On the trace formula for Hecke operators

By Hirofumi ISHIKAWA

(Communicated by Y. Ihara)

§1. Introduction and theorem.

1.1. Let H be the complex upper half plane, and G = SL(2,R). We regard G as a group of transformations on H. Let Γ be a subgroup of G operating on H discontinuously, with a fundamental domain of finite volume. Assume that Γ contains the element $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. We fix once for all an element α in G such that $\alpha\Gamma\alpha^{-1}$ is commensurable with Γ , and denote by Γ' the subgroup of G generated by Γ and G. Let G be a representation of G by unitary matrices of degree G. We assume that

(i)
$$\chi\left(\begin{pmatrix}-1, & 0\\ 0, & -1\end{pmatrix}\right)=1_{\nu}$$
,

(ii) the kernel Γ^0 of χ in Γ is of finite index in Γ .

Let $T=T(\Gamma \alpha \Gamma)$ be the Hecke operator acting on the space of cusp forms with respect to Γ and χ , and of dimension -k (see below). The trace of T has been explicitly calculated in most of cases, but as far as we know, not yet for the case of k=2 and $\nu>1$. In this note, we follow the method of A. Selberg [8], and calculate the trace for the above remaining case, making reference to the method of H. Shimizu [10] and of T. Kubota. The result is as follows.

- 1.2. By a cusp form with respect to Γ and χ of dimension -k, we understand a function F(z) on H taking values in the representation space of χ , which satisfies the following conditions:
 - (i) F(z) is holomorphic on H,
 - (ii) $F(\gamma z) = \chi(\gamma) j(\gamma, z)^{-1} F(z)$, for $\gamma \in \Gamma$,
- (iii) in the case $\Gamma \setminus H$ is non-compact, F(z) is regular at every parabolic point p of Γ^0 , and a constant term in the Fourier expansion of F at p vanishes. Here, j(g,z) denotes $(cz+d)^{-k}$ for $g=\begin{pmatrix} a, & b \\ c, & d \end{pmatrix} \in G$ and $z \in H$. The linear space consisting of all F(z) is denoted by $S(\Gamma, k, \chi)$. We now define the Hecke operator $T(\Gamma \alpha \Gamma)$ in $S(\Gamma, k, \chi)$. Let $\Gamma \alpha \Gamma = \bigcup_{p=1}^d \alpha_p \Gamma$ be the right Γ -coset decomposition of $\Gamma \alpha \Gamma$. For $F \in S(\Gamma, k, \chi)$, we set

(1.1)
$$T(\Gamma \alpha \Gamma) F(z) = \sum_{\mu=1}^d \chi(\alpha_\mu) j(\alpha_\mu^{-1}, z) F(\alpha_\mu^{-1} z) .$$

THEOREM. In the case k=2, the trace of $T(\Gamma \alpha \Gamma)$ is given by the following formula:

(1.2)
$$\operatorname{Tr} T(\Gamma \alpha \Gamma) = \hat{o} \frac{1}{4\pi} v(\Gamma \backslash H) \operatorname{tr} \chi(g_0) + \sum_{\{g_1 \in \mathcal{Z}_1} \frac{1}{[\Gamma(g) : Z(\Gamma)]} \frac{\tilde{\varsigma}^2}{1 - \tilde{\varsigma}^2} \operatorname{tr} \chi(g) \\ + \sum_{i=1}^d \operatorname{tr}_{\mathcal{M}_0} \chi(\alpha_{\mu}) - \sum_{\{g_1 \in \mathcal{Z}_3} \frac{\min(|\lambda|, |\lambda^{-1}|)}{|\lambda - \lambda^{-1}|} \operatorname{tr} \chi(g) \\ - \sum_{i=1}^h \left\{ \frac{1}{2r_i} \sum_{\{g_1 \in B_i/\Gamma_i^0\}} \operatorname{tr} \chi(g) + \frac{1}{2\sqrt{-1}r_i} \sum_{\{g_1 \neq I_i^0\}} \cot\left(\frac{\mu(g)\pi}{r_i}\right) \operatorname{tr} \chi(g) \right\}.$$

The notations used in this formula are defined as follows;

$$\partial = \begin{cases} 1 \cdots \alpha \in I', \\ 0 \cdots \alpha \in I'. \end{cases}$$

 $M_0 = \{c \in C^* | \chi(\gamma)c = C, \text{ for } \gamma \in \Gamma\},$

 g_0 ; an element of the group $Z(\varGamma)$, which consists of the elements $\begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix}$ and $\begin{pmatrix} -1, & 0 \\ 0, & -1 \end{pmatrix}$, $v(\varGamma \backslash H)$; the volume of a fundamental domain of \varGamma in H relative to the

 $v(\Gamma \backslash H)$; the volume of a fundamental domain of Γ in H relative to the invariant measure $dz = \frac{dxdy}{y^2}$ (z = x + iy), ζ , $\bar{\zeta}$; the eigenvalues of an elliptic element g of G and supposed that

 ζ , $\overline{\zeta}$; the eigenvalues of an elliptic element g of G and supposed that $\frac{gz-z_0}{gz-\overline{z}_0}=\zeta^2\frac{z-z_0}{z-\overline{z}_0} \qquad (z_0\in H \text{ is the fixed point of } g),$

 λ , λ^{-1} ; the eigenvalues of a hyperbolic element g of G,

d; the number of right Γ -cosets in $\Gamma \alpha \Gamma$,

[g]; the equivalence class of g in $\Gamma \alpha \Gamma$, where the equivalence relation is defined by: $g \sim g' \Longleftrightarrow g' = \pm \gamma g \gamma^{-1}$, for some $\gamma \in \Gamma$,

 \mathfrak{S}_1 (resp. \mathfrak{S}_3); a complete system of inequivalent elliptic elements (resp. hyperbolic elements leaving a parabolic point of Γ fixed) in $\Gamma \alpha \Gamma$,

$$\Gamma(g) = \{ \gamma \in \Gamma \mid g = \pm \gamma g \gamma^{-1} \},$$

 $\kappa_1, \dots, \kappa_n$; representatives of all Γ -inequivalent cusps.

$$B_{i} = \left\{ g \in \Gamma \alpha \Gamma | g \kappa_{i} = \kappa_{i}, \text{ parabolic or } \pm \begin{pmatrix} 1, & 0 \\ 0, & 1 \end{pmatrix} \right\},$$

$$\Gamma_{i} = \left\{ g \in \Gamma | g \kappa_{i} = \kappa_{i} \right\},$$

$$\Gamma_{i}^{o} = \ker \chi \cap \Gamma_{i},$$

$$\Gamma_i^0 = \ker \chi \cap \Gamma_i,$$

$$r_i = [\Gamma_i : \Gamma_i^0].$$

$$\mu(g)$$
 is defined by $g = \pm \sigma_i \begin{pmatrix} 1, & \mu(g) \\ 0, & 1 \end{pmatrix} \sigma_i^{-1}$, where σ_i is an element of G such that

$$\sigma_i \infty = \kappa_i, \ \sigma_i \Gamma_i \sigma_i = \left\{ \pm \begin{pmatrix} 1, & n \\ 0, & 1 \end{pmatrix} \middle| n \in Z \right\}.$$

We shall prove this theorem in the following sections. Especially, in the case $\nu=1$, we regain the results of M. Eichler [1] and of H. Saito [7]. The author wishes to express his sincere thanks to Prof. Y. Ihara and to Prof. H. Shimizu who encouraged him with many suggestions.

§ 2. The Hecke operators.

2.1. Let H be the complex upper half plane, and $\tilde{H}=H\times(R/2\pi Z)$ with elements (z,ϕ) , where we will identify ϕ and $\phi+2\pi$. Let G=SL(2,R) be the special linear group and $\tilde{G}=G\times(R/2\pi Z)$ with elements (g,θ) , where g is a matrix $\begin{pmatrix} a, & b \\ c, & d \end{pmatrix}$ with determinant 1 and θ a real number, and it act on the space (z,ϕ)

$$(g, \theta)(z, \phi) = \left(\frac{az+b}{cz+d}, \phi + \arg(cz+d) - \theta\right).$$

Let Γ be a subgroup of G operating on H discontinuously with a fundamental domain of finite volume and consisting the element $\begin{pmatrix} -1, & 0 \\ 0, & -1 \end{pmatrix}$. Then the subgroup $\tilde{\Gamma} = \Gamma \times \{0\}$ of \tilde{G} acts on \tilde{H} discontinuously with a fundamental domain of finite volume. We identify Γ with $\tilde{\Gamma}$; so we shall write Γ instead of $\tilde{\Gamma}$. We assume that the fundamental domain of Γ is non-compact. We fix once and for all an element α in G such that $\alpha\Gamma\alpha^{-1}$ is commensurable with Γ , and denote by Γ' the subgroup of G generated by Γ and α . Let χ be a representation of Γ' by unitary matrices of degree ν , satisfying the conditions given in §1.

Let $L^2(\tilde{H}, \Gamma)$ be the space of functions $F(z, \phi)$ on \tilde{H} taking values in the representation space of χ and satisfying the following conditions:

- (i) $F(z,\phi) = \begin{pmatrix} f_1(z,\phi) \\ \vdots \\ f_{\nu}(z,\phi) \end{pmatrix}$, each $f_i(z,\phi)$ is a measurable function on \tilde{H} taking values in C:
- (ii) $F(\gamma(z, \phi)) = \chi(\gamma)F(z, \phi)$, for $\gamma \in \Gamma$;
- (iii) $\int_{I \cap \widetilde{H}} {}^t F(z,\phi) \overline{F(z,\phi)} dz \ d\phi < \infty, \text{ where } dz = \frac{dxdy}{y^2} \text{ is a G-invariant measure}$ on H(z=x+iy).

