
using the special eigenfunction:

flz, §)=exp (—~2ip)y® , i=d(6—1),

for an eigenvalue-pair (--21, 4) of (; '''''' Jl) in C”(H) (with 4#0), we obtain the

A(fé !
eigenvalue h,(2, 2) of k, given by:

4 (2, 2 . ols) r(i °>1"<—-~2+3 ~")
(2.4) h(2, A== 82 a9 p & 5 é),
where I‘(-;-—) [,( 1+s>

0(3):% 2/ 5 2 .
(z+ 3)

Note that the integral operator k;, considered as an operator in L:(H, I'), vanishes
on M(k, 2) for all k2.

We can express the operator T(Ial'), restricted to M(2,2), by k. in the
following way :
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N
R
(<2

.
T al Yz, $)==h(2, ™ X \~x(cr'.fx)k;.»(¢l';ﬁ‘(z, oy, SHFE, o'y’ de’ .
Y

But for >0, the kernel kdz, ¢,2',¢’) is of (a)-(b} type in the sense of Selberg
[8]; therefore

Ei_x(;')ks(z, S, 7@, &),

is absolutely convergent for all (z, ¢), (2/, ¢'ye H and uniformly, if (z, ¢) and (z’, ¢')
are contained in some compact subregion of H. Now, we have

d
= g\ Hakdlaa(z, ), 2, ¢")dz'd¢’ f‘ig S Ukdz, o, glz', ¢ Nd2do .
N

PR Y gefal
With this equation, we may define K, (z, ¢,2', ¢’) by:

2.5 Kz, 6,2, ¢)= 3 19z, ¢, 9", ¢) .

geda

But if the fundamental domain of 7I” is non-compact, the operator K, with the
kernel K.z, ¢,2’,¢') is not generally completely continuous. So we must modify
the operator K, by a certain integral operator H,, with which K¥=K,~H, is
completely continuous (§4).

§3. Eisenstein series.

In this section, to construct an operator H, which will be given in §4, we
shall give some preparations on the Eisenstein series related to I" and 7. Since
a matter of the Eisenstein series is treated by T. Kubota in detail (for instance;
[5], but it is in the case z=trivial), we only rccall fundamental definitions and
facts for vz 1.

3.1. Let x, ---,r. be representatives of all /™-inequivalent cusps, put I~
{re liyri=r} and denote by o, an element of G such that o,co:==x; and that

a,'?l’ioy::NmEE“:{;t<é: ?)tneZ} .

Put I=ker NI and %= keryNI,. By our assumption on %, /" is of finite
index in I",, which is denoted by »,. Put

p=L1 xg) .

. L
Vi georgr!

Now define the Eisenstein series attached to the cusp = by:
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i
G307

3.1 Kz, o, r'i):—:‘ by X (—2v - 1(6 - arg (cz--d))(Im (s, 'o2))%%(0)"

where o is a complex number with Re{(4)>1, s, ’ar**r(k,’ ;1), and o runs over a
complete representative of /7, 7. Its definition is independent of the choice of o,
50 that this series is well-defined. We shall prove that it is absolutely convergent
for Re(d)>1. Further, £ is automorphic, and is an eigenfunction of ]1 and
-f’, namely,
3¢

(1) Elolz, ¢), )= o) Bz, ¢, 6), for ael’.

(i) LIz, ¢, 6) 2B (z, &, 6), i—i(i-—1).

Gy 2 b 2V 1B 6,0,

3.2, Since the function ez, ¢),d) is invariant under z-->z+7;,, we can
consider the Fourier expansion:

E(6,(z, &), )= exp (-2v 1) }E Y, 8) exp 2zmv -~ Lair))

LyvuMa (i) The constant term of this Fourier expansion is given by :

3.2) ally, oy=a Pty e, 0)
where (1- ~i})/'(—;~)l’ (‘.a ?134> .
("A'j(’j) s et , 2 I)sz‘;(Cy d) lP

o1'(5) el

* *
and z: e, d) "Z(lfili'liv, Y for lf’ii( ’ d)eu‘, x]"a.j, and d;;=1 or O according to
¢,

1= or not, and o’ runs over a full representative of double cosets N ‘o, I's;/N_,
except ¢ 0.