Let P be the set of all parabolic points of Γ^0 , and put

$$\Gamma_p^0 = \{g \in \Gamma | gp = p\} \cap \ker \chi, (p \in P).$$

Define the subspace $L^2_0(\tilde{H}, \Gamma)$ of $L^2(\tilde{H}, \Gamma)$ by the additional condition:

(iv)
$$\int_0^1 F(\sigma_p(z,\phi))dx = 0, \text{ for all } p \in P,$$

where $\sigma_p \in G$ satisfies that $\sigma_p \infty = p$ and that

$$\sigma_p^{-1} \Gamma_{-p}^0 \sigma_p = \left\{ \pm \begin{pmatrix} 1, & n \\ 0, & 1 \end{pmatrix} \middle| n \in Z \right\}.$$

Let $C^{\infty}(\tilde{H})$ be the space of C^{∞} -class functions on \tilde{H} taking values in C. As is well-known that the ring of all \tilde{G} -invariant differential operators on \tilde{H} is generated by

$$rac{\partial}{\partial \phi}$$
 , $\widetilde{ec{\Delta_1}} \! = \! y^2 \! \left(rac{\partial^2}{\partial x^2} \! + \! rac{\partial^2}{\partial y^2}
ight) \! + y rac{\partial}{\partial x} rac{\partial}{\partial \phi}$.

Generally, for a \tilde{G} -invariant differential-integral operator L in $C^{\infty}(\tilde{H})$ and $F(z, \phi) \in L^{2}(\tilde{H}, \Gamma)$, we define $LF(z, \phi)$ simply by

$$LF(z, \phi) = \begin{pmatrix} Lf_1(z, \phi) \\ \vdots \\ Lf_n(z, \phi) \end{pmatrix}.$$

When $LF(z,\phi) \in L^2(\tilde{H},\Gamma)$, we can regard L as an operator in $L^2(\tilde{H},\Gamma)$. Thus $\frac{\partial}{\partial \phi}$, \tilde{A}_1 and etc. will also be considered as operators in $L^2(\tilde{H},\Gamma)$. From now on, for simplicity, let us write simply as "an operator" instead of "an operator in $L^2(\tilde{H},\Gamma)$ ", unless otherwise specified.

2.2. The classification of eigen spaces in $L^{\circ}_{0}(\tilde{H}, \Gamma)$ is given by Kuga [6] in the compact fundamental case. We follow the method of Gel'fand and Pyateckii-Sapiro [2], who treated this in the compact fundamental case, with the aid of the representation theory of groups, and see that it is true in the non-compact fundamental case. To do this, we need some propositions.

PROPOSITION 1. (Bargmann). Irreducible unitary representations of the group G=SL(2,R) are of the following types.

(i) Principal series: \mathcal{H}_{*}^{+} (s=purely imaginary). This representation is realized in the space of functions on the real line with summable square. The representation operators are defined by:

$$T(g)\varphi(x) = \varphi\left(\frac{ax+c}{bx+d}\right)|bx+d|^{s-1} , \quad for \quad g = \begin{pmatrix} a, & b \\ c, & d \end{pmatrix} \in G .$$

The inner product is defined by:

$$(\varphi_1,\,\varphi_2)=\int_{-\infty}^{\infty}\varphi_1(x)\overline{\varphi_2(x)}dx.$$

(ii) Second Principal series: \mathscr{H}_{\bullet} (s=purely imaginary). This representation is realized in the same space as in (i) with the same inner product. The representation operators are defined by:

$$T(g)\varphi(x)\!=\!\varphi\!\left(\!\frac{ax\!+\!c}{bx\!+\!d}\right)\!|bx\!+\!d|^{s-1}\quad {\rm sign}\ (bx\!+\!d)\ .$$

(iii) Supplementary series: \mathcal{H}_s (-1<s<0). The representation is realized in the space as above, but with another inner product given by:

$$(\varphi_1, \varphi_2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |x_1 - x_2|^{-s-1} \varphi_1(x_1) \overline{\varphi_2(x_2)} dx_1 dx_2.$$

The representation operators are defined as same as in (i).

(iv) Discrete series: \mathcal{X}_n^+ ($n \ge 0$, rational integer). The representation is realized in the space of analytic functions on the upper half-plane with finite norm. The representation operators are given by:

$$T(g)\varphi(z) = \varphi\left(\frac{az+c}{bz+d}\right)(bz+d)^{-n-1}$$
.

The inner product is defined by:

$$(\varphi_1, \varphi_2) = \int_{\operatorname{Im} z > 0} \varphi_1(z) \overline{\varphi_2(z)} y^{n-1} dx dy$$
, $(n \ge 1)$,

$$(\varphi_1, \varphi_2) = \lim_{\epsilon \to 0} \int_{\text{Im } z > 0} \varphi_1(z) \overline{\varphi_2(z)} y^{\epsilon - 1} dx dy , \quad (n = 0) .$$

(v) Second Discrete series: \mathcal{H}_n ($n \geq 0$, rational integer). The representation is realized in the space of analytic functions on the lower half-plane with finite norm. The representation operators are given by the same as in (iv). The inner product is also defined by an analogus formula.

PROPOSITION 2. (Godement). $L^2_0(\tilde{H}, \Gamma)$ decomposes into the sum of a countable number of irreducible unitary representations. Each irreducible representation enters into $L^2_0(\tilde{H}, \Gamma)$ with a finite multiplicity.

Now, to each element $g \in G$, we correspond a unitary operator T_g in $L^2_g(\tilde{H}, \Gamma)$ of the following kind:

$$T_{_0}\varphi(\pi^{-1}g')\!=\!\varphi(\pi^{-1}(g'g))$$
 ;

where $\pi: g' = \begin{pmatrix} 1, & x \\ 0, & 1 \end{pmatrix} \begin{pmatrix} y^{1/2}, & 0 \\ 0, & y^{-1/2} \end{pmatrix} \begin{pmatrix} \cos \phi, & -\sin \phi \\ \sin \phi, & \cos \phi \end{pmatrix} \rightarrow (z = x + iy, \phi)$ is the canonical isomorphism of G onto \tilde{H} . Let K be SO(2,R) and denote a one-dimensional irreducible representation of K by

$$\sigma_m: k = \begin{pmatrix} \cos \theta, & -\sin \theta \\ \sin \theta, & \cos \theta \end{pmatrix} \rightarrow \exp(-im\theta), \text{ for } k \in K, (m \in Z).$$

The next proposition is well-known for G=SL(2, R).

PROPOSITION 3. Let (T, \mathcal{H}) be an irreducible unitary representation of G.

$$\mathscr{H}(\sigma_m) = \{ \varphi \in \mathscr{H} \mid T(k)\varphi = \sigma_m(k)\varphi , \text{ for all } k \in K \}.$$

Then $\mathcal{H}_0 = \sum\limits_m \mathcal{H}(\sigma_m)$ is a dense set of analytic vectors in \mathcal{H} .

Denote by $\mathfrak B$ the Lie algebra of G and by $U(\mathfrak B)$ the universal envelopping algebra. Then as is known, we can give the differential representation of T in $\mathscr H_0$ by:

$$T(X)\varphi = \left(\frac{d}{dt} T_{\exp(tX)} \varphi\right)_{t=0}$$
, for $X \in \mathfrak{G}$.

It is well-known that its representation is uniquely extended to the representation of $U(\Im)$ and more to that of $U(\Im)_c = U(\Im) \otimes C$ C-linearly. Choose a basis of \Im as follows: $X_1 = \begin{pmatrix} 1, & 0 \\ 0, & -1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0, & 1 \\ 1, & 0 \end{pmatrix}$ and $X_3 = \begin{pmatrix} 0, & 1 \\ -1, & 0 \end{pmatrix}$. Put $V^+ = X_1 + iX_2$, $V = X_1 - iX_2$ and $D = X_1^2 + X_2^2 - X_3^2$. Let φ be an element of \mathscr{X} (σ_m) ; we get

$$T(X_3)\varphi = \operatorname{im} \varphi$$
,

$$T(V^{\pm})\varphi \in \mathscr{H}(\sigma_{m\pm 2})$$
.

For representations of the second principal series and of the discrete and the second discrete series with even n, $T_{00}F = -F$, for $F \in \mathscr{H}\left(g_0 = \begin{pmatrix} -1, & 0 \\ 0, & -1 \end{pmatrix}\right)$; so that they cannot appear in the decomposition of $L^s_0(H, \Gamma)$ into irreducible representations. Moreover if \mathscr{H} is an irreducible component of $L^s_0(\tilde{H}, \Gamma)$, $\mathscr{H}(\sigma_m) = \{0\}$ for all odd m. Firstly, let T be a representation of principal or supplymentary series and $\mathscr{H} = \mathscr{H}_s$ or \mathscr{H}_s respectively. For $\varphi \in \mathscr{H}_0$, the following equation comes from Gel'fand [2]:

$$T(D)\varphi = (s^2-1)\varphi$$
.

With this, we get

$$T(V^+V^-)\varphi = (s^2 - (m-1)^2)\varphi$$

$$T(V^-V^+)\varphi = (s^2 - (m+1)^2)\varphi$$

for $\varphi \in \mathscr{H}(\sigma_m)$. As s is purely imaginary or belongs to (-1,0), $s^2-(m-1)^2\neq 0$ and $s^2-(m+1)^2\neq 0$. On the other hand, $\mathscr{H}(\sigma_0)\neq \{0\}$; for instance, $\varphi(x)=(x^2+1)^{\frac{s-1}{2}}$ belongs to $\mathscr{H}(\sigma_0)$. Therefore $\mathscr{H}(\sigma_m)\neq \{0\}$ for all even m. Secondly, let T be a representation of discrete series and $\mathscr{H}=\mathscr{H}_n^+$. Again it follows from Gel'fand that, for $\varphi \in \mathscr{H}_0$,

$$T(D)\varphi = (n^2-1)\varphi$$
.