G For ms0,

(3.9) a’(y, 0y=y' e 6, mhwlmy/r,, d)
where o0, my 3 - il -~ exp (2mav — 1dier P2, (e, d) 1P
{"a'fj IC i)
nd .
ane o[ exp(—2:v - Tut) t—v -1

wlu, ,,);;:‘ v =
A (t,“"!—l)’; v =1

This can be proved by the direct calculation.
ReMARK. Let K, be a modified Bessel function defined by the equality:

S‘“’ exp (2*\ ~ lzm

Joeon (' 41y dt=- Z:Ju“’m“!m[‘(a);11(5‘(1;’:)(2771() , (u>0).
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By a simple caleulation, we get

win, 0)=2=u% 1" (g) "‘*jKl; u,\,(?.:zz,)(ll - 2?‘):" el 2mud Eﬁi{‘ .
{ o [
With the help of an asymptotic expansion of modified Bessel functions, we can
show that ww(u, d) converges to zero as u tends towards infinity.
1t follows from the general theory of Eisenstein series that X(z, ¢, d) has an
analytic continuation to the whole d-plane and is a single-valued meromorphic
function.

$4. An operator H,.

4.1, Now we shall construct an operator H, to make K7 K, - H, completely
continuous. Put h,(0)==h 2, ) for simplicity, where i==d(6—1) and 72+¥ 0. Define a
function g.{u) on a real line by:

3

(4.1) gs(u):—é:g exp (—iru)h(8)dr , <¢)<‘: i »%«ir) .

— oo

Now, the kernel of H, will be defined by :

h

(4.2) \Hb(z’ €3; zl’ g,),)_“: g%—; b 1 f2y

LIEE

d e e
> xlag) S h(GYE (a2, ¢), 0y B2, o, oydr .
Rei{sr - e

We shall study the behaviour of the kernel H(z,¢,2’,¢’) as z and 2’ tend
simultaneously towards the parabolic point of /. In doing so, we can assume
that x,=200 and I';==N_, so that K\(z, ¢, 5) is the Eisenstein series attached to the
cusp co. Then we estimate the following integral;

(4.3) S RAONE (2, ¢, 6)— exp (—2id) (¥ Pi+4 ¢uld)y- %) exp (2i¢)y" " Pudr .
Rofd) st

5

The Fourier expansion gives:

(4.3)= S RGOS, anily, 0) exp @emv/ = Lo/r)y dr) P, .

Re o .l
If ¥>0, aiily,d) (m+0) is bounded by (constant)-|/'(d) | exp (-—n=ylm)/r)), (§3).
It follows that mZOa’,’i(y, d) is bounded by (constant)-|/'(6) |-exp (--=zy/r;). On the
other hand, A.(6) Fconverges to zero by the order of exp (—=xir]) if » tends towards
infinity. Then, if ¥ >0, we have

Y RGNS aty, dyy’ < dr |

1J—




228 Hirofumi IsHIRAWA
4.4) ~ exp (— :y;’riiy“”“g B exp( — é {r!) exp (—irlog (¥'pdr ,

~exp (~—zylr )y’ e\p/ ( )Iog (y’)) He>0) .

1t follows that the integral (4.3) converges to zero if z tends towards oo, By the
game way,

4.5)

S R{6)(E(z, 6, 6)— exp (- 20) (4 P+ ¢, (5)y" %) exp (2i¢")y" v 11 (8) dr |
Mot B

also converges to zero if z tends towards oo. Now we estimate the kernel
HJiz, &, 2", ¢"), both z and 2’ tending towards .. Put

l':;;:(z! (."v 6);![1"}(2: (.r" 6)"- exp ('2\/:;1((,5%‘arg ("“C@'Z“}‘a’i)))
{0 Ime'2)8P--(Im o '2) 90, (0))

where ,;i:':(a" bf) and gvpe;ir:(a*"" b ) Then, the part of H.(z, ¢,2/,¢")
Ci, d; Cipy ds./‘

which may be tending towards infinity is
(1) 81: by zm..,)S h.(3) -EE':‘f(«r;‘(z,qﬂ),a)’E?TE"I'c?T'J)
AT oagRy K et L

(2) +EHa'(z,6), 0) exp @V =1 +arg (—ez’+a.)
< ((Im a2 Poi-(Ima; 27)1 7% (0, (0))
(8) Fexp(—2V-1(¢+ arg (--¢, 2t e, )
X ((Im v, ' 2)7 P - (Ima; fa,t2) 90, (0)) E*G, ¢, 6)
(4)  + exp (—2v-1QG, m)(Im «, 'au'2) P+ (Im 0 'aitz) ¢,:(3))
2 ((Imo, 2 (Ima, 127000 ', (6))
(5) + 3 E¥a.'(z,¢), U)E“(z,u,u)

J¥d

(6) -+ 3 E¥ax (z ), 0) exp (v —1(¢' -+ arg (-——c.2'+a.)

3
x(Im o, z’)‘ o, (o)
(7) - Sexp (—2vV=1(g++ arg (—e:, 2--a., )
Ford
s(Imoa,2) 00, 0) E¥E, ¢, 0)
(8) -+ Sexp(—2vV—1QU, W)Ime, a;'z) "
JF
< Im os 127 0 (8) ') e

)
By the argument of §8, (1) and (6) are bounded; (2), (3), (6) and (7) are also
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bounded by (4.4). A part which is not actually bounded comes from (4) and (8),
and is given by

(4.6) ;1j 2 )P exp {(—2v —1Q3, milImo, o 2)Imo; 2/ )07

< gdlog (Ime; a2y log Imeo,'2")) .
Here, QUi, )=0—¢'+ arg (~—e¢,, 2+, J—arg (2" Has).

4.2. Let us seek for a part which is not bounded in the kernel K.z, ¢, 2/, &)
when 2 and 2’ tend towards the fixed cusp #,. Since the argument of thig section
ig treated by Kubota in [5] (Chapter V), we apply this to our case.

Kz, 0,2, ¢")= 3 kdz, ¢, g2/, ¥ Nilg)

pelal

in §2. Most parts of K, arc bounded for all (z, ¢}), (z/,¢" e H, and a partial sum
which is unbounded is given by:
3 3 ka2, 4, a9, S Niag) .
Cpk; kg R '
The above kernel is approximately equal to:

LS (@) P, exp (—2V/1Q0, m)iIm o, o, 2)(Im o 12}

T G gRieRyg

4.7)
% g.(log (Im o7 'an’z)— log (Im v, '27) .
1t follows that
K, ¢,2,¢")=Kz, ¢,2',¢')—H.z, 9, 2", ¢') ,

is bounded for all (z, ¢), (2’ ,c,':')el?; therefore, an integral operator K¥ with the
kernel K*(z, ¢, 2’, ¢') turns to be completely continuous.

4.3. Let Flz,9)€ L:(H, ') be an eigenfunction of _:7 and 4 with an cigen-

4,
value-pair (-21, 1), where

nyZ(Jz% 4 Ui ).,{_ ,y,.f’,_ U i v

P g

oy’

We shall check that an eigenvalue of F for the intergral operator K¥ becomes
equal to that for K.

When once (z,¢) is fixed, H,(z, ¢, 2',¢") is bounded if 2z’ tends towards the
cusp r,; so we can make H, operate F. Moreover, the inner product

S _'Edz, 4, 0)F(z, $)dzds ,
r

w4
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is finite, since Ei(z, ¢, 4) increases at the order of (Im s, '2)"/*, and F{(z, &) increases
at the order which is lower than (constant) < (Im«;'2z)""* by (i) when z tends towards

w. As Jis self-adjoint, it follows that:

1) Js)S Bz, 5,0 F(, dzdy
PV
= 7) U EE ST P, deds .

i

Therefore, for almost all o,

e [0
S G 6 PG, dede0, o 1 (s ]
7 5 0

It follows that:

g Hilz, 0,2, V2, 3 )d2'dg' =0, .

N
In the result, an eigenvalue of F for K* is equal to that for K..
4.4, We shall see that the image of K* is contained in Li(H, ). It is as
follows.
As K7 is completely continuous, the image of K¥* consists of all eigenfunc-
tions of K*; moreover an cigenfunction, which has not the eigenvalue 0, belongs

to a subspace that consists of all eigenfunctions of both f and 4, in LYH, ).
U(,v')
Let F be in the image of K* and Fy(y, ¢) the constant term of the Fourier ex-

pansion of I at the cusp«,, so that

AN
s

i

;,;ALHI‘{ ; (1, = p ,
5 S T’(a, (0' 1)(‘” ,s))dx.