Then, we get

$$T(V^+V^-)\varphi = (n^2 - (m-1)^2)\varphi$$
,
 $T(V^-V^+)\varphi = (n^2 - (m+1)^2)\varphi$.

for $\varphi \in \mathscr{H}(\sigma_m)$. On the other hand, it is easily seen that $\mathscr{H}(\sigma_0) = \{0\}$, $\mathscr{H}(\sigma_{(n+1)}) = \{0\}$ and $\mathscr{H}(\sigma_{n+1}) \ni (z+i)^{-(n+1)} \neq 0$. Therefore, $\mathscr{H}(\sigma_m) \neq 0$ for all $m \ge n+1$, m = 0. (2). Finally, let T be a representation of the second discrete series and $\mathscr{H}(\sigma_m) \neq \{0\}$ for all $m \le -(n+1)$, m = 0. (2).

Now, we define the subspace $M(m, \lambda)$ of $L^{\gamma}(\tilde{H}, \Gamma)$ consisting of φ which satisfies the following conditions:

- (i) $T_k \varphi = \sigma_m(k) \varphi$, for $k \in K$,
- (ii) $T(D)\varphi = 4\lambda\varphi$.

Let $F(z, \phi) \in M\left(k, \frac{1}{4}k^2 - \frac{1}{2}k\right)$ and put F(z) as follows:

(2.1)
$$F(z, \phi) = \exp(-ik\phi)y^{k/2}F(z) .$$

As $V^-M\left(k, \frac{1}{4}k^2 - \frac{1}{2}k\right) = M\left(k-2, \frac{1}{4}k^2 - \frac{1}{2}k\right) = \{0\}$, we get $V^-F(z, \phi) = 0$, namely, $\frac{\partial}{\partial z}F(z) = 0$. Besides

$$F(\gamma z) = \chi(\gamma)j(\gamma, z)^{-1}F(z)$$
, for $\gamma \in \Gamma$.

Then F(z) belongs to $S(\Gamma, k, \chi)$. Conversely, since F(z) belongs to $S(\Gamma, k, \chi)$ it is clear that $F(z, \phi)$ is contained in $M\left(k, \frac{1}{4}k^2 - \frac{1}{2}k\right)$; hence $M\left(k, \frac{1}{4}k^2 - \frac{1}{2}k\right)$ is isomorphic to $S(\Gamma, k, \chi)$. By the same argument as above, $M\left(-k, \frac{1}{4}k^2 - \frac{1}{2}k\right)$ is isomorphic to $S(\Gamma, k, \chi)$ (anti-linear). Since D and X_3 have the forms $4\tilde{J}_1, -\frac{\partial}{\partial \phi}$ respectively, as the differential operators on $\tilde{H}=\pi(G)$, we now obtain the following proposition.

PROPOSITION 4. If Γ and χ satisfy the conditions given in § 1, the classification of the eigen spaces in $L^2_0(\tilde{H},\Gamma)$ for each eigenvalue-pair $(-ki,\lambda)$ of $\left(\frac{\partial}{\partial \phi},\tilde{\mathcal{A}}_1\right)$ is given by the following table. In this table, λ_l ranges over all eigenvalues of $\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)$ on $L^2(\tilde{H},\Gamma)$ satisfying $M(0,\lambda_l) \neq \{0\}$, except $\lambda_0 = 0$; $M\left(k,\frac{1}{4}k^2 - \frac{1}{2}k\right)$ is isomorphic to $S(\Gamma,k,\chi)$, $M\left(-k,\frac{1}{4}k^2 - \frac{1}{2}k\right)$ is also isomorphic to $S(\Gamma,k,\chi)$ (anti-linear).

Series	Eigenvalues	Eigen spaces
A_{λ_l} $(l \neq 0)$	$(-2ki,\ \lambda_l) \ k\in Z$	$M(2k, \lambda_l) = V^{+k}M(0, \lambda_l), \qquad k \ge 0$ $M(2k, \lambda_l) = V^{-\lfloor k \rfloor}M(0, \lambda_l), \qquad k < 0$
C_k	$\left(-(k+2m)i, \frac{1}{4}k^2 - \frac{1}{2}k\right)$ $m = 0, 1, 2, \cdots$	$M\left(k+2m, \frac{1}{4}k^2 - \frac{1}{2}k\right) = V^{+m}M\left(k, \frac{1}{4}k^2 - \frac{1}{2}k\right)$
Ĉ	$\left((k+2m)i, \frac{1}{4}k^2 - \frac{1}{2}k\right)$ $m=0, 1, 2, \cdots$	$M\Big(-(k+2m), \frac{1}{4}k^2 - \frac{1}{2}k\Big)$ $= V^{-m}M\Big(-k, \frac{1}{4}k^2 - \frac{1}{2}k\Big)$

2.3. In order to calculate the trace of the Hecke operator acting on $S(\Gamma, 2, \chi)$, we shall write down the action of the Hecke operator carried over to the space M(2,0) by the canonical isomorphism $(2,1): M(2,0)\cong S(\Gamma,2,\chi)$, and extend it to the space $L^{\circ}(\tilde{H},I')$. Thus,

(2.2)
$$T(\Gamma \alpha \Gamma) F(z, \phi) := \sum_{\mu=-1}^{d} \chi(\alpha_{\mu}) F(\alpha_{\mu}^{-1}(z, \phi)) ,$$

for $F \in L^{\circ}(\tilde{H}, \Gamma)$. For the calculation of its trace, we consider a \tilde{G} -invariant integral operator k_s in $C^{\circ\circ}(\tilde{H})$ defined by a point pair invariant kernel: for s > 0,

(2.3)
$$k_s(z,\phi,z',\phi') = \exp\left(-2i(\phi-\phi')\right) \left[\frac{(yy')^{1/2}}{(z-\bar{z}')/2i}\right]^2 \frac{(yy')^{s/2}}{|(z-\bar{z}')/2i|^s}.$$

By the general theory, the eigenvalues of k_s only depend on (k, λ) . For k=2, using the special eigenfunction:

$$f(z,\phi) = \exp(-2i\phi)y^{\delta}$$
, $\lambda = \delta(\delta-1)$,

for an eigenvalue-pair $(-2i,\lambda)$ of $\left(\frac{\partial}{\partial \phi},\tilde{J}_1\right)$ in $C^{\infty}(\tilde{H})$ (with $\lambda \neq 0$), we obtain the eigenvalue $h_s(2,\lambda)$ of k_s given by:

(2.4)
$$h_s(2,\lambda) = -8\pi 2^s \frac{c(s)}{\Gamma(1+s)} \Gamma\left(\frac{s}{2} + \delta\right) \Gamma\left(\frac{2+s}{2} - \delta\right),$$
 where
$$c(s) = \frac{s}{2} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{1+s}{2}\right)}{\left(2 + \frac{s}{2}\right)}.$$

Note that the integral operator k_s , considered as an operator in $L^2(\tilde{H}, \Gamma)$, vanishes on $M(k, \lambda)$ for all $k \neq 2$.

We can express the operator $T(\Gamma \alpha \Gamma)$, restricted to $M(2,\lambda)$, by k, in the following way:

$$T(\Gamma lpha \Gamma) F(z,\phi) = h_s(2,\lambda)^{-1} \sum_{\mu=-1}^d \int_{\widetilde{H}} \chi(lpha_\mu) k_s(lpha_\mu^{-1}(z,\phi) \, z',\phi') F(z',\phi') dz' d\phi'$$
.

But for s>0, the kernel $k_s(z, \phi, z', \phi')$ is of (a)-(b) type in the sense of Selberg [8]; therefore

$$\sum_{z \in \Gamma} \chi(\gamma) k_s(z, \phi, \gamma(z', \phi'))$$
,

is absolutely convergent for all (z, ϕ) , $(z', \phi') \in \tilde{H}$ and uniformly, if (z, ϕ) and (z', ϕ') are contained in some compact subregion of \tilde{H} . Now, we have

$$\sum\limits_{\mu=1}^{d}\int_{\widetilde{H}}\chi(lpha_{\mu})k_{s}(lpha_{\mu}^{-1}(oldsymbol{z},\phi),oldsymbol{z}',\phi')doldsymbol{z}'d\phi'=\int_{I\cap\widetilde{H}}\sum\limits_{g\in I\cap II}\chi(g)k_{s}(oldsymbol{z},\phi,g(oldsymbol{z}',\phi'))doldsymbol{z}'d\phi'$$
 .

With this equation, we may define $K_i(z, \phi, z', \phi')$ by:

(2.5)
$$K_s(z,\phi,z',\phi') = \sum_{g \in TaT} \chi(g) k_s(z,\phi,g(z',\phi')).$$

But if the fundamental domain of Γ is non-compact, the operator K_s with the kernel $K_s(z,\phi,z',\phi')$ is not generally completely continuous. So we must modify the operator K_s by a certain integral operator H_s , with which $K_s^*=K_s-H_s$ is completely continuous (§ 4).

§ 3. Eisenstein series.

In this section, to construct an operator H_s which will be given in § 4, we shall give some preparations on the Eisenstein series related to Γ and χ . Since a matter of the Eisenstein series is treated by T. Kubota in detail (for instance; [5], but it is in the case χ =trivial), we only recall fundamental definitions and facts for $\nu \ge 1$.

3.1. Let $\kappa_1, \dots, \kappa_n$ be representatives of all Γ -inequivalent cusps, put $\Gamma_i = \{ \gamma \in \Gamma | \gamma \kappa_i = \kappa_i \}$ and denote by σ_i an element of G such that $\sigma_i \infty = \kappa_i$ and that

$$\sigma_i^{-1} \Gamma_i \sigma_i \!=\! N_{\scriptscriptstyle \rm CC} \!\! \equiv \! \left\{ \pm \! \begin{pmatrix} 1, & n \\ 0, & 1 \end{pmatrix} \middle| n \in Z \! \right\} \; .$$

Put $\Gamma^0 = \ker \chi \cap \Gamma$ and $\Gamma^0_i = \ker \chi \cap \Gamma_i$. By our assumption on χ , Γ^0_i is of finite index in Γ_i , which is denoted by r_i . Put

$$P_i = \frac{1}{r_i} \sum_{g \in \Gamma_i \mid \Gamma_i^0} \chi(g)$$
.

Now define the Eisenstein series attached to the cusp κ_i by:

(3.1)
$$E_i(z,\phi,\delta) = \sum_{\{\sigma\} \in F_i,T} \exp{(-2\sqrt{-1}(\phi+\arg{(cz+d)}))} (\operatorname{Im}{(\sigma_i^{-1}\sigma z)})^{\delta} \chi(\sigma)^{-1} P_i$$
,

where $\hat{\sigma}$ is a complex number with Re $(\hat{\sigma})>1$, $\sigma_c^{-1}\sigma=\begin{pmatrix} *, & * \\ c, & d \end{pmatrix}$, and σ runs over a complete representative of Γ_i Γ . Its definition is independent of the choice of σ , so that this series is well-defined. We shall prove that it is absolutely convergent for Re $(\hat{\sigma})>1$. Further, E_i is automorphic, and is an eigenfunction of \tilde{J}_i and $\frac{\hat{\sigma}}{\partial \hat{\sigma}}$; namely,

- (i) $E_i(\sigma(z,\phi),\delta) = \chi(\sigma)E_i(z,\phi,\delta)$, for $\sigma \in \Gamma$.
- (ii) $\tilde{J}_1E_i(z,\phi,\hat{o}) = \lambda E_i(z,\phi,\hat{o}), \quad \lambda = \tilde{o}(\hat{o}-1).$
- (iii) $\frac{\partial}{\partial \phi} E_i(z, \phi, \delta) = -2\sqrt{-1}E_i(z, \phi, \delta).$
- 3.2. Since the function $E_i(\sigma_j(z,\phi),\delta)$ is invariant under $z\to z+r_j$, we can consider the Fourier expansion:

$$E_i(\sigma_j(z,\phi),\hat{\sigma}) := \exp\left(-2\sqrt{-1}\phi\right) \sum_{m=-\infty}^{\infty} a_{ij}^m(y,\hat{\sigma}) \exp\left(2\pi m\sqrt{-1}x/r_j\right).$$

LEMMA (i) The constant term of this Fourier expansion is given by:

(3.2)
$$a_{ij}^{a}(y,\delta) = \hat{a}_{ij}y^{\delta}P_{i} + y^{1-\delta}\varphi_{ij}(\delta)$$
,

where

$$\varphi_{ij}(\hat{o}) = \frac{(1-\hat{o}) F\left(\frac{1}{2}\right) F\left(\hat{o} - \frac{1}{2}\right)}{\hat{o} F(\hat{o})} \sum_{\{g'\}_{k,i}} \frac{1}{|c|^{2\hat{o}}} P_j \chi_{ij}(c,d)^{-1} P_i ,$$

and $\chi_{ij}(c,d) = \chi(\sigma_i \sigma' \sigma_j^{-1})$ for $\sigma' = \begin{pmatrix} *, & * \\ c, & d \end{pmatrix} \in \sigma_i^{-1} \Gamma \sigma_j$, and $\delta_{ij} = 1$ or 0 according to i = j or not, and σ' runs over a full representative of double cosets $N_{co} \setminus \sigma_i^{-1} \Gamma \sigma_j / N_{co}$, except c = 0.

(ii) For $m \neq 0$,

(3.3)
$$a_{ij}^{m}(y,\hat{o}) = y^{1-\delta} \varphi_{ij}(\hat{o},m) w(my/r_{ij},\hat{o}) ,$$

where

$$arphi_{ij}(\delta,m) = \sum_{\{a':ij\}} \frac{1}{|c|^{2\delta}} \exp{(2m\pi\sqrt{-1}d/cr_j)} P_j \chi_{ij}(c,d)^{-1} P_i$$

and

$$w(u, \delta) = \int_{-\infty}^{\infty} \frac{\exp(-2\pi\sqrt{-1}ut)}{(t^2+1)^{\delta}} \frac{t-\sqrt{-1}}{t+\sqrt{-1}} dt$$
.

This can be proved by the direct calculation.

Remark. Let K_{δ} be a modified Bessel function defined by the equality:

$$\int_{-\infty}^{\infty} \frac{\exp{(2\pi\sqrt{-1}ut)}}{(t^2+1)^{\delta}} dt = 2\pi^{\delta} u^{\delta-(1/2)} \Gamma(\delta)^{-1} K_{\delta-(1/2)}(2\pi u) , \quad (u>0) .$$

By a simple calculation, we get

$$w(u,\delta) \! = \! 2\pi^{\delta} u^{\delta + (1/2)} \varGamma(\delta)^{-1} \Big\{ K_{\delta + (1/2)}(2\pi u) \Big(1 \! - \! \frac{2\pi u}{\delta} \Big) \! - \! k_{\delta + (1/2)}(2\pi u) \, \frac{2\pi u}{\delta} \Big\} \ .$$

With the help of an asymptotic expansion of modified Bessel functions, we can show that $w(u, \delta)$ converges to zero as u tends towards infinity.

It follows from the general theory of Eisenstein series that $E_i(z, \phi, \delta)$ has an analytic continuation to the whole $\hat{\sigma}$ -plane and is a single-valued meromorphic function.

$\S 4$. An operator H_s .

4.1. Now we shall construct an operator H_s to make $K_s^*=K_s-H_s$ completely continuous. Put $h_s(\hat{o})=h_s(2,\lambda)$ for simplicity, where $\lambda=\hat{o}(\hat{o}-1)$ and $\lambda\neq 0$. Define a function $g_s(u)$ on a real line by:

(4.1)
$$g_s(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-iru\right) h_s(\delta) dr , \quad \left(\delta = \frac{1}{2} + ir\right).$$

Now, the kernel of H_s will be defined by:

$$(4.2) \quad H_s(z,\phi,z',\phi') = \frac{1}{8\pi^2} \sum_{i=1}^h \sum_{\mu=1}^d \chi(\alpha_\mu) \int_{\text{Re}(\delta) - \frac{1}{-\epsilon}} h_s(\hat{o}) E_i(\alpha_\mu^{-1}(z,\phi),\hat{o}) \, \overline{E_i(z',\phi',\hat{o})} \, dr .$$

We shall study the behaviour of the kernel $H_s(z, \phi, z', \phi')$ as z and z' tend simultaneously towards the parabolic point of Γ^0 . In doing so, we can assume that $\kappa_1 = \infty$ and $\Gamma_1 = N_{\infty}$, so that $E_1(z, \phi, \delta)$ is the Eisenstein series attached to the cusp ∞ . Then we estimate the following integral;

$$(4.3) \quad \int_{\operatorname{Re}(\delta)^{-1}\frac{1}{\sigma}} h_s(\delta)(E_1(z,\phi,\delta) - \exp{(-2i\phi)(y^\delta P_1 + \varphi_{11}(\delta)y^{-\delta})}) \exp{(2i\phi')y'^\delta P_1 dr}.$$

The Fourier expansion gives:

$$(4.3) = \int_{\text{Re}(\delta) = \frac{1}{2}} h_s(\delta) (\sum_{m \neq 0} a_{11}^m(y, \delta) \exp(2\pi m \sqrt{-1}x/r_1) y'^{\delta} dr) P_1.$$

If $y\gg 0$, $a_{11}^m(y,\delta)$ $(m\neq 0)$ is bounded by $(\text{constant})\cdot |I'(\delta)^{-1}|\exp{(-\pi y|m|/r_1)}$, (§ 3). It follows that $\sum_{m\neq 0}a_{11}^m(y,\delta)$ is bounded by $(\text{constant})\cdot |I'(\delta)^{-1}|\cdot \exp{(-\pi y/r_1)}$. On the other hand, $h_s(\delta)$ converges to zero by the order of $\exp{(-\pi|r|)}$ if r tends towards infinity. Then, if $y\gg 0$, we have

$$\left| \int_{-\infty}^{\infty} h_{\epsilon}(\hat{o}) \left(\sum_{m \neq 0} a_{11}^{m}(y, \hat{o}) y'^{\frac{1}{2} - \sqrt{-1}r} \right) dr \right|,$$

(4.4)
$$\sim \exp\left(-\pi y/r_1\right)y'^{1/2}\int_{-\infty}^{\infty}\exp\left(-\frac{\pi}{2}|r|\right)\exp\left(-ir\log\left(y'\right)\right)dr,$$

$$\sim \exp\left(-\pi y/r_1\right)y'^{1/2}\exp\left(-\left(-\frac{\pi}{2}+\varepsilon\right)\log\left(y'\right)\right), \quad ^{3}(\varepsilon>0).$$