D -
Since differential operators ;5’7 and dJ, commute with an action of G, Fy(y,¢) is
a¢d

"o (e, O)da

It

also an eigenfunction of ;Q[; and /.'71 with an eigenvalue —2i and 2, respectively.
e

Therefore, we have

where ¢, and ¢. are in C. Suppose that F(z, ¢)e LX(H, ). As we have Re(3)
=:Re (1—4)= ;, F(z,$) does not belong to L:(H,I'). This is a contradiction.
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Consequently, F belongs to L:H, I).

Let ¢, be the trace of T(al”) on M(2, i) for 1=20. In the case [==0, we
regard 4,0 and k{2,0) as the eigenvalue of k, for the eigenfunctions belonging
to M(2,0). Considering the trace of K7 in Li(H, I'), we obtain:

4.8) 3 (2, 2t e S _K*z, 2, O)dady .

nn

By the definition of K%, the right hand side of (4.8) is equal to

trg (S 2oz, 6, 9z, 9D~ Hilz, b, 2, $)dzds .

muyelal

Let [g] denote an equivalence class in I'al” by the equivalence relation defined in
§1.2., and put

Igy=={yellg=s79r7"} .

H* being a subregion of H obtained by subtracting the neighbourhood of each
parabolic point of I" from H, we can rewrite:

s ortr x(g)g ki(z, 0, glz, 0))dz
INH*

getal

»

= 3 2rtr x(g)xl k2,0, gz, 0))dz .
“LgINH®

fadgelal

For simplicity, we put

A*(g, sy =2 tr x(g)g k2,0, g(z, 0Ndz ,

IRV

Particularly, if there exists
S k2,0, g(z, 0)dz ,
gy i
we put
Alg, 9=2x tr z(g)g (2,0, 9(z, 0)dz .
rgni
§5. An explicit formula for tr T(/'el’).

5.1. In this section, we shall calculate the trace of T(/'«l’) in Li(H, ).
Firstly, we classify an element in /'al” and afterwards we caleulate “A*(yg, s)”,

for each class.
go€ el is of one of the following types;
(i) g€ Z().
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(ii) g, is elliptic.

(iiiy g is hyperbolic and no fixed point of g, is a parabolic point of I.

(iv) g, is hyperbolic and one of the fixed point of g, is a parabolic point of

r.

{(v) g, is parabolic.
Let @, (resp.: €,; Z,) denote a complete system of inequivalent elliptic elements
(resp.: hyperbolic elements leaving no parabolic point of I' fixed; hyperbolic
clements leaving a parabolic point of I fixed) in ['al’ with respect to the equi-
valence relation defined in §1.2.

5.2. Case i) Suppose that I'e/'N Z(I") ¢ and let g, be an element of Z(I').
We have

(5.1) Algo, ) :2:8 dz tr 1(gy)==2=v(I" H) tr 1(go) ,

Piggt

where 2(I" H) denotes the volume of a fundamental domain of " in H relative
to dz.

Case ii) g¢ is elliptic. Let ¢ be a linear transformation that maps H into a
unit circle, and a fixed point of g, to the origin of the circle. Let I, {7' be the

eigenvalues of g, and suppose that z"% :-’;2%—:@ (zo€ H is the fixed point of
W&o %o

¢.). By a simple calculation, we obtain:

16%7¢ ' (1 0% pdp tr 1(go)
A 0y §)= S o) / 2 )
(90, 8) [Fge) : Z(IM] )o Q12207130000
It follows
=« . _ 8t 2 )
(5.2 lim Algo, )= (ST ] Tog ) -

Case iii) g, is hyperbolic and no fixed point of g, is a parabolic point of I.
Let 2 be an eigenvalue of g, and 4,>1 be that of a generator of I'(g,). We have

log A5lAj*+e

4 ey P A
(5.3) A(g,, 8)==8"2%c(s) RENIEIpa tr x(gy) ,
becauge
S“ {(1-2*)® sin® 0—(1—2%)" cos® 0} sin* ¥ 40 = e(s)
o {(1—2%)° cos? O-+(1+2°)% sin® 6}7* * A+ a)r+s1—-22 °

1 1. s
@)
Here, c(s)=->- 2 2 2

2 p( i.)
24 5

(§2.3).
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Case iv) g, is hyperbolic and leaving a parabolic point of /" fixed. Let 2, 27}
be the eigenvalues of g, {(#>>0). In this case, (g )\H=H since I"(g.}=Z(I"). Let
g, leave #, fixed. Take Y>>0, and let V be a neighbourhood of . obtained as
follows:

6, 'V={ze HlImz>Y}.
Put H¥*= H—— ~o V. Considering the integral on H*, we get
A*(gy, sy==g.(—2log 4) T»j“l—i tr 2(gy) log Y

ek C e (sin Uyd¥ tr 2(g.)
—gzg\ o) :
’ xo 08 (SIn ™) 7 cost 001 2% sin 0

As the second term of the above equation is independent of VY, the limite of that,
where s tends to zero, is given by:

(5.4) 87 mxlxn “Afl 2 tr (g, -

Case v) B, I';, I, r, and p(g) are in accordance with the definitions in §1.2.
We can choose a set of a finite number of «,€ B, such that p(a,)=a, belongs to
an interval [0, 1) and that B, is the disjoint union of cosets a,l’,. Take Y0 and
let V be a neighbourhood of the cusp #, defined as in case iv). Put H¥=H-- gV

ac !’
and consider the integral on H*. Choosing 7:€["; such that I".=={y,>, we define

7.(5) by 2(r’. With these notations, we get:

lim lim{ 3 A%, 5~ S g(0)log Ytr (/(a,,)P)l

8t Yoo Luc H; 1"1( L

x’-—"é’f Z tl’( (&l')P)

L7 A e

et/ S rﬁler(jW“")«h J—.f"—‘#ﬁitr(l(w,‘)xl(wﬁ)

akg=Kky Joo! Ty - [
M 'S
= (r(?——) + M) L o ey
7 j4+a./r;
PN | LAY 2/;>_,3 Ay
4m/ 10,,%,«,;{7< 7, ) f('ri “a,) rAa)

where y(t) denotes lim { ﬁ] -~}1~—; - log (n%»t)}, and 4, is 0 or 1 according to @,=0,

oo {met P-4

a,+0 respectively. In the above calculation, we have used the following equalities:

rlog t exp (—t)dt==~7 (Euler’s constant),
6
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“lexp (-—1)  exp(—tli-ir)) " s
-5 =g(14ir)
S\ ( . 1 oxp (1) )dt H1+ir)

z {~ sech (zr =t
i

2 Lirt 47

where we denote by ¢(z) the digamma function and by B(z,2’) the beta function.
Now by a direct caleulation of the right hand side, we obtain:

(5.5) A f L5 ot ( £1g) )u 1),
Ti iyre it 1 Tiygrenn’ 7y
tud #1

where {g} denotes the /"-coset of ¢.

5.3. Sceondly, we shall caleulate the trace of H,. To do this, put
I(z, ¢, 0)== 2, wla yE o (z, §), 6) .

By §8, F. is defined and is meromorphic in the whole d-plane. As Fi(o(z, ), 6)
is invariant under an action of N, we have the Fourier expansion at #;; its
constant term exp (—2v —14) a*(y, d) is given by:

,yi}

af(y, 0= XN T da )Pyt et0)
"/I“ i !d;zl

where  ¢¥(0)=: by E W e 5 /(a o, )P; ,
fo 8 Yoo} Pl 04 N lel* 4 @)
i
* * - ~ > - - 3
and fv,,'rr(}k’ P ) Taking Y3»0, define H* as in §5.2. case v) and put H¥=H*
’ 7

X (R/2=2). The Fourier expansion of E; and F; gives:

«Lg . S“’ () tr (Filz, 6, 0 Bz, 6, ) drdeds
\H o

8"
= = Y e () P+y @) drdy

~ Jo g oo @Ry K ldul

—Jﬂﬂfj‘umuW@4¢MMEwmmm
8:° ydodo Jewo

- exp (2¢v/ —1¢) y*P))Ydrdzdo

1 1
= f‘ T ———g(2log Id,}) tr e P) log Y+ wh ( ) r(@f‘(-z“))
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fore,
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- ‘—_'Xm h.(d) g{tr {c*(5) ’gz‘«(é) FeR(d) 'y o

+ 3 log |d ‘fil;—: tr (e P Ldr o),
EpRy- Ky Ed!,! )
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(6), ¢/(9) denote ~a—~(c“(a)), -;— (c () respeetively {6==¢ ++/=-1#). There-

lim lim (trH }_, > ~—~1~ﬂgﬁ 2log ld D) tr (x(a)P) log ¥

§0 ¥soo | doleyxgeng ld!f!