It follows that the integral (4.3) converges to zero if z tends towards ∞ . By the same way,

$$\int_{\operatorname{Re}(\widehat{a}) \in \frac{1}{-1}} h_s(\widehat{a}) (E_1(z,\phi,\widehat{a}) - \exp{(-2i\phi)}(y^{\delta}P_1 + \varphi_{11}(\widehat{a})y^{1-\widehat{b}})) \exp{(2i\phi')}y'^{1-\widehat{b}} \cdot \overline{\varphi_{11}(\widehat{a})} \, dr \; ,$$

also converges to zero if z tends towards ∞ . Now we estimate the kernel $H_s(z, \phi, z', \phi')$, both z and z' tending towards κ_i . Put

$$E_{j}^{*}(z,\phi,\delta) = E_{j}(z,\phi,\delta) - \exp\left(-2\sqrt{-1}(\phi + \arg(-c_{i}z + a_{i}))\right) \times \{\delta_{ij}(\operatorname{Im}\sigma_{i}^{-1}z)^{\delta}P_{i} + (\operatorname{Im}\sigma_{i}^{-1}z)^{1-\delta}\varphi_{ji}(\delta)\},$$

where $\sigma_i = \begin{pmatrix} a_i, & b_i \\ c_i, & d_i \end{pmatrix}$ and $\alpha_{\mu}\sigma_i = \begin{pmatrix} a_{i,\mu}, & b_{i,\mu} \\ c_{i,\mu}, & d_{i,\mu} \end{pmatrix}$. Then, the part of $H_i(z,\phi,z',\phi')$ which may be tending towards infini

$$(1) \quad \frac{1}{8\pi^2} \sum_{\alpha_{\mu} \neq_i} \chi(\alpha_{\mu}) \int_{\text{Re}(\mathfrak{d}_i) = \frac{1}{n}} h_s(\hat{o}) \, \left\{ E_i^*(\alpha_{\mu}^{-1}(z, \phi), \hat{o})^i E_i^{*}(z', \phi', \hat{o}) \right\}$$

$$(2) +E_i^*(\alpha_\mu^{-1}(z,\phi),\hat{o}) \exp(2\sqrt{-1}(\phi'+\arg(-c_iz'+a_i))) \\ \times ((\operatorname{Im}\sigma_i^{-1}z')^{\hat{\delta}}P_i+(\operatorname{Im}\sigma_i^{-1}z')^{1-\hat{\delta}} (\widehat{\varphi_{ii}}(\widehat{\delta}))$$

$$\begin{array}{ll} (\,3\,) & +\exp{(-2\sqrt{-1}(\phi+\arg{(-c_{i,\mu}z+a_{i,\mu})}))} \\ & \times ((\operatorname{Im}\sigma_i^{-1}\alpha_\mu^{-1}z)^{\delta}P_i+(\operatorname{Im}\sigma_i^{-1}\alpha_\mu^{-1}z)^{1-\delta}\varphi_{ii}(\delta))^{\epsilon}\overline{E_i^*(z',\phi',\delta)} \end{array}$$

$$(4) + \exp(-2\sqrt{-1}Q(i,\mu))((\operatorname{Im}\sigma_{i}^{-1}\alpha_{\mu}^{-1}z)^{\delta}P_{i} + (\operatorname{Im}\sigma_{i}^{-1}\alpha_{\mu}^{-1}z)^{1-\delta}\varphi_{ii}(\delta)) \\ \times ((\operatorname{Im}\sigma_{i}^{-1}z')^{\overline{\delta}} + (\operatorname{Im}\sigma_{i}^{-1}z')^{1-\overline{\delta}} {}^{i}\varphi_{ii}(\overline{\delta}))$$

(5)
$$+\sum E_j^*(\alpha_\mu^{-1}(z,\phi),\delta) E_j^*(z',\phi',\delta)$$

(5)
$$+\sum_{\substack{j\neq i}} E_{j}^{*}(\alpha_{\mu}^{-1}(z,\phi),\hat{\sigma}) \overline{E_{i}^{*}(z',\phi',\hat{\sigma})}$$

(6) $+\sum_{\substack{j\neq i}} E_{j}^{*}(\alpha_{\mu}^{-1}(z,\phi),\hat{\sigma}) \exp(2\sqrt{-1}(\phi'+\arg(-c_{i}z'+a_{i})))$
 $\times (\operatorname{Im} \sigma_{i}^{-1}z')^{1-\tilde{\sigma}} \overline{\varphi_{ji}(\hat{\sigma})}$

(7)
$$+\sum_{j\neq i} \exp\left(-2\sqrt{-1}(\phi + \arg\left(-c_{i,\mu}z + a_{i,\mu}\right))\right) \times (\operatorname{Im} \sigma_i^{-1}a_{\mu}z)^{1-\delta}\varphi_{ji}(\delta) \, {}^{\iota}E_{j}^{*}(z',\phi',\delta)$$

$$\begin{array}{ll} (\,8\,) & +\sum\limits_{j\neq i}\exp{(-2\sqrt{-1}Q(i,\,\mu))}(\operatorname{Im}\,\sigma_{i}^{-1}\alpha_{F}^{-1}z)^{1-\delta} \\ & \times (\operatorname{Im}\,\sigma_{i}^{-1}z')^{1-\delta}\varphi_{ji}(\delta)\,{}^{\prime}\overline{\varphi_{ji}(\delta)}\Big\}d\boldsymbol{r} \,\,. \end{array}$$

By the argument of $\S 3$, (1) and (5) are bounded; (2), (3), (6) and (7) are also

bounded by (4.4). A part which is not actually bounded comes from (4) and (8), and is given by

(4.6)
$$\frac{1}{2\pi} \sum_{\alpha_{\mu} \leq_{i} \leq \kappa_{i}} \chi(\alpha_{\mu}) P_{i} \exp\left(-2\sqrt{-1}Q(i, \mu)\right) \{(\operatorname{Im} \sigma_{i}^{-1}\alpha_{\mu}^{-1}z)(\operatorname{Im} \sigma_{i}^{-1}z')\}^{1/2}$$

$$\times g_{s}(\log\left(\operatorname{Im} \sigma_{i}^{-1}\alpha_{\mu}^{-1}z\right) - \log\left(\operatorname{Im} \sigma_{i}^{-1}z'\right)).$$

Here, $Q(i, \mu) = \phi - \phi' + \arg(-c_{i,\mu}z + a_{i,\mu}) - \arg(-c_iz' + a_i)$.

4.2. Let us seek for a part which is not bounded in the kernel $K_s(z, \phi, z', \phi')$ when z and z' tend towards the fixed cusp κ . Since the argument of this section is treated by Kubota in [5] (Chapter V), we apply this to our case.

$$K_s(z,\phi,z',\phi') = \sum\limits_{g \in TaT} k_s(z,\phi,g(z',\phi')) \chi(g)$$

in §2. Most parts of K_s are bounded for all (z, ϕ) , $(z', \phi') \in \tilde{H}$, and a partial sum which is unbounded is given by:

$$\sum_{\epsilon,\mu\kappa_i = \kappa_i} \sum_{g \in \Gamma_i} k_s(z,\phi,\alpha_\mu g(z',\phi')) \chi(\alpha_\mu g) \ .$$

The above kernel is approximately equal to:

(4.7)
$$\frac{1}{2\pi} \sum_{\alpha_{\mu} \leq_{i} = \kappa_{i}} \chi(\alpha_{\mu}) P_{i} \exp\left(-2\sqrt{-1}Q(i, \mu)\right) \{ (\operatorname{Im} \sigma_{i}^{-1}\alpha_{\mu}^{-1}z) (\operatorname{Im} \sigma_{i}^{-1}z') \}^{1/2}$$

$$\times g_{i}(\log\left(\operatorname{Im} \sigma_{i}^{-1}\alpha_{\mu}^{-1}z\right) - \log\left(\operatorname{Im} \sigma_{i}^{-1}z'\right)) .$$

It follows that

$$K_s^*(z, \phi, z', \phi') = K_s(z, \phi, z', \phi') - H_s(z, \phi, z', \phi')$$
,

is bounded for all (z, ϕ) , $(z', \phi') \in \tilde{H}$; therefore, an integral operator K^* with the kernel $K^*(z, \phi, z', \phi')$ turns to be completely continuous.

4.3. Let $F(z,\phi) \in L^2(\tilde{H},\Gamma)$ be an eigenfunction of $\frac{\partial}{\partial \phi}$ and \tilde{A} with an eigenvalue-pair $(-2i,\lambda)$, where

$$\widetilde{\Delta} = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + y \frac{\partial}{\partial x} \frac{\partial}{\partial \phi} + \frac{5}{4} \frac{\partial^2}{\partial \phi^2}.$$

We shall check that an eigenvalue of F for the intergral operator K_s^* becomes equal to that for K_s .

When once (z, ϕ) is fixed, $H_s(z, \phi, z', \phi')$ is bounded if z' tends towards the cusp κ_i ; so we can make H_s operate F. Moreover, the inner product

$$\int_{F \cap \widetilde{\mathcal{U}}} {}^{i} E_{i}(\overline{z, \phi, \delta}) F(z, \phi) dz d\phi ,$$

is finite, since $E_i(z, \phi, \delta)$ increases at the order of $(\operatorname{Im} \sigma_i^{-1}z)^{1/2}$, and $F(z, \phi)$ increases at the order which is lower than $(\operatorname{constant}) \times (\operatorname{Im} \sigma_i^{-1}z)^{1/2}$ by (i) when z tends towards κ_i . As \tilde{J} is self-adjoint, it follows that:

$$(\tilde{\partial}(\tilde{\partial}-1)-5)\int_{F\setminus \widetilde{\mathcal{H}}}{}^{\prime}\overline{E_{i}(z,\phi,\tilde{\partial})}F(z,\phi)dzd\phi$$

$$=\lambda\int_{F\setminus \widetilde{\mathcal{H}}}{}^{\prime}\overline{E_{i}(z,\phi,\tilde{\partial})}F(z,\phi)dzd\phi.$$

Therefore, for almost all \tilde{o} ,

$$\int_{I \cap \widetilde{\mathcal{U}}} {}^{i} E_{i}(\overline{z}, \overline{\phi}, \widetilde{\delta}) F(z, \phi) dz d\phi = 0, \text{ if } \left\{ \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \right\} \nu \right).$$

It follows that:

$$\int_{I \setminus \widehat{\mathcal{M}}} H_s(z,\phi,z',\phi') F(z',\phi') dz' d\phi' = 0_{\nu,1}.$$

In the result, an eigenvalue of F for K_s^* is equal to that for K_s .

4.4. We shall see that the image of K_i^* is contained in $L_0^*(\tilde{H}, \Gamma)$. It is as follows.

As K_s^* is completely continuous, the image of K_s^* consists of all eigenfunctions of K_s^* ; moreover an eigenfunction, which has not the eigenvalue 0, belongs to a subspace that consists of all eigenfunctions of both $\frac{\partial}{\partial \phi}$ and \tilde{J}_1 in $L^2(\tilde{H}, \Gamma)$. Let F be in the image of K_s^* and $F_0(y, \phi)$ the constant term of the Fourier expansion of F at the cusp κ_i , so that

$$egin{align} F_0(y,\phi) &= rac{1}{r_i} \int_0^{r_i} F(\sigma_i^{-1}(z\!+\!x,\phi)) dx \ &= rac{1}{r_i} \int_0^{r_i} F\left(\sigma_i^{-1}inom{1}{0}, rac{x}{0}, 1
ight) (z,\phi)
ight) dx \ . \end{split}$$

Since differential operators $\frac{\partial}{\partial \phi}$ and \tilde{J}_1 commute with an action of G, $F_0(y,\phi)$ is also an eigenfunction of $\frac{\partial}{\partial \phi}$ and \tilde{J}_1 with an eigenvalue -2i and λ , respectively. Therefore, we have

$$F_0(y,\phi) = c_1 \exp(-2i\phi)y^{\delta} + c_2 \exp(-2i\phi)y^{1-\delta}$$
.

where c_1 and c_2 are in C. Suppose that $F(z,\phi) \in L^2_0(\tilde{H},\Gamma)$. As we have $\operatorname{Re}(\hat{o}) = \operatorname{Re}(1-\delta) = \frac{1}{2}$, $F(z,\phi)$ does not belong to $L^2(\tilde{H},\Gamma)$. This is a contradiction.

Consequently, F belongs to $L_5^2(\tilde{H}, \Gamma)$.

Let t_i be the trace of $T(\Gamma \alpha \Gamma)$ on $M(2, \lambda_i)$ for $i \ge 0$. In the case i = 0, we regard $\lambda_0 = 0$ and $h_s(2, 0)$ as the eigenvalue of k_s for the eigenfunctions belonging to M(2, 0). Considering the trace of K_s^* in $L_0^*(\tilde{H}, \Gamma)$, we obtain:

(4.8)
$$\sum_{l=0}^{\infty} h_s(2,\lambda_l) t_l = \operatorname{tr} \int_{I \setminus \widetilde{I}} K_s^*(z,\phi,z,\phi) dz d\phi.$$

By the definition of K_s^* , the right hand side of (4.8) is equal to

$$\operatorname{tr} \int_{T \setminus \widetilde{H}} (\sum_{g \in FoF} \chi(g) k_s(z, \phi, g(z, \phi)) - H_s(z, \phi, z, \phi)) dz d\phi$$
.

Let [g] denote an equivalence class in $\Gamma \alpha \Gamma$ by the equivalence relation defined in § 1.2., and put

$$\Gamma(g) = \{ \gamma \in \Gamma | g = \pm \gamma g \gamma^{-1} \}$$
.

 H^* being a subregion of H obtained by subtracting the neighbourhood of each parabolic point of Γ from H, we can rewrite:

$$\begin{split} &\sum_{g \in FaF} 2\pi \operatorname{tr} \chi(g) \! \int_{I \setminus H^*} \! k_s(z, 0, g(z, 0)) dz \\ &= \! \sum_{\{g\}, g \in FaF} \! 2\pi \operatorname{tr} \chi(g) \! \int_{F(g) \setminus H^*} \! k_s(z, 0, g(z, 0)) dz \; . \end{split}$$

For simplicity, we put

$$A^*(g,s) = 2\pi \operatorname{tr} \chi(g) \int_{\Gamma(g) \setminus H^*} k_s(z,0,g(z,0)) dz$$
,

Particularly, if there exists

$$\int_{\Gamma(g)\setminus H} k_s(z,0,g(z,0))dz$$
 ,

we put

$$A(g,s) = 2\pi \operatorname{tr} \chi(g) \int_{\Gamma(g) \setminus H} k_s(z,0,g(z,0)) dz$$
.

§5. An explicit formula for tr $T(\Gamma \alpha \Gamma)$.

5.1. In this section, we shall calculate the trace of $T(\Gamma \alpha \Gamma)$ in $L^{\circ}_{\circ}(\tilde{H}, \Gamma)$. Firstly, we classify an element in $\Gamma \alpha \Gamma$ and afterwards we calculate " $A^{*}(g, s)$ ", for each class.

 $g_0 \in \Gamma \alpha \Gamma$ is of one of the following types;

(i) $g_0 \in Z(\Gamma)$.

- (ii) g_0 is elliptic.
- (iii) g_0 is hyperbolic and no fixed point of g_0 is a parabolic point of Γ .
- (iv) g_0 is hyperbolic and one of the fixed point of g_0 is a parabolic point of Γ .
- (v) g_0 is parabolic.

Let \mathfrak{S}_1 (resp.: \mathfrak{S}_2 ; \mathfrak{S}_3) denote a complete system of inequivalent elliptic elements (resp.: hyperbolic elements leaving no parabolic point of Γ fixed; hyperbolic elements leaving a parabolic point of Γ fixed) in $\Gamma \alpha \Gamma$ with respect to the equivalence relation defined in §1.2.

5.2. Case i) Suppose that $\Gamma \alpha \Gamma \cap Z(\Gamma) \neq \phi$ and let g_0 be an element of $Z(\Gamma)$. We have

(5.1)
$$A(g_0,s)=2\pi\int_{\Gamma(g_0)\backslash H}dz\operatorname{tr}\chi(g_0)=2\pi v(\Gamma\backslash H)\operatorname{tr}\chi(g_0),$$

where $v(I \setminus H)$ denotes the volume of a fundamental domain of Γ in H relative to dz.

Case ii) g_0 is elliptic. Let φ be a linear transformation that maps H into a unit circle, and a fixed point of g_0 to the origin of the circle. Let ζ , ζ^{-1} be the eigenvalues of g_0 and suppose that $\frac{g_0z-z_0}{g_0z-\overline{z}_0}=\zeta^2\frac{z-z_0}{z-\overline{z}_0}$ ($z_0\in H$ is the fixed point of g_0). By a simple calculation, we obtain:

$$A(g_{\scriptscriptstyle 0},\, {\rm s}) {=} \, \frac{16 \pi^2 \bar{\zeta}^2}{[\varGamma(g_{\scriptscriptstyle 0}): Z(\varGamma)]} \int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} \frac{(1 {-} \rho^2)^s \rho d \rho \, \operatorname{tr} \chi(g_{\scriptscriptstyle 0})}{(1 {-} \bar{\zeta}^2 \rho^2)^2 |1 {-} \bar{\zeta}^2 \rho^2|^s} \; .$$

It follows

(5.2)
$$\lim_{s\to 0} A(g_0, s) = \frac{8\pi^2}{[\Gamma(g_0): Z(\Gamma)]} \frac{\bar{\zeta}^2}{1-\bar{\zeta}^2} \operatorname{tr} \chi(g_0) .$$

Case iii) g_0 is hyperbolic and no fixed point of g_0 is a parabolic point of Γ . Let λ be an eigenvalue of g_0 and $\lambda_0 > 1$ be that of a generator of $\Gamma(g_0)$. We have

(5.3)
$$A(g_0, s) = 8\pi^2 2^s c(s) \frac{\log |\lambda_0^2| |\lambda|^{2+s}}{(1+\lambda^2)^{1+s} |1-\lambda^2|} \operatorname{tr} \chi(g_0),$$

because

$$\int_{0}^{\pi} \frac{\{(1+\lambda^{2})^{2} \sin^{2}\theta - (1-\lambda^{2})^{2} \cos^{2}\theta\} \sin^{s}\theta}{\{(1-\lambda^{2})^{2} \cos^{2}\theta + (1+\lambda^{2})^{2} \sin^{2}\theta\}^{2+s/2}} d\theta = \frac{c(s)}{(1+\lambda^{2})^{1+s}|1-\lambda^{2}|}.$$

Here,
$$c(s) = \frac{s}{2} \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1}{2} + \frac{s}{2}\right)}{\Gamma\left(2 + \frac{s}{2}\right)}$$
 (§ 2.3).

Case iv) g_0 is hyperbolic and leaving a parabolic point of Γ fixed. Let λ , λ^{-1} be the eigenvalues of g_0 ($\lambda > 0$). In this case, $\Gamma(g_0) \setminus H = H$ since $\Gamma(g_0) = Z(\Gamma)$. Let g_0 leave κ_i fixed. Take $Y \gg 0$, and let V be a neighbourhood of κ_i obtained as follows:

$$\sigma^{-1}V = \{z \in H | \text{Im } z > Y\}$$
.