} 0.

In general, it is known that l}_} hi2, A)t, is absolutely convergent for s>0,

hence 2 F<-~ )I“(

J )tt is absolutely convergent for s>0. By an esti-

mation of I'-function in a belt parallel to the imaginary line by Stirling’s formula,
we see that the above series is also absolutely and uniformly convergent for all
s=0. Since limc(s)=0, we get

On the other hand, noting that lim A,(2, 0)¢,==8%t,, we obtain:
5}

(5.6)

where d==

5.4, Finally, in order to calculate

=0 4}: v(C\H) tr 1(go) -+

lim 5_] h{6)t,—

sy

1 i

e (Plg): 2] 12
Flim 3 Ag9- 3 -mi“(m 1220 4y

=0 Ly} g By JA-- & -
SRR ( 1 - g )
_— Ny oS i\ N R - n
Z {27* tgic iz 1 tr e 2\/:")?1% JUM%:'H,LOL ( )m }:(g)} ’
tgtedd
(1---ael’

.
0---a "1"906/()

> Alg,s) definitely, we consider an

- gl oy
integral operator k. in C°(H) which has an integral kernel defined by:

6.7

Then an eigenvalue 4,00, ) for k. of fe C“(H), that is an eigenfunction of 70(,

and 4, with an eigenvalue 0 and Z# respectively, is given by:

]23(21 ("J): z’y( ’)7:2 ““'“’('y'?'lﬁ‘:w“ .
ST 2l

4,)
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(5.8) /.00, 2)==872¢"(s) ~— 17

where 4 satisfies i==d(d--1), 2:#0 and ¢'(s)= 5 For simplicity, we
r(r%wj

write A,(6) instead of I;E(O, 7) after the manner of the above case. Now, by the
remark in §2, we regard £, as the operator in LY(H, "), and we can express the
Hecke operator restricted to M(0, 1) by £, in the following way :

TU'al ) Flz, ¢)
SNIRD> S e btz 9, 2, VP, ' de

[2EAE 0 Y1

“h)t 3 | Aok, 6o, ¢IFE, 9ddy

g€ al’ INH
for F(z,¢)e M(0, 7). On the analogy in §2, we put

Rz, 6,2, ¢")= = iz, ¢, g2, o 2lg) .

ne "
We define an Eisenstein series F.(z, d) as follows:

Efz,d)= 3 (Imo;'o2)%%)'P, .

oeTAl

It is also prolonged analytically in the whole d-plane and becomes to a meromorphic
function. Put

- ~ d et ttmims
1‘15(2, (45’ z’, ';‘!"):“’ ’*“]:“."S }’3(5)( E Z((I‘,,)E,—(Q’;:IZ, 6)(Ei(z’y 6))d'f .
e (3 ot

2t

By the same argument as in §4, we can prove that X?zlﬁwﬁa is completely

continuous, and that its image is contained in L3(H, I, and that an eigenvalue
Py . . . 7 = . - .

for K* of F, which is an eigenfunction of »0(8— and 4, in L¥H,T), is equal to

that for R.. Therefore,

(5.9) S:OIZ,(O. A= trS A S Edz ¢, 9z, 9)1(9)—Hilz, ¢, 2, 9))dzdg .

rmy gelal

Here, 7, denotes a trace of T(al") in M(0, 1), and we have
o ‘I A
to:" E{ tr .’/gx(“,”) ) tlxtl (I’>0) »
‘l‘.:

where M,=={ce C*{1(y)e=¢, for yeI'}.
Now, ¢, is hyperbolic and leaving no fixed point of I". Put
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Atg,, s):fzsg £z, 0, golz, 0Dz tr 2(gs) |

Iigg\ ¥

and 4, 4 as in §5.2. case iii). By the same calculation as in case i), we get

(5.10) Alg,, 5) =82 (s) OB AN\ oy

(L4212

It follows

p(g_'i
2 .
Algo, 5)= 2 ——21_d(g, 9
2 1’<2+ o)
2,
['<2_‘i1§
Multipling both sides of (5.9) by s A2 -~ and tending s towards zero, we
2 r<2+ i)
2
get
(5.11) 87:?fo:ff llm c 2 A(g; S) 3
st {9503y
Now, we obtain the theorem (§1).
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