Put $H^*=H-\bigcup_{c\in C}\sigma V$. Considering the integral on H^* , we get

$$\begin{split} A^*(g_0,s) &= g_s(-2\log\lambda) \, \frac{\lambda}{|\lambda^2-1|} \, \operatorname{tr} \, \chi(g_0) \log \, Y \\ &- 8\pi 2^s \lambda^{2+s} \int_0^\pi \log \left((\sin\theta)^{-1} \right) \frac{(\sin\theta)^s d\theta \, \operatorname{tr} \, \chi(g_0)}{(1-\lambda^2)^2 \, \cos^2\theta + (1+\lambda^2)^2 \, \sin^2\theta} \; . \end{split}$$

As the second term of the above equation is independent of Y, the limite of that, where s tends to zero, is given by:

(5.4)
$$-8\pi^2 \frac{\min(\lambda, \lambda^{-1})}{|\lambda - \lambda^{-1}|} \operatorname{tr} \chi(g_0) .$$

Case v) B_i , Γ_i , Γ_i^0 , r_i and $\mu(g)$ are in accordance with the definitions in §1.2. We can choose a set of a finite number of $\alpha_{\mu} \in B_i$ such that $\mu(\alpha_{\mu}) = a_{\mu}$ belongs to an interval [0,1) and that B_i is the disjoint union of cosets $\alpha_{\mu}\Gamma_i$. Take $Y \gg 0$ and let V be a neighbourhood of the cusp κ_i defined as in case iv). Put $H^* = H - \bigcup_{\alpha \in \Gamma} \sigma V$ and consider the integral on H^* . Choosing $\gamma_i \in \Gamma_i$ such that $\Gamma_i = \langle \gamma_i \rangle$, we define $\chi_i(j)$ by $\chi(\gamma_i)^j$. With these notations, we get:

$$\begin{split} &\lim_{s\to 0}\lim_{Y\to \infty}\left\{\sum_{g\in B_i}A^*(g,s) - \sum_{\alpha_{\mu}\kappa_i=\kappa_i}g_s(0)\log Y\operatorname{tr}\left(\chi(\alpha_{\mu})P_i\right)\right\} \\ &= -4\pi^2\sum_{\alpha_{\mu}\kappa_i=\kappa_i}\operatorname{tr}\left(\chi(\alpha_{\mu})P_i\right) \\ &- 4\pi\sqrt{-1}\sum_{\alpha\kappa_i=\kappa_i}\sum_{j=1}^{\tau_j-1}\left\{\left(\gamma\left(\frac{j-a_{\mu}}{r_i}\right) + \frac{r_i}{j-a_{\mu}}\right)\frac{1}{r_i}\operatorname{tr}\left(\chi(\alpha_{\mu})\chi_i(-j)\right) \right. \\ &- \left(\gamma\left(\frac{j+a_{\mu}}{r_i}\right) + \frac{r_i}{j+a_{\mu}}\right)\frac{1}{r_i}\operatorname{tr}\left(\chi(\alpha_{\mu})\chi_i(j)\right) \\ &- 4\pi\sqrt{-1}\sum_{\alpha_{\mu}\kappa_i=\kappa_i}\left\{\gamma\left(\frac{-a_{\mu}}{r_i}\right) - \gamma\left(\frac{a_{\mu}}{r_i}\right) - \delta_{\mu}\frac{1}{a_{\mu}}\right\}\operatorname{tr}\chi(\alpha_{\mu})\;, \end{split}$$

where r(t) denotes $\lim_{n\to\infty} \left\{ \sum_{m=1}^{n} \frac{1}{m+t} - \log(n+t) \right\}$, and $\hat{\sigma}_{\mu}$ is 0 or 1 according to $a_{\mu}=0$, $a_{\mu}\neq 0$ respectively. In the above calculation, we have used the following equalities:

$$\int_{0}^{\infty} \log t \exp(-t) dt = -\gamma \text{ (Euler's constant)},$$

$$egin{aligned} &\int_{0}^{\infty} \Bigl(rac{\exp{(-t)}}{t} - rac{\exp{(-t(1+ir))}}{1-\exp{(-t)}}\Bigr) dt = & \psi(1+ir) \;, \ &\int_{-\infty}^{\infty} \Bigl(B\Bigl(rac{1}{2} + ir, rac{1}{2} - ir\Bigr) - B\Bigl(rac{3}{2} + ir, rac{3}{2} - ir\Bigr)\Bigr) & \psi(1+ir) dr \ &= -rac{\pi}{2} \int_{0}^{\infty} rac{\operatorname{sech}(\pi r)}{1+r^2} dr = -\pi + rac{\pi^2}{4} \;, \end{aligned}$$

where we denote by $\phi(z)$ the digamma function and by B(z,z') the beta function. Now by a direct calculation of the right hand side, we obtain:

(5.5)
$$\frac{-4\pi^{2}}{r_{i}} \sum_{\{g\} \in B_{i}/I_{i}^{0}} \operatorname{tr} \chi(g) - \frac{4\pi^{2}}{\sqrt{-1}} \frac{1}{r_{i}} \sum_{\{g\} \in B_{i}/I_{i}^{0}} \cot \left(\frac{\mu(g)}{r_{i}}\pi\right) \operatorname{tr} \chi(g) ,$$

where $\{g\}$ denotes the I°_{i} -coset of g.

5.3. Secondly, we shall calculate the trace of H_s . To do this, put

$$F_i(z,\phi,\delta) = \sum_{\mu=1}^d \chi(\alpha_\mu) E_i(\alpha_\mu(z,\phi),\delta)$$
 .

By §3, F_i is defined and is meromorphic in the whole \hat{o} -plane. As $F_i(\sigma_i(z,\phi),\hat{o})$ is invariant under an action of N_{∞} , we have the Fourier expansion at κ_i ; its constant term $\exp(-2\sqrt{-1}\phi)$ $a_i^*(y,\hat{o})$ is given by:

$$m{a}_{\iota}^{*}(y,\delta) = \sum\limits_{lpha_{\mu} \star_{i} - m{\kappa}_{i}} rac{y^{\delta}}{|d_{\mu}|^{\delta}} \chi(lpha_{\mu}) P_{i} + y^{1-\delta} arphi_{i}^{*}(\hat{o})$$
 ,

$$\text{where} \quad \varphi_i^*(\hat{o}) = \sum_{\substack{\{a\} \in X_{\infty} \backslash \sigma_i^{-1} \Gamma_{a} \Gamma_{\sigma_i^i \mid X_{\infty}} \\ c \neq 0}} \frac{1}{|c|^{2\delta}} \frac{1 - \hat{o}}{\hat{o}} \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\hat{o} - \frac{1}{2}\right)}{\Gamma(\hat{o})} \chi(\sigma_i \sigma \sigma_i^{-1}) P_i \;,$$

and $\alpha_{\mu} = \begin{pmatrix} *, & * \\ *, & d_{\mu} \end{pmatrix}$. Taking $Y \gg 0$, define H^* as in §5.2. case v) and put $\tilde{H}^* = H^* \times (R/2\pi Z)$. The Fourier expansion of E_i and F_i gives:

$$\begin{split} &\frac{1}{8\pi^2} \int_{I \setminus \widetilde{H}^*} \int_{-\infty}^{\infty} h_s(\delta) \operatorname{tr} \left(F_i(z,\phi,\delta)' \overline{E_i(z,\phi,\delta)} \right) dr dz d\phi \\ &= \frac{1}{4\pi} \int_0^{\Gamma} \int_{-\infty}^{\infty} h_s(\delta) \left(\sum_{\alpha_{\mu} \kappa_i - \kappa_i} \frac{y^{\delta}}{|d_{\mu}|^{\delta}} \operatorname{tr} \left(\chi(\alpha_{\mu}) P_i \right) + y^{1-\delta} \varphi^*(\delta) \right) dr dy \\ &- \frac{1}{8\pi^2} \int_{Y}^{\infty} \int_0^1 \int_0^{2\pi} \int_{-\infty}^{\infty} h_s(\delta) \operatorname{tr} \left(F_i(\sigma_i(z,\phi),\delta) (' \overline{E_i(\sigma_i(z,\phi),\delta)} \right) \\ &- \exp \left(2\sqrt{-1}\phi \right) y^{\overline{\delta}} P_i \right) dr dz d\phi \\ &= \sum_{\alpha_{\mu} \kappa_i - \kappa_i} \frac{1}{|d_{\mu}|} g_i(2 \log |d_{\mu}|) \operatorname{tr} \left(\chi(\alpha_{\mu}) P_i \right) \log Y + \frac{1}{4} h_s \left(\frac{1}{2} \right) \operatorname{tr} \left(\varphi_i^* \left(\frac{1}{2} \right) \right) \end{split}$$

$$\begin{split} &-\frac{1}{8\pi}\int_{-\infty}^{\infty}h_{i}(\hat{o})\left\{\operatorname{tr}\left(\varphi_{i}^{*\prime}(\hat{o})^{\prime}\overline{\varphi_{i}(\hat{o})}+\varphi_{i}^{*}(\hat{o})^{\prime}\overline{\varphi_{i}(\hat{o})}\right)\right.\\ &+\sum_{\alpha_{\mu}x_{i}=x_{i}}\frac{\log|d_{\mu}|}{|d_{\mu}|^{1+2}\sqrt{-1}r}\operatorname{tr}\left(\varkappa(\alpha_{\mu})P_{i}\right)\left.\right\}dr+0(1)\;, \end{split}$$

where $\varphi_i^{*\prime}(\hat{o})$, $\varphi_i^{\prime}(\hat{o})$ denote $\frac{\hat{o}}{\hat{o}\sigma}(\varphi_i^{*}(\hat{o}))$, $\frac{\hat{o}}{\hat{o}\sigma}(\varphi_i(\hat{o}))$ respectively $(\hat{o}=\sigma+\sqrt{-1}r)$. Therefore,

$$\lim_{s\to 0}\lim_{Y\to \infty}\left\{\mathrm{tr}\, H_s-\textstyle\sum_{i=1}^h\sum_{n\geq i+|A_n|}\frac{1}{|d_n|}g_s(2\log|d_n|)\,\mathrm{tr}\,(\chi(\alpha_n)P_i)\log\,Y\right\}=0\ .$$

In general, it is known that $\sum_{t=0}^{\infty} h_s(2,\lambda_t) t_t$ is absolutely convergent for s>0, hence $\sum_{t=1}^{\infty} \Gamma\left(\frac{s}{2} + \hat{\sigma}_t\right) \Gamma\left(\frac{2+s}{2} - \hat{\sigma}_t\right) t_t$ is absolutely convergent for s>0. By an estimation of Γ -function in a belt parallel to the imaginary line by Stirling's formula, we see that the above series is also absolutely and uniformly convergent for all $s\geq 0$. Since $\lim_{t\to\infty} c(s)=0$, we get

$$\lim_{s\to 0}\sum_{t=1}^{\infty}h_s(\hat{o}_t)t_t=0.$$

On the other hand, noting that $\lim_{s\to 0} h_s(2,0)t_0 = 8\pi^{\circ}t_0$, we obtain:

(5.6)
$$t_{0} = \hat{\sigma} \frac{1}{4\pi} v(\Gamma \backslash H) \operatorname{tr} \chi(g_{0}) + \sum_{[g] \in \mathcal{E}_{1}} \frac{1}{[\Gamma(g) : Z(\Gamma)]} \frac{\tilde{\zeta}^{2}}{1 - \tilde{\zeta}^{2}} \operatorname{tr} \chi(g)$$

$$+ \lim_{s \to 0} \sum_{[g] \in \mathcal{E}_{2}} A(g, s) - \sum_{[g] \in \mathcal{E}_{3}} \frac{\min(|\lambda|, |\lambda^{-1}|)}{|\lambda - \lambda^{-1}|} \operatorname{tr} \chi(g)$$

$$- \sum_{i=1}^{h} \left\{ \frac{1}{2r_{i}} \sum_{\{g\} \in B_{i}/\Gamma_{i}^{0}} \operatorname{tr} \chi(g) - \frac{1}{2\sqrt{-1}r_{i}} \sum_{\{g\} \in B_{i}/\Gamma_{i}^{0}} \cot\left(\frac{t^{i}(g)}{r_{i}} \pi\right) \operatorname{tr} \chi(g) \right\},$$

$$= \frac{1}{2r_{i}} \left\{ \frac{1}{2r_{i}} \sum_{\{g\} \in B_{i}/\Gamma_{i}^{0}} \operatorname{tr} \chi(g) - \frac{1}{2\sqrt{-1}r_{i}} \sum_{\{g\} \in B_{i}/\Gamma_{i}^{0}} \cot\left(\frac{t^{i}(g)}{r_{i}} \pi\right) \operatorname{tr} \chi(g) \right\},$$

where $\delta = \begin{cases} 1 \cdots \alpha \in \Gamma \\ 0 \cdots \alpha \notin \Gamma \end{cases}$, $g_0 \in Z(\Gamma)$.

5.4. Finally, in order to calculate $\sum_{\{g\}\in\mathbb{F}_2} A(g,s)$ definitely, we consider an integral operator \hat{k}_s in $C^{\infty}(\tilde{H})$ which has an integral kernel defined by:

(5.7)
$$\hat{k}_s(z,\phi,z',\varphi') = \frac{(yy')^{\frac{2+\kappa}{2}}}{|(z-\bar{z}')/2i|^{2+s}}.$$

Then an eigenvalue $\hat{h}_s(0,\lambda)$ for \hat{k}_s of $f \in C^{\circ}(\tilde{H})$, that is an eigenfunction of $\frac{\partial}{\partial \phi}$ and $\tilde{\mathcal{A}}_1$ with an eigenvalue 0 and λ respectively, is given by:

(5.8)
$$\hat{h}_{s}(0,\lambda) = 8\pi 2^{s} c'(s) \frac{\Gamma\left(\frac{s}{2} + \hat{\sigma}\right) \Gamma\left(\frac{2}{s+2} - \hat{\sigma}\right)}{\Gamma(1+s)},$$

where $\hat{\sigma}$ satisfies $\lambda = \hat{\sigma}(\hat{\sigma} - 1)$, $\lambda \neq 0$ and $c'(s) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{1+s}{2}\right)}{\Gamma\left(1+\frac{s}{2}\right)}$. For simplicity, we

write $\hat{h}_s(\tilde{o})$ instead of $\hat{h}_s(0,\lambda)$ after the manner of the above case. Now, by the remark in §2, we regard \hat{k}_s as the operator in $L^2(\tilde{H},\Gamma)$, and we can express the Hecke operator restricted to $M(0,\lambda_l)$ by \hat{k}_s in the following way:

$$egin{aligned} T(arGamma lpha arGamma) F(z,\phi) \ &= h_s(\hat{o}_t)^{-1} \sum_{\mu = 1}^d \int_{\widetilde{H}} \chi(lpha_\mu) \hat{k}_s(lpha_\mu^{-1}(z,\phi),z',\phi') F(z',\phi') dz' d\phi' \ &= h_s(\hat{o}_t)^{-1} \sum_{g \in arGamma a} \int_{arGamma} \chi(g) \hat{k}_s(z,\phi,g(z',\phi')) F(z',\phi') dz' d\phi' \;, \end{aligned}$$

for $F(z, \phi) \in M(0, \lambda_i)$. On the analogy in §2, we put

$$\hat{K}_s(z,\phi,z',\phi') = \sum\limits_{g \in FaF} \hat{k}_s(z,\phi,g(z',\phi')) \chi(g)$$
 .

We define an Eisenstein series $E_i(z, \hat{o})$ as follows:

$$E_i(\mathbf{z}, \delta) = \sum_{\mathbf{\sigma} \in F_i \setminus F} (\operatorname{Im} \sigma_i^{-1} \sigma \mathbf{z})^{\delta} \chi(\sigma)^{-1} P_i$$
.

It is also prolonged analytically in the whole δ -plane and becomes to a meromorphic function. Put

$$\hat{H}_s(z,\phi,z',\phi') = rac{1}{8\pi^2} \int_{\mathrm{Re}\,(\delta) = rac{1}{2}} \hat{h}_s(\hat{o}) (\sum_{\mu=1}^d \chi(\alpha_\mu) E_i(\alpha_\mu^{-1}z,\hat{o})' \overline{E_i(z',\hat{o})}) dr \; .$$

By the same argument as in §4, we can prove that $\hat{K}_{*}^{*}=\hat{K}_{*}-\hat{H}_{*}$, is completely continuous, and that its image is contained in $L_{0}^{2}(\tilde{H},\Gamma)$, and that an eigenvalue for \hat{K}_{*}^{*} of F, which is an eigenfunction of $\frac{\partial}{\partial \phi}$ and \tilde{A}_{1} in $L^{2}(\tilde{H},\Gamma)$, is equal to that for \hat{K}_{*} . Therefore,

$$(5.9) \qquad \sum_{l=0}^{\infty} \hat{h}_s(0,\lambda_l) \hat{t}_l = \operatorname{tr} \int_{\Gamma \setminus \widehat{H}} \{ \sum_{g \in \Gamma_{a\Gamma}} \hat{k}_s(z,\phi,g(z,\phi)) \chi(g) - \hat{H}_s(z,\phi,z,\phi) \} dz d\phi.$$

Here, \hat{t}_i denotes a trace of $T(\Gamma \alpha \Gamma)$ in $M(0, \lambda_i)$, and we have

$$\hat{t}_0 = \sum_{\mu=1}^d \operatorname{tr}_{M_0} \chi(\alpha_{\mu})$$
 , $\hat{t}_l = t_l \ (l > 0)$,

where $M_0 = \{c \in C^* | \chi(\gamma)c = c, \text{ for } \gamma \in \Gamma\}$.

Now, g_0 is hyperbolic and leaving no fixed point of Γ . Put

$$\hat{A}(g_0,s) \! = \! 2\pi\! \int_{\Gamma(g_0) \setminus H} \hat{k}_s\!(z,0,g_0\!(z,0)) dz \, {
m tr} \, \chi(g_0)$$
 ,

and λ , λ_0 as in §5.2. case iii). By the same calculation as in case iii), we get

(5.10)
$$\hat{A}(g_0, s) = 8\pi 2^s c'(s) \frac{\log \lambda_0^2 |\lambda|^{2+s}}{(1+\lambda^2)^{2+s} |1-\lambda^2|} \operatorname{tr} \chi(g_0).$$

It follows

$$A(g_{\scriptscriptstyle 0},\,s) = rac{s}{2} \, rac{ \Gamma\!\!\left(rac{2\!+\!s}{2}
ight)}{ \Gamma\!\!\left(2\!+\!rac{s}{2}
ight)} \, \hat{A}(g_{\scriptscriptstyle 0},\,s) \; .$$

Multipling both sides of (5.9) by $\frac{s}{2} \frac{\Gamma(\frac{2+s}{2})}{\Gamma(2+\frac{s}{2})}$, and tending s towards zero, we

get

(5.11)
$$8\pi^2 \hat{t}_0 = \lim_{s \to 0} \sum_{\{g_1, s \in g_2\}} A(g, s) ,$$

Now, we obtain the theorem (§1).

References

- Eichler, M., Eine Verallgemeinerung der Abelschen Integrale, Math. Z., 67 (1957), 267-298.
- [2] Gel'fand, I.M. and I.I. Pyateckii-Šapiro, Theory of Representations and Theory of Automorphic functions, Amer. Math. Soc. Transl., 26, 1963, 173-200.
- [3] Godement, R., The Decomposition of $L^2(G/I)$ for I'=SL(2, Z), Proc. Sympos. Pure Math., 9. Amer. Math. Soc., 1966, 211-224.
- [4] Godement, R., The Spectral Decomposition of Cusp-Forms, Proc. Sympos. Pure Math.,
 9. Amer. Math. Soc., 1966, 225-233.
- [5] Kubota, T., Elementary Theory of Eisenstein Series, Kodansha Scientific, 1973.
- [6] Kuga, M. On a uniformity of distribution of 0-cycles and the eigenvalues of Hecke's operators, II, Sci. Papers College Gen. Ed. Univ. Tokyo 10 (1960), 171-186.
- [7] Saito, H., On Eichler's trace formula, J. Math. Soc. Japan 24 (1972), 333-340.
- [8] Selberg, A., Harmonic analysis and discontinuous groups on weakly symmetric Riemann spaces with applications to Dirichlet series, J. Indian Math. Soc. 20 (1956), 47-87.
- [9] Shimizu, H., On discontinuous groups operating on the product of the upper half planes, Ann. of Math. 77 (1963), 33-71.
- [10] Shimizu, H., On traces of Hecke operators, J. Fac. Sci. Univ. Tokyo, Sec. I 10 (1963), 1-19.

(Received October 19, 1972)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan