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Introduction.

Knot cobordism groups were introduced by Fox and Milnor [3] in the classical
knot theory, and were extended by Kervaire [11] and Levine [13] to the higher
dimensional knots of (homeomorphy) spheres. Levine analyzed these groups ex-
tensively [18], [14].

In the present paper, we will study an analogy of knot cobordism in manifold
pairs of codimension 2.

Let W™** be an oriented compact connected (m--2)-manifold, K™ a locally
flat oriented (m-—1)-submanifold in 0W, the boundary of W. Suppose the pair
(Wn*?, K™') is simple homotopy equivalent to a finite Poincaré pair (X, Y) of
formal dimension m. Then our problem is:

Under what conditions can we find locally flat submanifold L™ of W='2 guch
that dL™=K™"' and such that the inclusion %: (L™ K™)C (Wt K»-1) ig a
simple homotopy equivalence of the pairs?

We will call such a submanifold L™ a (locally flat) spine of the pair (Wn*2,
K™1, (In [17], the terminology homotopy spine was used.)

For an illustration, consider the case where W™*?, K™ and (X, Y) are an
m+2-disk D™*?, an (m—1)-sphere 2™"* and the pair (D™, S™'), respectively. Then
the pair (D™*?, Z™"') admits a locally flat spine if and only if the (m—1, m-+1)-knot

* The author is partially supported by the Fujukai Foundation.
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(@D, Yy is pull-cobordant (Levine [13}). Therefore, the (m—1, m-+1)-knot
cobordism group C,.., may be taken as the obstruction group to finding a locally
flat spine of the pair (D™, 2777

Consider another special ecase where Y=¢ and K™ '==¢. This situation turns
out to be a codimension 2 analogy of the Browder-Casson-Sullivan theorem [4] [6].
Kato first studied this case with X=S" [8].

In this paper we will introduce algebraically certain abelian groups P.(¥)
which are functorially determined by short exact sequences ¥ (extensions),

@ 1] e e p ——> gl —>1

where C is a (finite or infinite) cyclic group with a specified generator ¢ in the
centre of a finitely presented group =. In other words, our groups P.(¥) are de-
termined by elements in the 2-nd echomology groups of =/

H“'!(:’ :C) ,

where the ="-action on C is trivial.

We will show that these groups P,.(%) play the role of obstruction groups to
finding locally flat spines.

Given a pair (W=, K™} which satisfies the conditions described above, we
can canonically associate an extension « with it (§§ 1.4, 1.5). The following is
our main result:

THEOREM (5.10). Suppose mzb. A pair (W=, K™ ') admits a locally flat
spine of and only if a well-defined obstruction element p(W, K)e P,(¥) equals
zero. Any element of P.(5) with m=6 is geometrically realized in this way.

Our groups are related to the (orientable) Wall groups and the knot cobordism
groups C,., as follows.

TuroreM (¢f. Coneluding remarks in §5, and also §6.2.).

() Pouoill-—>C—sg—>g’—>1)m= Loy, (7). (This is rather considered as the
definition of the groups Pow (&).)

1) P.l—>les>s—s>r——a1)=L (7), in particular,
P.(1—1—>1—>1-—>1)=L,(1), the Kervaire-Milnor group.

(i33) P,(1—> Z—> Z-—>1-—>1)==C,.., (m=5).

Like the Wall groups and the knot-cobordism groups for m=5, the P,.(¥") have
an algebraic periodicity of period 4, as one can easily see from the definition of
P.(). However, the periodicity can also be obtained geometrically by multiply-
ing by a comlex projective plane CP,:

TuroreEM (6.12). Suppose m=5. We have
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2Wn*2x CPyy, K™1X CP)=p(n(Wn*2, K1) |

where o: P () ——> P,. () is the algebraic periodicity.

Periodicity of this type for knot cobordism groups was conjectured by Lépez
de Medrano [15].

The algebraic calculation of these groups P,(#) seems very difficult, espe-
cially when C={1}.

The following theorem naturally leads us to cojecture that if C={1} the
groups P,(¥) are very large for m even.

THEOREM (6.6). Pys(l—>C——>C—>1-—>1) is infinitely generated if C s
a cyclic group of even (or infinite) order.

ReMARK. For any cyclic group C, P,(1-—>C—C-—-->1—>1) is a quotient
group of the (m—1, m--1)-knot cobordism group C,.,; so the group contains at
most countably many elements (cf. Concluding remark B in §5.).

Our method is essentially the surgery technique; first we find a submanifold
Ly of Wm* such that Lp=K™!, and then perform a Wall surgery on it.
However, we must perform the surgery within the ambient manifold W=*? (the
ambient surgery in codimension 2}, It is one of our main tasks to decide whether
or not the desired Wall surgery can be carried out as the ambient surgery in
codimension 2.

Now the problem is divided into two cases; the even and the odd dimensional
cases.

The odd dimensional case is rather easy. In the simply-connected cases, it is
essentially done by Kervaire [11] who showed that if L*'! ig a locally flat 2k 1-
submanifold of a 2k-+8-disk D***® with 6L**'=3%, a 2k-sphere in 3D***?, then
by a sequence of ambient surgeries, L***' can be made contractible. This obser~
vation was extended to the non-simply connected ambient surgery by Kato and
the author [10]; there we showed that in the odd-dimensional case there is no
essential difference between ambient and abstract surgeries.

However, in the even dimensional case, the two types of surgerics display
somewhat different features, and in this paper, we will be mainly concerned with
this case. The difference of the two surgeries was first algebraically described in
the case of knots by Levine [13] in terms of Seifert matrices. However, his
method is too special to be applied directly to manifold pairs. In this paper, we
will introduce an intersection form (4, z#) associated with an even-dimensional sub-
manifold in codimension 2. This form is strongly related to Wall's special
Hermitian form of the submanifold, and it represents the obstruction to per-
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forming the “ambient” Wall surgery on the submanifold in codimension 2. In
contrast to Wall's form, our form is not generally nonsingular, Roughly speaking,
the deviation from nonsingularity measures the extent to which the submanifold
is “knotted” - the principle of the Alexander polynomial.

We will call our form (4, »1) a Seifert form, for (%, 1) generalizes Levine’s
Seifert matrix on the one hand, and on the other hand the definition of Z (Formula
(6)) is very similar to that of a form defined by Seifert [22].

The groups P.(%) arc defined in terms of Seifert forms (§5).

The contents of the paper are as follows:

In §1, we define an element A(f, g) in the group-ring A==Z[z] and 2(f) in an
abelian group Q.L(z)=1/{la~(--1)» dt la€ 1} which are defined by pathed “nice”
immersions f, g. (Formulae (6), (9).)

§2 proves that these elements 2(f, g) and n(f) depend only on the homotopy
classes of fand g. (Th. 2.5 and Th. 2.9.)

§3 gives some general properties of (2, 1).

§4 describes necessary and sufficient conditions in terms of (4, 1) so that
(W=, K" 1) admits a locally flat spine (Th. 4.12). Lemma 4.5 will clarify the
relationship between (2, 1) and Wall’s Hermitian forms.

§5 introduces the group P.(¢) and reformulates the results of §4 (Th. 5.10).

§6 deals with the simply-connected cases.

Our results in the simply-connected cases were announced in [17].

ReEMARK. In [17], we assumed condition (H), but in fact it is not necessary.

Throughout this paper, we will work in the PL or Diff categories.

Finally, the author expresses his warmest thanks to Professor I. Tamura for
many inspiring suggestions and constant encouragement. Discussions with Profes-

sor M. Kato were also very useful.

Added in proof:

Recently, Cappell and Shaneson have developed a different method of surgery
in codimension two from homology surgery point of view, [31] [32]. The relation-
ship between their theory and ours will be clarified in the furture.

CHAPTER 1. SEIFERT FORMS.

— Intersection forms associated with submanifolds in codimension 2 —

§1. Definition of (4, »)

The purpose of this and the subsequent sections is to extend the definition of
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the Seifert matrix of knots [13] to the case of even-dimensional manifold pairs
with codimension 2 which satisfy some reasonable conditions. It appears as a
certain “quadratic form” (4, #) over a group-ring rather than a matrix.

To be precise, let K be the exterior of the submanifold, .»"N the frontier of
a tubular neighbourhood N. Then 4, 2 are maps

iimanlE, N)X E, ZN)—> 1 (n+1=12dim E) ,
!’f : Ta s'l(Ey w;wlv) “‘—)Qta(zl- = AY) 1)

of 7,57 N which will be defined later.

In this section we define elements A2(f,g)€ .l and 1{f)€Q.(=»"N) for pairs
of certain pathed nice immersions f, g: (D**!, S")—> (¥, 5~ N} (Formulae (6), (9).
In the next section, we will prove that these clements depend only on the homo-
topy classes of f and g.

Before defining A(f, g) and #{f), we shall introduce some preliminary notions
needed later, such as Poinearé thickening, exterior k-conneectivity, the eyclic ex-
tension associated with a Poincaré thickening, ete. This occupies sections 1.1
through 1.8. In what follows, to simplify the situation we define (2, 1) only for
a closed submanifold of a Poincaré thickening (1.1). One may easily extend the
definition in more general situations, for example in the case of submanifolds
with boundary. In fact this general setting will appear after §4.

DEFINITION 1.1. A compact connected orientable m-2-manifold W™** ig cal-
led an m-Poincaré thickening if it is simple homotopy equivalent to a (simple)
Poincaré complex with the formal dimension m. An m-Poincaré thickening is
special if an orientation [W*°] (as an m-+2-manifold) and a fundamental class
re H, (W; Z) (as a Poincaré complex) are specified.

Let L™ be a locally flat closed submanifold of Int W't, We use the following
notations:

N: a regular (or tubular) neighbourhocd of L™ in W™'®, Since 1213(2)5.‘;0(2)
(Kato [7], Wall [28]), N has a structure of the total space of a 2-disk
bundle over L™

E: the exterior of N, i.e., E=closure (W—N).

%" N: the frontier of N, i.e., " N=NNE. 5 N ig the total space of an S'-
bundle over L™,

w: the projection map of the Si'-bundle .5 " N—> L.

REMARK. These definitions can be used also for a proper submanifeld L™
with a boundary (i.e. L™"NoW=04L).
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DerFiNiTION 1.2. Let & be an integer =0. A submanifold L™ is exterior
k-connected if =(E, 7 N)=0 for any 1, 0s5i<k.

LEMMA 1.3. Let L™ be an exterior k-conmected submanifold of W=** with
kz2. Then we have
(1) =l N)=n(E),
(i1) the imclusion 4:L"——> W™'* jg L-connected in the usual sense, that is,
n AW, L)=:0 for j<k.

Proor oF 1.3. (i) is trivial by the definition of exterior k-connectivity. (ii)
is proved in [10]. Here we give an indication of a proof. Suppose that x €= (W, L)
is represented by an immersion f: (I, S'Y)— (W, L). Let f be in general posi-
tion with respect to .%"N and consider the inverse image f~*{E)cInt D/, which is
a submanifold of 1. A handlebody decomposition of f~1(E) of the form

af (E)xTU0-handles U1-handlesty - -- ,

consists of i-handles with ¢=<k. Therefore by the exterior k-connectivity, the image
of f~Y(&) can be shrinked handlewise into N, which has L™ as a deformation
retract. So we have proved that z==0. Q.E.D.

LemMa 1.4, Let L™ be a locally flat exterior 2-connected submanifold of a
spectal Poincaré thickening W™** which represents the fundamental class ¢t of
the m-Poincaré complex W', Then we have an ezact sequence:

1~ € 1y(FN) o 2,(L™)

Z I

= (E) 7 (W)

+1,

where C is a cyclic group in the centre of = (5 N). Moreover a generator of
C denoted by t is canonically specified. We shall call t the special generator.

Proor oF 1.4. The first assertion is obvious from the exact sequence of the
S'-bundle:

7L} > 7y(SY) == 2y (A N)—> =y (L") —>1,

We define C by Coker (z.(L?)—>r,(S?)). That C is in the centre of =, (% N) ig
proved, for example, in [23, pp.445-446]. N, E and L™ are oriented by the
orientation [W”**] and the fundamental class pge H.(W; Z). (The orientations
{IN], [E] are induced from [W], and the orientation [L™] is taken so that
[ L= 1)

To specify the generator of C, we will canonically choose the orientation of
the Si-fibres as follows:
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Let » be a vector field on .%"N which is normal to _~-"N and points inward
into E.

5 N is oriented by the formula
(1) [E]=[#"N]xwv,

where < is homology cross product.

Let * be a base point of .%"N. Choose a local cross section s: U~—> "N
which passes %, where U is an open set of L™ Then the fibre S' passing * is
oriented by using the local orientation [U}]:

(2) [ Nl=s[UIx[S'] .
In the following, the formula (2) is written more intuitively:
(ey [# Nl=[L"]1x[S'] .
The special generator of C is defined to be the image of the “positive gener-
ator” of =,(S!) under the map =,(S')—>C. Q.E.D.
LEMMA 1.5,

(1) Any extenston of finitely presented groups
1—>C—>B—>A—>1

such that C is a (finite or infinite) cyclic group contained in the centre of B,
can be realized by an oriented S'-bundle over an oriented manifold.

(2¢) Let L and L’ be locally flat exterior 2-connected closed submanifold of
W=** both of which represent the fundamental class ;1. Then the corresponding
extensions

1> C—s> 7 (F N)—> =z (L)—>1
and
1—> (' >z (F N)—> a2 (L)—>1
are mutually isomorphic. The isomorphism sends the special generator of C
to that of C'.
PROOF OF 1.5. (i) is observed by Wall [29, p. 125]. Let us prove (ii). Denote

by p*e H{(W,oW; Z) the dual of the fundamental class ;€ H,(W). Take f as
a composition

*
W— WW - K(Z, 2)~BSO©2)~MS0(2) .
Then f is identified by the Pontrjagin-Thom construction starting with L (or L’):
W—> W/E —> BSO(2)~MS0(2) .
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Let £ be the S*-bundle over W which is induced by f. Then £{L (or 1L} is iso-
morphic to " N—>L (or 5 N'-—L'), and we have the following diagram:
m(Ly — 28 - 7 (F Ny =z (L) ——1
(1.3 ii) lonto | | |
g Wy oz (ST ooz () (W) ——s 1
(1.3 ii) Ionto g~ [
m( Ly e 2 (S == 2 (% Ny —— 2 (L) — 1.

o~ |

Pr—
<

By the five lemma, we have the desired conclusion. Q.E.D.
TErMINOLOGY 1.6. Let L™ be an exterior 2-connected submanifold of a special
m-thickening W™'* which represents the fundamental class . Then the extension

1> C—>r (5 N)—>z (L)y—>1

is called the cyclic extension associated with W™, where C=Coker (zo(L)-—
7,.(SY). By Lemma 1.5, this does not depend on the choice of L™.
Hereafter we shall assume that m is an even integer, m=2n=4, and that L™
ig an exterior 2-connected locally flat submanifold of a special m-thickening Wnm+2,
Let D**' be an n-+1-digk, S™ its boundary sphere.
DEFINITION 1.7. A map f: (D", S®)—(E***?, % N) is a nice immersion if
it satisfies the conditions:
(i) fis a generic immersion in the sense of Haefliger [5],
iy fIS*:S*—>(F N)™** is an embedding, and
{iii) the composition weo(f18*): S*—> L™ ig a generic immersion,
A nice immersion f is said to be pathed when we specify a path in &N, y(f)
from the base point *€.5"N to a point in the image f(S").
DerNITION 1.8. Two nice immersions f, g: (D", 8" —>(E**, 5 N) inter-
sect nicely if
i) fF(D*Y and g(D™"') intersect in general position,
(i) f(S"Ng(S)==¢ and
(iii) the image of the compositions &f(S") and %g(S®) intersect in general posi-
tion in L*",
Let f, g: (D", S*)—>(E, 5 N) be pathed nice immersions which intersect
nicely.
DEFINITION OF A(f, g).
Before defining A(f, g) we need two auxiliary pairings a(f, 9 and 5(f, ¢).
Let {p., ---, p,} be the set of intersection points of @f(S") and wg(S™) in L.
Let ¢ be the sign 1 of the intersection at p: of f(S") and ©g(S™). It will be
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[&f(S™] e X [zg(S ")]fw

convenient to write ¢,= (L] , where the horizontal bar denotes
Pi

the incidence relation between the two orientations, and [ ],, denotes the induced
local orientation at p,.
Let g.€,(5 N) be represented by the following loop in .+ N:

) g "L p —— (along the S*-fibre 5~'(p) in the positive
gt
direction) — p7 — 3},

where p/ (or p?) is the point of f(S™) (or g(S™) over p,, i.e., {P/I=FS)N " (p)
(or {P=g¢g(SHNw p)). See Fig. 1.

\\ i "(7’7’)

g(8™
TN ; /
el i
i
:
i
: 8™
)
’l
\\\ . ’l
ko4
LZ n

sign €;

Fig. 1.

The pairing a(f, ¢) is defined by the summation in the integral group ring
Z[z,% N] over all intersection points {p;, ---, p,}

»

al(f, g)= ;leigi .
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Next the definition of 3(f, g) is as follows:
Let {qi, -+, q) be the set of intersection points of f(D"*') and g(D*""). ¢ is
the sign +1 of the intersection at g, of f(D™*') and g(D"*Y), i.e.,

, LD x (gD,

€t [E'Q"”],,‘ s

giex (E) (=2x,(5"N)) is defined by the following loop in E:

) gt
> g A

(4) gl
Then the pairing 3(f, ¢) is the summation X ¢/g/ in the group ring Z[=.5 NI.
LESS |
In the above, we assume that the orientations [D"*!] and [S"] are related to
each other by

(5) [D"*]=[S"} x (the radial inward direction of D=*!) .
We are now in a position to define a pairing A(f, g) € Z[z, 5 N}
(6) )(f! g)i‘:(l‘(f, g)'{”(ﬂl)"ﬂ(lmt)'ﬁ(f‘! g) »

where t€x,(%"N) denotes the special generator of C.

In the next section, we will see that the pairing 2(f, g) depends only on the
homotopy class of f and g (Th. 2.5).

LEMMA 1.9. A(f, g)=(—~1)"ilg, f)-t, where — : Z[r, 5 N]—> Z[z, 5" N] is the

anti-involution induced by the inverse: S, . m,g=3 m.g".
geag )

Proor or 1.9. It is easy to see that
B, @=(=1""'B(g, /) .

To obtain the analogous formula for a-pairing, we observe that ¢,(f, g)=(—1)"s.(g, f)
and that

7N , Stfibre in the positive direction par(g)“1

gi(.f’ g)::{* pr *}

)] . Si-fibre in the positive direction

==[the inverse of {* bod
()
> p{ h > }] -t
f’:gi(grf)gl't .

Thus we have
alf, gy=(—1)"alg, f) t.

From the two formulae we obtain
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A, gy=alf, )+ (=D (1—8)-3(f, @)
=(—1)alg, f)- t-+ (=1 (1—1)-(—~1)""3g, )
=(—Dalg, fi+(—1)"""1A—1)-5g, }-t
=(—1)"Xg, F)-t .
(Recall that ¢ is in the centre of =,{ 5 N).) Q.E.D.
Next we define the “self-intersection” 1{f) for a nice immersion f: (D***, §*) —>
(E, 5 N). For this we define an abelian group @Q.(z=,.% N) by

(7) Q. (=7 N)=Z[z, 5 N)/fu—(-1)"s-tlve Z[z,. "N} .

DEFINITION OF #(f). Let f: (D", 8"y —>(E*"**, %"N) be a pathed nice im-
mersion, and {p., ---, p,} the set of self-intersection points of ©f(S™) in L**. Since
each p, is a double point, there are two points p, p® of f(S") over p,, i.e,,
PP, pPt=f(S Nz p:). Choose an order of the two points, (p, p*) or
(2, p), once for all p,. Let ¢ denote the order for p,, say, 0.~ (pi", p*).

¢; is the sign of the intersection with respect to 4,

Bl A X @l f (S
o (L] '

g.e€x,(F N) is represented by the loop in & N

(
gr—“{*ljl p —— (along the S'-fibre & !(p,) in the positive

-1
direction) —— p® AT %} .

The summation a{f)= iz;e.‘g, € Z[m. N] depends on the choice of orders {¢;}ic1y.vervs
and if an order #; is reversed, «(f) is changed to «(f)—egi+(—1)e,g;' L (see
the proof of 1.9). However, the term —e;g-+(—1)".g;" ¢ is contained in the sub-
group {v—(~1)"5-tlve Z{z,s# NJ}, so a(f) is well-defined in the group Q' (= .5 N)
independently of {0.}.

Next we define 3(f). Let {qy, ---,q,) be the set of self-intersection points

of (DY in E™*. ¢! is the sign of the intersection at ¢, and glex,(F)

-1
(==x,( N)) is represented by the loop {*-T(—L)»q, LQL* %}, &/ and g/ are defined

with respect to an order of two branches at g, of f(D**"), and if it is reversed,
B(f) is changed to A(f)—elgi+{(—1)"*'¢/gi"'. Therefore, A(f) is well defined in the
group Q. (1 F N)=Z[z, # N}/p—(—1)"*'vlv € Z[,.% N1}, in Wall’s notation [29].
Multiplication by (1—¢) induces a homomorphism: Q.. (7.5 N)—>Q. (x5 N).
Therefore, (1-t)-5(f) is a well-defined element in Q,(x; ¥ N). To give the defini-
tion of p(f), we need another invariant &(f)€ Z. Let w be a “positive tangent
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vector field” over . %" N along the S'-fibres. Since fis a nice immersion, f(S")< N
is transversal to cach S'-fibre, thus the restriection w]f(S”) is a non-zero normal
field over f(S”;. The normal bundle v of f: D' E™¢ ig a trivial n- 1-vector
{or block) bundle with fibre R**', and w!f(S™) gives a cross section of v|S™x R**1,
The obstruction to extend this seetion to a non-zero cross section over the whole

) u proi.
of D' is defined by f(S™) > f(S") < (R**'—{0}) — > R**'~{0} and is an element
of the group =, (B"'-{0}). We fix an orientation of R**' by the formula

(8) [ NI=[f(SH<[R"],

the group = (R*'—{0}) is identified with Z, and the obstruction is denoted by
< (f).
We define n(f)€Q, (=2 " N) by

(9) ) =alfy4- (=D A=) S+ (=1 o (f) .

In this formula, 7(f) is added as the image under the mapping: Z={melme Z,
¢ is the ncutral element of =, # N}C Z[z,. 5" N]—>Q". . (z,.57 N).

We shall prove in the next section that 1(f) depends only on the homotopy
clags of f (Th. 2.9).

§2. Hometopy invariance of (2, p).

DEFINITION 2.1. Let &, (s€[0,1]) be a regular homotopy between two pathed
nice immersions f, g: (D", S*)—> (E*"**, 5~ N). b, is said to be transversal (to
the S'-fibres) if wo(h,S") : S*—>L*" i3 a regular homotopy, also fand g are trans-
versally regular homotopic.

LeEMMA 2.2. Suppose that f, h:(D"*, S")—>(E**2 5N) are pathed nice
immersions which are transversally regular homotopic. If the regular homo-
topy h, is such that h(S™)Ng(S™)=¢ (Vs), where g is a pathed nice immersion,
then

Af, g)==24h, g) .

Proov oF 2.2. By the hypothesis, @o(f1S™) and w=(h|S") : §*—> L*» are regular
homotopic. Thus the intersection points @h,(S") and @g(S*) appear or disappear
in pairs. Let (p, p’) be such a pair of intersection points. It is not difficult to
see that ¢p=—e, and g,=g,. So we have a(f, g)=a(h, g). Under the assump-
tion that AJ(S")Ng(S™)==¢ (V¥s), the only possible change of h (DY g(D**Y) is a
pairwise appearance or disappearance of intersections. Thus by a similar argu-
ment we have 3(f, 9)==3(h, ), and i(f, g)=4i(h, g}, completing the proof.

Q.E.D.
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The following lemma is an essential step, which asserts that the condition
h(S* N g{S™)=¢ (Vs) is in fact not necessary.

LevMa 2.3. Let f, h, g: (D"}, S®——(E**2, "N} be pathed nice tmmer-
sions such that f and g, (resp. h and g) nicely intersect. If f and h are trans-
sversally regular homotopic, then

Uf, 9=Ah, g) .

PrOOF OF 2.3, We have only to show that 2 is invariant if the image of S
under the transversal regular homotopy . (s€{0, 1]) meets g(S®) in its deforma-
tion. Without loss of generality we may suppose that h.(S”) crosses ¢(8") in
general position at a finite number of points. Moreover, by decomposing k., into
some steps of small transversal regular homotopies, it will be sufficient to consider
the following restricted case (%).

{(#) h(S") slides down along the S'-fibres of 5 N——>L* in the positive
direction as s increases from 0 to 1, and it crosses g(S”) at a point ¢ when s=s,.
In addition h(S™NGg(S™)=¢ if s#s,.

This situation is illustrated in Fig. 2. (h, and h, are identified with f and k
respectively.)

g(s)lj

IIJO(S")

gl S" o g 5"/
X@h (" K

— IEE— FA

Fig. 2.

In the situation (x) we are assuming that
(i) the set of intersection points of wh,(S™)} and wg(S") remains unchanged, and
(i) the set A(D**Y)Ng(D"*') changes by a point ¢ at the moment when hJ(S")
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crosses g(S”).

Two cases are possible: The point ¢ is newly introduced to the intersection
or ¢ vanishes from the intersection. However by replacing the parameter s by
1—s, if necessary, it will be sufficient to consider only the first case.

We now compare alf, g) with a(h, g). Let p=wa{q). Let &{f, @), g.(f, 9), ete.
denote ¢,, g, etc. in the expression a(f, g)= X ... We get ¢,(f, g)=¢,(h, g), and

7(h) in the positive direction gt
Balh, ) (s )
7(k)  in the negative direction 71
e L pr - Y *}- £
(. in the positive directi 7{g)?
e nﬂf_)’p!_l e positive di on (g gt
f:g‘il(f.r g)t .
Therefore, we have
(10) ”(h» g):“(f: g)_‘apgﬁh'rsi)gp‘t .

Next Alh, g)=5(f, g)+<ig,, where g, is clearly equal to g,. In the situation (%),
we can suppose that the radial inward direction of R(D"*') near ¢ is almost
“parallel” to the negative direction of S'-fibres (for we are assuming that h(S™
moves in the positive direction). So substituting in (5), the following equation
holds in a neighbourhood of ¢:

11 (DN =[RS (—[S3D

where S} denotes the fibre which passes g. Moreover near ¢, the radial inward
direction of g(D"*') can be considered to coincide with the inward direction v of
E (see Formula (1)). Thus near ¢, we have

12 [g(D*))=[g(S"]xw .

We now calculate </,

s IMDT )X [g(D )]
¢ [E"Znn‘.]
_ IS (= [Si) x [g(8™] x v
[# Nlxwv
(=) [R(SM]x [g(SMHIx [Si]x»
[LIx [S']xw»
yymer IRESMIX[g(S™)]
—_ "‘1 v+l LIVAY IR AWNT L
(—1) (L")

(Formulae (1), (11), (12))

{Formula (2)')

:(_1)114-!51, .
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Consequently,
ﬁ(h, g) ':.S(fr g)"L("—l)M lspg# .
This formula and (10) give the following:

Hh, @) =la(f, @)—A—8)e,g -+ (=D A—-{3(f, @)+ (1" e,g,)
=a(f, g+ (=" 105, 9
=if. 9 .
This completes the proof of 2.3. Q.E.D.

The homotopy invariance of 2 is established by studying the relationship be-
tween transversal regular homotopies and homotopies.

Suppose there is a homotopy h,, 0=<s<1, between pathed nice immersions
f(==ho) and h(=h,). Approximate h, by a generic homotopy (Haefliger [5, p. 58]
which is denoted by /,. Sinee dim .5 N=2n-+1, RS §*—> 5" N is a regular
homotopy.

We can take /i, so that we(/,|S") : S"—> L*" is also a generic homotopy. The
set of singularities of /i, (respectively of @o(1,1S™) is finite, and each singularity
is an isolated point, where, as s varies, a Whitney’s self-intersection (i.e., an
ordinary double point) is locally introduced. More precisely, in a neighbourhood
of a singular point of (D™, h, is deseribed by the following equations (Whitney
[30], Haefliger [5]):

(Xi=z,1-2Y)), Xi=gu
A ! 1<iznt+1,

. 8
(11— Cs 1/ 4e) ' Y= -, Y=z,
\ 1427

where (x5, -, Zaer) and (X1, <+, Xoirn Y4, -+, Yau) are local coordinates of D"*!
and E*®**, respectively. In the above, /i, has no self-intersections for §<1/2, I,
has a singular point X,= -+ =X,,,=0, ¥,—1/2=2Y,== -+ == Y,,+=0, when 5=1/2,
and /A, has a double point X,= --- =X,,,=0, Y,~12=¥,= . =T¥,,,=:0 for
s>1/2.

Similarly, with respect to certain local coordinates (z,---,x’) of S" and
(X!, .-+, X, Yl -+, Y4y of L*, wo(h,]S") can be writtdn as follows:

(=2{(1-2Y7), Xi=u!
‘CJG(IZ,‘S") 1<ign .

8
(1i2—e<a<l/2+e} Yf“: T Y{::v§m§
1"%‘2212

As mentioned above, #,]S” is a regular homotopy, and of course has no singu-
lar points. However, the transversality to S'-fibres fails at a finite number of
points which corresponds to the singular points of wo(h,1S™. See Fig. 3.
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IS

pol
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v

[SIE

;
; :
[ :
FN Cem | \/
fi 657 | ¥ nonetrans-
f

versal! |

singularity / / /

Fig. 3.

In a neighbourhood of a non-transversal point, one can find a loeal coordinate
of N (XI,---, X4, Y!,---, Y., %), Z is along the S'-fibres, with which A,|S*
is written by equations

8§ .
Yfzi“* prlt Yi=giz! 1<iSn.
Ty

\ Z:*::x; .

hASH

[REMEREANE R SR

J‘X{Swf(l—2Y() » Xi=ui

This situation is described as “a non-transversal movement of /,|S" introduces
a Whitney self-intersection to @-(4,S™”. Summarizing these observations we
have the following lemma.

LEMMA 2.4. Let f,g: (D", S")—>(E***, % N) be pathed nice immersions
which are homotopic to each other. Then f can be transformed into g by a
sequence of the three kinds of deformations (or of their imverses);

(I} a transversal regular homotopy,

(IT) a generic homotopy introducing a Whitney self-intersection at a
point q in k(DY and

(III) a generic homotopy introducing a Whitney self-intersection at a
point p in w(h(SY) by a non-transversal movement of hi(S™.

We now prove the homotopy invariance of 2.

THEOREM 2.5. A(f, 9) depends only on the homotopy class of pathed nice
immersions f and g. Since any pathed continuous map (D*+!, 8*)——(E, & N)
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i8 approximated by a nice immersion, i defines a pairing
el F, SNy 2, (B, 5N)—> Zlz, 57N

which will be donoted by the same symbol A.

Proor oF 2.5. By 1.9, it will be sufficient to show that if g is fixed, i(f, ¢
depends only on the homotopy class of f. By 2.4, we have only to show the in-
variance of 2 under each of the deformations (I), (II) or (III}). The invariance
under (I} is proved in 2.3. The invariance under (II) or (III) is obvious, since to
calculate the value of 2 we count only the intersection points of f(D*!) (or @f(S™))
and g(D™*') (or ©¢(S%), ignoring their self-intersection points; One has only to
choose the generic approximation of a homotopy k. carefully so that the local in-
troduction of Whitney self-intersections does not occur at any intersection point
of f and ¢, and this is always possible. Q.E.D.

HOMOTOPY INVARIANCE OF p(f).

LEmma 2.6, n(f) is a transversal regular homotopy invariant.

Proor or 2.6. The method in the proof of 2.3 is also applicable in this case,
and that a(f)+(—1)""'(1--£)5(f) is a transversal regular homotopy invariant is
proved. By the definition, <°(f)€ Z is clearly a transversal regular homotopy in-
varaint. So by (9), we have the desired conelusion. Q.E.D.

To prove that x(f) depends only on the homotopy class of f, it remains to
show that #(f) does not change if f is changed by the deformations of type (II)
or {IIT) (Lemma 2.4).

LeEMMA 2.7, (f) is unchanged wunder the deformation of type (III).

Proor or 2.7. By introducing a Whitney self-intersection at a point p in
@f(S"), we have that 5(f) remains unchanged and «(f) changes to «(f)}¢,, where
¢p is the sign at p with respect to an order 0 of the two points of f(S") over p
(cf. Definition of a{f)).

AsSSERTION 2.7.1.% (f) changes to </ (f)+(—1)%,.

Proor or 2.7.1. Since the problem is local, we may restrict our attention to
the case of euclidean spaces.

We use the following notations:

( Hom2={{g,, <+, Zon:2) € R 25,.. 20|
U
| Rt =, e D)

l 1%2" ={{xy, -, L2a)} .

*  The proof of this assertion is due to Professor A. Hattori.
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W R —> R** ig the projection; m{x; - -, Lon, Lo =(Zy, + -, T2} .
dz, is the positive direction of the x;-axis.

R* has a canonical orientation [RYssdz,< --- Xdx,. Let f:(D"*, S*")—>
(H®**2, R***') be a nice immersion, i.e., f is a generic immersion such that fiS»
is an embedding and such that z+(f|S™):S*—>R*™ i3 also a generic immersion.
Then ~(f)€ Z=x,(R*"'~{0}) is defined in a similar way to ~°(f) in the definition
of #(f). Now suppose that w=(f1S":S"—>R™ is an immersion with a unique
gelf-intersection p (an ordinary double point). Fix an order ¢ of the two points
p® and p™ of f(S™) over p such that (the «;...-coordinate of p™)<(the Zsn.ys-
coordinate of @) in the order #:==(p®, p®). Let ¢, the sign of the intersection
», be given by the equation

G F(SM)]n0 X @SS}
[B*], )

We assert that & (f)==(—1",. Let S? and S be two embedded n-spheres in
R* 't gyech that S;NS?» is empty. If S? bounds a singular n-+1-disk D7, then
the linking number L(S7,S2?)e Z is defined to be the intersection number of S7
and D2,

By D¢', we denote a fibre of the normal n-+1-disk bundle of f1S":8*—
R, Pollowing the orientation convention (8), we define the orientation of D'
by [R*"']=[f(S"]x[D:""]. Thus

(14) L(f(S™, Dy )=1.

13) oy

Let w:f(S™) > f(S)=(D:'—{0}) be a small normal cross-section which is
pointing to the positive direction of the xp,,,-axis. By definition, < (f) € = (D;*'—

0)=Z is represented by F(S") —— F(SMX(Dp i—{0}) b (D '—{0}). Thus
w(f(S™)) is homologous to the ecycle F(SM+-2{(f)-aD* ' in FSPx(D;'—{0D.
Hence we have
(15) L(f(S™), w(f(S"))

= L{f(S™), F(IS)+L(f(S™), Z(f)-aD; )

=2(f)- L(f(S™),6D; )

=(f)  (14).
Let CS*=S"X[0, 1}/S"x {1} be a cone over S*. Let =: R**'—> R' be the projec-
tion to the 2z...,-axis. Define a singular n-+1-disk F:CS>— R gs follows:

((Blwf (@), =(wflx)-+No)eR*" xR, (0=:51/2)

F(x, t)=
te,r)e8mx[01] lg pojnte R‘-‘"'*‘\_f(sv-) ) (‘c‘"—-‘:l) ,



Knot cobordism groups 271

where N is a sufficiently large positive number. For 1/2<r<1, define F{(x, =) appro-
priately so that F is continuous and F(S"x[1/2, 1N F(S™=¢. See Fig. 4.

witS™

Fig. 4.

Clearly F(CS") is a singular n--1-disk such that dF(CS")=wf(S*). One immedi-
ately verifies that f(S*)N F(CS™)={p®}. The sign ¢, of the intersection at p®
is

&, == [f(S")L,m) X [F(CS’!)]J#”*

4 [R*+1] .
It is easy to see that [F(CS™],= ==[f(S™],» Xd®m.:. (Recall the orientation
convention (5).) Hence

ey == LFES X LFS™]p X dn, i
? [RL’"] X dxzn-’r—l

{R2n]p
=(—1)%,, see (13).

This means that L(f(S"), wf(S*))=(—1)",, and by (15), & (f)=(—1)",. This
completes the proof of Assertion 2.7.1.

Proor oF 2.7 (continued). By introducing an intersection point p to wf(S™),
one sees that #(f) changes to a(f)+,4 (—1* 11—} S(/)+(—D™ YT (f)+(—1)",),
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but this is equal to #(f). Q.E.D.

LruMa 2.8. p(f) 13 unchanged under the deformation of type (II).

Proor or 2.8. In this case 2 Whitney self-intersection ¢ is introduced to
fD"Y). alf) does not change. j5(f) changes to 2(f)-+e), where ¢/ is the sign at
the new self-intersection ¢ with respect to an order of the branches.

ASSERTION 2.8.1.

~(f)—2 (n+1: even)

& (f) changes to }{ ~(f) (n+1: odd)
- n M .

Proor or 2.8.1. Since the problem is local, we consider the case of euclidean
spaces. The notations are the same as in the proof of 2.7.1.

Let k.: 8"—> R***! (—15751) be a homotopy such that (i) k_(S")=k,(S")=a
point, (i) ko : S*—> R***! ig an immersion with only one self-intersection point q,
(iii) if |+1< 23, where ¢ is a small positive number, wek,: S*~——> R*" is an immer-
sion with a unique self-intersection point p. which is an ordinary double point,
(iv) a map h:S**'=(S*"x[—1,1}/S*x {~1})}/S* {1} R *=R***'x R which is
defined by A(z, v)==(k.(z), ) is an immersion with the unique self-intersection point
q which is an ordinary double point (here one takes r to be the 2.,..-coordinate).

Let v, be a non-zero normal vector field over A(S"x[—4d,4]) in the direction
of d#en.,, and Dy*' a small disk in A(S*x[—d,06])—{g}). We must compute the
obstruction 2 € Z to extending v,/d.D; ** to the whole of {(S"*!) as a non-zero normal
veetor field. We assume that an orientation of A(S™*!) is already given. Following
the orientation convention (5), ¢D;''is oriented by

[R(S**)]=[8D; '] < (the inward direction of A(S>*)—D; %)
==[0D3 '} X (the outward direction of D}*') .

Denote by ¢, (or ~7.) the obstruction to extend v,lR(S*<{8}) (or v,|h(S*x{~8})
to the whole of D;*'==h(S"*x[5,1]) (or D";'=h{(S*x[—1, —d])). We can identify
the radial inward direction of D3*' (or D*;') with dz.,.. {(or —dx....). Thus
k;(SM==aD2"! and k_,(S")=aéD"}' are oriented as follows:

[Dg 'l]:[ké(S")]Xda"‘:nﬁ-? s
(D25 ==l s (8™ (—denes) -
In (16), {D:*'} and [D"}'] are induced from [R(S™*Y)]. Define

(16)

H?H‘cz{(xh STy x2n+’£) e Rsﬁ*slx‘:ni-‘.’ga} ?

Hi"a‘*'*‘m{(x“ S Banen) € Rcﬁzixzuzé —a} .
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We define the orientations of H3"** and H®73'* by the induced ones from [R**],
Let Ry =3HY " and R*y'==3H*%*. Following the convention (1) of $1, we
define the orientations [Ry**')’ and [R*7'} by

[ Y =R X de

17
[ =R Y < (—danss)

Note that [Ry"'V=[R%'*'], where [R}'*'] is the canonical orientation, and
[RyV=~—[R%3"']. The obstruction ”, and . are computed with respect to
pairs of orientations ({k,(S™], [R3*']") and ([k-,;(SM], [R*%"']).

There already exists a vector field v, over W{(S*x[--3, ]} extending v,|6D;*!
and v,lk;(S™ Uk_;(S™), so the obstruction ¢ is related to ¢, and <~_:

(18) &r:(\\é,»“:'ﬁ_ .

The inverse image (@°k.) '(p.)CS" consists of two points # and 7%, where
p- denotes the unigque double point of Tk.(S*), —d<c<d. If = varies from —¢ to
8, the points p=h(p", z) and »=h(p®, ¢) traces two arcs 4 and B which inter-
sect at g transversally. We may suppose that A and B lie in the (Zon.s, Zonss)-
plane. By exchanging the names of the two points, if necessary, we may also
assume that (the 2...,-coordinate of py’)<(the .,.,-coordinate of p%’). The situa-
tion is as in Fig. 5.

Tont1
(1) ¢
# P
*
N '
N !
; B :
] i
:

Y A ,
T i 2n42
: q i
! .

i il
,
| AN
i .
s v,
Fig. 5.

By Fig. b, if the “positive directions” of the arcs A and B are defined to be
(g—>p¥) and (g—> p¥), respectively, we have

(19) [A]X [B)=—d T 1 X drnre -

By (13), the signs ¢,; (or ¢, ;) of the intersections p; (or p ;) in Ry (or R*7%)
are defined as follows:
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ol (S arp < alles (S

(20) Epy T2 ,

and

(21) B ET’,TUG - (Sn)]ﬂ’:lé b '55*[]0 3 (Sn)]pfzé
[R*);_,

We notice that in (20) and (21) ' and »™ are exchanged, because (the %.,.,
coordinate of p"})>(the x,..,-coordinate of p”}). See Fig. 5. Moreover, following
the convention (2) in §1, one defines [RY"]” and [R*%) by
[ LBy V=[Ry) % dey..,  and

(22)
{ [RukiI]/'ff[R!%],;\(dm?n%l .

By Assertion 2.7.1,

( oy :'*‘(‘wl)ﬂfﬁg ’

{ = (=1)me,

(23)
If é is sufficiently small, the image wk.(S") scarcely moves for —§=:=<J, and the
branch of »k,;(S*) at the point p, determined by %’ corresponds to the branch
at the point p., determined by p"}. This together with [R}*],,=—[R*3],_,,
which follows from (17) and (22), give

(24) g1, o ((20), (21) .
Finally ¢/, the sign of ¢, is computed as follows:
er (RS ) ]pto X (IS )]
[ R;’me]q
o LReolS™M1 X [A] X [ko(S™) e X [B]
[-Rl:"]p X dxiﬂ +1 X dx2n+2
(1) [,k‘ﬂ(}szl]‘pm > [Feo(S™)]po X [A]x[B]
' [Rg“]p}‘< A%sns1 X AFonsy
a1 m*[ko(sn)]p’f” X E*[ka(S")]p(lE
[R‘:n]P

z (= 1) (19)
:":{“”‘1)"*\151)5 .
Therefore, from (18), (23), (24), we have

5:‘::(—1)7351'5‘“‘5;)5

M;.Mss_ (_1)1;4»15;
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{m_s; n+1: even
0 n+1l: odd,

completing the proof of 2.8.1. Q.E.D.
Proor OF 2.8 (continued). Under the deformation of type (II) /«(f) changes to

alf) (=D 18 B e+ (= e (-}
=p(f)+ (1) A~ ep+ (1) 1

(—Q-+te, n+1l: even

=p(f)+ ]

) 1~(1~—t)s; n+1: odd.

=) mod {—(—1)-tlve Z[z.5N]} .

(2.8.1)

Thus in Q.(=, 5 N), ¢{f) does not change. Q.E.D.
Summarizing 2.6, 2.7, 2.8 and 2.4, we can conclude

THEOREM 2.9. u(f) depends only on the homotopy class of a pathed nice
immerston f. Approximating any pathed map (D', 8")—>(E, 5 N) by a nice
immerston, we see that p(f) defines @ map

Tpe+ 1(Ep n(’;ﬂN) > qu(tlk-’;PN) ’
which 1s also denoted by p.
REMARK. We have obtained an “intersection form” (2, 1) associated with ex-
terior 2-connected submanifolds in codimension 2. This is a higher dimensional

analogy of a form which is defined by Seifert in his work of classical knot theory
[22].

§3. Properties of (4, 1)
We continue to use the same notations W* %, L**, N, E, "N as in §§1~2;
L™ is an exterior 2-connected 2n-submanifold of W*** with 2nx:4.

2
2

1— €~ 7y(5" N) = 7y (L) = 1
is the cyclic extension associated with W (1.6). Let ¢ denote the special generator
of C (1.4).
] I

Let *€ &N be the base point of =, (# N) and =, (E, v N). Let {#—— %}

denote a loop [; representing an element g, € =,(%#"N). The composition g, g. is de-
l l

fined by {* : **~—2-—**}. A left =,( N)-module structure on =,,(E, 5 N) is

defined as follows: Let f:(D"*"!, 8% ——(E, % N) be a pathed map representing
xe":n+1(E9 ﬁN)-




276 Yukio MATSUMOTO

Let r(f)=tx L P} (p€ f(S™) be the path assigned to f. Then gz (g={* L *})
is represented by the map f together with the new path g-7(f)={% L ) i{f,‘)# .
We simply write =, instead of =,( % N).
Lemma 3.1. Let 2, yer,(E, ZN).
Q) 2w, 9= (1" Ay, 2t
(i) For any fized y, 4+, 9): 7.s.(E, 5" N)—> Z|[z] is a Z[=]-homomorphism.
Qi) szt = ple) -+ )+ iz, o).
(i) Az, @)= plw)+ (— 1)) - .
(v} rplax)=au(z)d for Yae Z[=,].

Proor or 3.1. (i) is proved in 1.9.
Proof of (ii): Let f i f’ denote the “connected sum along the path ;(f)-7(f")".
Then clearly a(f-+f', g)==a(f, g)-+a(f’, g) and similarly for 3. Thus Xz+2’, y)=
Az, ¥)+2’, ). On the other hand, by the definitions of g, and g/ in the defini-
tion of 2, we have alg-f,g)=g-a(f,9) and Blg-f,9=gff,9). So ig-z, )=
gz, y) (Vgemr,).
Proof of (ii): a(f+-gi==a{f)+alg)+alf, g, Bf-+a)=Bf)+5g)+5f, g) and « (f+
@=(f)+(g). Therefore, pla+y)=plz)+puly)+ iz, y).
Proof of (iv): Let x be represented by a pathed nice immersion f. First suppose
& (f)=0. Then f is framed so that a frame of the normal bundle of wf(S") in
L** can be extended to D"*'. So there is a nice immersion f’ which is “parallel”
to f, and such that its projected image @f’ is parallel to wf.

Let g4+ -, q, {or py, -+, ) be points of self-intersection of f(D**!) in Kt
{or of wf(S") in L*). Then for each point ¢., there are two intersection points
gi, ¢¢ of f and f’. Similarly for p,, there are p! and »:. Then by simple geo-
metric considerations, ejﬁ(f,f’):?(—ul)""e,jg(f,f’), g;§z(g;-§)“, ePE:(—l)"ep3 and
&= (g5) 7" L. Hence we have

A, x)=A(f, f')
= 3 {eng+ (= 1rgpit)
FEDH =0 2 {enga (D) el (ga) )

Now we consider the general case when ¢ (f) is not necessarily zero. However,
by introducing a finite number of seif-intersection points in @f(S*) <L, we can
make < (f)=0 (2.7.1). Thus the problem is reduced to the first case.

Proof of (v):
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g Hi=alg - fi-+(—" {1—0)3g i+ (=1 (g-f)
=g-a(f) g7 H(=1)" L-1)-g- B g+ (=D (f)

But £(f) ean also be written as g-<7(f)-g™*; thus we have plg-2)==g-n(a) g
The proof for sa-x), a= X m,g, is not difficult.

DEFINITION 3.2 (ef. [10]). For 720, put rDf={ze R'jz|<r}. A k-handle
H=Q@QD*)x D***"* (of total dimension 2n-+1) in W*"'? is called a normally embed-
ded k-handle attached to L*" if it satisfies
(iy HnNL*=(@2D*)x D 1%,

(i) HNE=D*X}D™'* where D" is identified with 1D* (< 2D%).

An element ze€x.(K, 5N} is said to be represented by a normally embedded
handle if there exists a normally embedded handle H=:(2D*)x D**'-* guch that
(D*%0,0(D* > 0))C(E, % N) represents x.

LeMMA 3.3. Suppose nz2. If zer, . (E, 5" N) is represented by a nor-
mally embedded handle, then p(x)=0. If n=8, the converse is true.

Proor or 3.3. If x is represented by a normally embedded handle, we can
take the core disk as a nice immersion f representing z. Clearly f(D"'!) and
@f(S™) have no self-intersection points. Moreover, wif(S") is extended to f(D"*1),
where w is a “positive tangent vector field” over % N along the S*-fibres; we have
only to take the orthogonal complement of D"*'xD® in W?** Thus < (f)=0,
and we have p(x)=0. Conversely, suppose 23 and p(z)==0. Let f: (D", §")—>
(E, # N) be a pathed nice immersion in the homotopy class of . Let g be a self-
-intersection point of f(D"*'). Draw two arcs from ¢ to 5 N along the two
branches. We then have an are on f(D"*!) which represents an element of
=(E, 5 N). Since =,(&, % N)==0, this are deforms into % N tracing a non-
singular 2-disk. By deforming f by a regular homotopy along this 2-disk, we can
reduce the number of self-intersection points of f(D"*!). Proceeding inductively
we can make f an embedding (i.e. A(f)==0). Furthermore, by introducing some
self-intersection points to f in L™, we can make < (f)=0 (2.7.1). Now we have
p{fi=a(f). Since p{x)=0 in @Q.L(r), a(f) is of the form a—(—1)"d-t (e e Z[x,])
as an element of Z[x,]. Hence we know that the set of double points of wf(S"
is divided into a set of pairs (p,, 20}, - -, (p,, p!) such that 5:};:““(“1)"% and
gr=(gs)7" L. Let (p, p’) be such a pair. Let pu, e (Or Pl i) be the two
lifts of p (or p’) to f(S*). We take the orders of these points 80 that g,(puy, D)=
gn  &Dw Pw) = Ew(Dly, Po)=gy and & (pl, pl)==¢,. Then a loop l=

along & ~1(p) positively a path on f(S")  along w~'p’) negatively ,
{Pw P P Dy
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a path on f(S#) i . . . .
ey ey} 18 cOntractible in 3N, for the composite loop ;(f)ll(f)-i

is homotopic to

" along @ "Yp), posi. (Nt
fr— > Py T P #}
) a path on j(Sv)  y(f)!

- {* Do Doy *}
1), along @ {p’), nega. = y(f)!
xSl -~ Din *}
7(f) , a path on f(S") i

- (* e Wiy T Pgy T *}

==(g, 1) (null)-(g,}) - (null)==g, - g, =(null) .

This loop ! bounds in 5N an embedded 2-disk 4° such that 4° NSy =L,
Note that (B, 79“))'*:(”““1)"51)(27(1)»P(z))‘:(""1)“(‘“(‘“1)"5»')3“%'(?('U, P(’g;). Hence
by applying Whitney’s process with the 2-disk w(4c L™, we can make p and
p’ pairwise vanish. (Here we use the assumption #23.) Continuing this process,
we finally obtain an embedding f: (D**!, §")—> (%, .5 N) such that the composite
@o(f1S") : S*~>L* is also an embedding. On the other hand < (£)==0. Thus
we may find a cross section s:f(D**Y) ~~>f(D"“)><(R’”’1~{O}) of normal bundle
of f extending the veetor field wlf (S"). Take a complementary sub-bundle £ of
g in f(D"YyxX R**!, where f(D***)< R*' is the normal bundle of f. Then since
¢ is a bundle over f(D"*Y), it is trivial and its disk bundle is F(D")x D" Since
s extends w|f(S"), the projected image (S D" is an embedding in I,
Therefore, if we extend f(S")xXD" into N by attaching a mapping cylinder of
#1/(S*x D", we have constructed the desired normally embedded {(n--1)-handle.
This completes the proof. Q.E.D.

By a similar argument we have

LrmMa 3.4, Suppose 2n=4. If x and yer,.(E, 5 N) are represented by
pvathed nice immersions f and g respectively such that
@B fDO*YNgD*)=¢ and
() sfSHNwg(S")=¢,
then Az, ¥)=0. If 2n=6, the converse is also true.

In concluding this section, we give an invariance property of (4, /) which is
stronger than the homopy invariance. Let 2n=4. Suppose that the 2n-Poincaré
thickening W*'* is a regular submanifold in the boundary 8Z of a 2n--3-manifold
2***°, and that there is another 2n-Poincaré thickening W’ in 8Z which is disjoint
from W. Let W (resp. W’) have an exterior n-connected 2n-submanifold L {resp.
L), and let E, %"N, E’ and .5 N/, be as usual. Moreover, suppose that there is a
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locally flat exterior 2-connected 2n--1-submanifold Y***! in Z such that Y1 W=1L
and 6YN W' =L’. Let T, F and & T be a regular (or tubular) neighbourhood of
Y, the exterior of T in Z, the frontier of T, respectively. We may take them
so that E=WNF, E'=W/nF, s N=Wn.o T, and > N'=W'nT. We as-
sume that the inclusions induce the following isomorphisms

751(?)

B o -

- = (F) o =(E)

l ~ i ~
ANy —— 2, T) e = FN) .

Finally, the incidence relations of orientations are assumed to be positive (plus 1)
between [W] (or [L]) and o[Z] (or 6[Y]), and negative (minus 1) between [W’]
{or [L']) and o[Z] (or o[Y]).
THEOREM 3.5. Let dy:m, (B, » " N)—m,(F, 1) and % :7,.(E, +»"N’)
>z, (F, 57T) be induced by the inclusions. If i(2x)==il(2') and i (y)==ii(y’),
we have
e, =2y,
)= ('),

and
wy)=r' ') .

Here (¥, i) is the Seifert form assoctated with L’.

ProoF oF 3.5. Let f and ¢: (D", 8—>(E, 5" N) {or f* and ¢’ : (D", 5%
—>(E’, ¥°N")) be a pair of pathed nice immersions corresponding to = and ¥
(or ' and ¥’). By the hypothesis, there are maps

£ gD I, 8" I; D' %0, D' 1) —>(F, =~ T; E, E') such that f1D""'x
0=71, fID" ' x1=f’, GID""'X0=g and §lD""*x1=¢’. Let fy==f1S"> I, g.==§|S"x
I:8"xf—>5"T. Make f¢, g, nice in the following sense:

(A-1°) f,, gs are generic immersions which intersect in general position (at finite
set of points).

We now show that in addition fg, gs can be made to satisfy

(A-2°) the compositions Tofs, Fegs: S"xI—> Y™ gre generic immersions which
intersect in general position, where & is the projection of the S'-fibration
FT—Y.

For this, approximate Geofs and G°gs by generic maps. Their singularities are

isolated points [80]. Let s, be a singular point of S-f(S"xI). s, is a terminal
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point of a double curve 4, of &=f:(S"xI). Introduce a Whitney double point d,
in &+ fs(S"x0) (< L*") by a non-transverse movement of f(S") {(=f(S"x 0y, cf. (2.4),
and consider a double curve 4, in &fs(S*<1I) starting at d, and ending at a new
singular points s.. Taking s. sufficiently close to s,, and choosing the sign of the
double point d, appropriately, we obtain a double curve containing 4,14, by can-
celling s, and s, in pairs. In this way, all of the singularities of &of(S*«I)
can be removed.

The same argument is applied to H-g,. Now make &-f, and T-g; intersect
in general position, then they will satisfy (A-2°). Note that introducing Whitney
self-intersection points in &« fs(S"x0) does not change the value of A(f,g), p(f),
and n(g) (2.5, 2.7).

In a similar manner we can get rid of isolated singular points of (generic)

maps / and §; we introduce double points in S (or g(D**')) and double curves
in (D<) (or G(D**'*x I)) without altering the values of 2 and #. Therefore,
we may assume
(A-3°) f, § are generic immersions which intersect in general position.
Let f, and g, :(S"xXIUuD"'x1,8"x0)—>(>"TUE’, 57 N) be pathed maps de-
fined by fsUS’ and gsUg’ respeectively. In the same way as in §1, we define the
intersection pairing A(f,, g9,)€ Z[z] and the self-intersection numbers u(f,),
1{gs) € Q.(=) by replacing (£, & N) in §1 with (5 TUE’, 5°N). Here = denotes
7 (5N} (= (E)=2n(F)=x,(5"T)). Precisely speaking, we define 3(f.,, g,) by
counting intersecting points of f,(S*xI) and ¢.(S"xI) in 5 T and those of
fI(D"x1) and ¢’(D"x1) in E’. alfy, ¢») is defined by counting the intersection
s8N wmg(S*y L. Afs,g,) is the pairing defined by

“’(fn, go)+ (=" -5 b, gb) .
The definitions of #(fy) and x(g,) are similar;
p{fo)=alfo)+ (=" A~ 8(fo) +H (=1 (fo)

and the formula for 1¢(g,) is the same.

Step (D). A(f, 9)=2f0, go), ()=S0, 1l@)=p(gr).

ProoF or SteP (I). By (A-3°), the intersection f(D**'x )N GD**txI) con-
sists of some arcs and circles. Let A be such an arc with termina! points g, and
q:. Two cases are possible:

Case (): {qgo, ¢} E (or {go, gy 5 TUE’).

Case (i): @€ FE, € 5 TUE’ (or ¢ E, g, 5 TUE").

In Case (i), it is easily seen that &,=—¢;, and that g; =g;,, so the contribution
of {qo, q:} to 5(f, g) (or to A(fs, go)) is zero. In Case (i), we have 0,780, Zo=Lo1s
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and the contribution of g, (or ¢,) to 5(f, g) is equal to that of g, (or ¢} to 8(fa, go).
Since any intersection point of f(D**!) and g{(D**") {or of fu(S*xTUD"*x1) and
go(S*xIUD""*x1)) is a terminal point of an intersecting are, we can conclude
that 5(f, 9)=3(fb,9,). On the other hand, a{f, g)=a(f,, g,) is obvious, (both are
computed by the same f(S") and g(S")). Therefore, A(f, g)=4(fu, gu).

A similar argument using double curves of f(D"*!xI) instead of intersecting
ares shows that a(f)=a(fp} and B(f)=5(fp). In order to see u#(f)==sp{fs), let v be
the normal bundle of f:D"*'xI-—>F (which is an immersion by A-3°), then
ve(Dr 1 IV B**', Let w be the positive tangent vector field over "N along the
Si-fibres (§1. Definition of g). Clearly the obstruction to extending the non-zero
cross section w|f(S™) to a non-zero section of v|f(D**') is equal to that of ex-
tending w!|f(S™) to a non-zero section of ¥ fo(S"x D) Uf(D"*'x1). So < (fi=r (fu);
hence we have p(fi=u(fp). In a similar manner we show n(g)==r(g,). This com-
pletes the proof of step (I).

Step (AD. Afo, g)=4(f", g, plfo)=0'(f") and p(g,)==1'(g").

Proor oF StEp (II). By (A4-2°), the intersection Tfs(S*x &g (S"=< I} con-
sists of some arcs and circles. Let C be such a cirele, C, and C, its liftings to
Fo(S~x<I) and g<(S™xI) respectively, i.e., C, =5 HC)Nfs(S*xI) and C,=F 1 C)N
gs(S™ < I). Since C,cfs(S*xI) and C,cgs(S"xI), they are contractible in =T
(recall n=2). From this, we see that the contribution of points in C,NC, to
Afp, gp) is zero®. Similarly the contributions to p{f,) and x(g,) are zero. So in
comparing A{fs, go), ete. with Z(f’, ¢’), ete., only the intersecting arcs are rele-
vant.

Next let A be an intersecting arec (Cafs(S*XINEgAS*x Iy Y*) with
terminal points 2., p:. Clearly {p,, pJcLUL’. Let A, and A, be its liftings to
fs(S*<I) and gs(S"XI). For the sake of convenience, let us introduce the fol-
lowing notations:

a,{A)==the contribution of points {p,, N L to alfs, g,) (=alf, ),
Bo(A)=the contribution of points in A,NA4, to Bfu, g.),
a’'(A)=the contribution of points {p,, pJNL’ to «’(f’, ¢').

We want to show

(%) ay(A)+H (=1 (1—1)fu(A)=a(4) .

Let p{ and p? (or p{ and p? be the liftings of p, (or p;) to fs(S*x0US*x«1)

®  See Added in proof ét the end of this paper.
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(=£(S"Uf(S") and to ¢,(S"<0US*x1) (=g(8*) Ug’(S") respectively.
There are three cases (a)~{c). We consider them separately.
Case (a); {ps, pitc L.
Subcase (a-0) when A,NA,=~¢. Then g,(f, 9)=g,(f, 9) and ¢, (f, g)=—¢, (f, 9).
Thus «,(A)=0. On the other hand, 5,{4)==0 and a’(A)==0 are trivial. Hence (%)

follows.
Subcage (a-1) when A,VA,={q}. By exchanging the notations p, and p,, if

, along @-!(po) positively )
necessary, we can suppose that the arc {p/ p%} is homo-

Ay A
topic in % T to the are {p/ ~—~J“'>q*~~ff> pi} fixing »f and p?. Then

A f i ""Q) -1

. 7 -t \
o f B b 0 pf = iy

A A,
sl pf = g pl— 4

wf N — p o B
== l_\‘]:)_, pu’ ;A,,J,, :plf P > pY .ill » pl /.,(.gf)w, %)

7N - g !
i ey iy Y e &)

=g, (g, )
::gﬂx(f) g)'tul s

by the proof of 1.9. Therefore, g,/(f, 9)=g,(f, 9)-t. <c,,=-—¢, is obvious. So
(A= 8 B0 Epo - 78 p 85, (1~ 1),

Now the sign ¢, of the intersection f,(S*XI)Ng,(S*XI) in & T is computed
as follows: First orient A, and A, by the directions [p{—>p{] and [pi—> p7].
Then

o LS X D] {gn(S* X D),
o [# T
S X [AAX 98] X [4))
N LIS X [A,]
(Local orientations are those at »J or pf, but they
are brought to ¢ along A, or A,.)

oy MO X TS X 41X A
= [LP] X [S]x{4,] '

In a neighbourhood of ¢, one may consider that the directions [S'], [A/], [4,] are
in the same 2-plane, then clearly [S'IX[A,]=[A/]1X[A4,] (see the figure below).
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A
»} g
‘ q
syl | ]|
* i
A
o 1Sh !
Therefore &j=(—1)" [f(S")]_,[,{ZE;:{Jg(S“)],,G =(—=1)",,. As is easily seen, gi=g,. So

we have
igl) (A) =5 (ﬂw 1)“5};0 N g;;o .

Hence ay(4)+(—1)"* {1=)3,(A) =¢p, @y, (1= 1)+ (— 1" (L~ (-~ 1)"s,,2, }=0. On the
other hand a’(4)=0, for {p,, P} L'=¢, and (x) follows.

Subcase (a-r) where AN A,=~{q, ---,¢}. This case is treated by essentially the
same method as in (a-1). One can verify that

ap(A)=¢,8p(1~1%) ,
and
(=D ep @ oLt <o 227 for >0,
B (A)=10 for 2=0,
(=)o g (7 7 oo 7)) for 2<0,

wherh %=(the number of ¢, ’s at which A, crosses 4, positively)--(the number of
¢’s at which A, crosses A, negatively). From this, () follows. (a’{4)==0),

Case (b); po€ L and p,e L’ (by exchanging the notations po, P, if necessary.)
Subcase (b-0) when A,NA,~$. Then we have g, (f, 9)=g,(f,9) and s,(f, g)=
en (f, 9). Therefore, a,(A)=a’(4), 5,(A)=0, and (x) follows.

Subcase (b-1) when A,NA,={g}. In a similar way to (a-1), we have

gpl(f,; g,):gﬂo(fs a-t,

e T

and
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Therefore «,(A)=c,8,, Sp(A)=(—=1)"¢,8,, and a’(A)=:, g, -t. From this, (») is
easily verified.

Subcase (b-r) when A, A,=={q, -, q,) is treated similarly.

Case (c); {po, P L.

Subcase (¢-0) when A, A,=¢. The verification of () is the same as in (a-0).

- A
Subcase (c-1) when A,NA,~{q}. We may suppose that {p/— pi}~{p/ i
An . i N
q > p}} (fixing p/, p). We have g,,(f/, 9")=8s(f, §')t, €2y=—55y &/ =85, and
eh=:(—1)" e, Hence B,(A)=(—1)"""¢, &, &' (A)=¢p 25 (1—1), and clearly a,(A)=0.

(#*) is now easily verified.
Subcase (¢c-r) when AN A,~{q, ---,q9,). The verification is the same as {a—7),

o

and we omit it.
By (a-1)~(c-r), the formula (%) is established. i(f,, g,)=4(f’, ¢’} is now
proved as follows:

Mfu, guy=alfu, @)+ (=" A—{5(fs, g5+ B, ¢
= ; a, (A)-+H{(—1)"*" (1—~1) };:' BulA)+ (=) A -85, ¢")
(the summation runs over all the intersecting arcs
of G (S"xXINEgs(S*xI).

= $ o/ (A)+ (=1 1—-0)B(f', g')  (by (%)

=a(f’, ¢')-+ (=) (1A', g°)

=2(f",g') .
In a similar way (by replacing the intersecting arcs with double curves), we can
prove that a(fy)-+(—1"A—8)8(fu)=a(f)+(—1)***A—-)A(f’). In order to prove
p(fu)='(f"), it remains to show < (f;)=¢"(f’). This follows from the facts that
Fs(S*x I) is transverse to the S'-fibres (by A-2°) and wlf(S™) is extended over
Fo(S*xI). go)==1¢(g’) is shown similarly. This completes the proof of Step (I1).

Lemma 3.5 is now clear by Steps (I) and (II). Q.E.D.
COROLLARY 3.5.1. Let Wt be a 2n-Poincaré thickening embedded as a
regular submanifold in 3Z, the boundary of a 2n-+3-manifold Z***°. Let L*",
Y=+, E, 5N, F, 5T be as in 3.5. Suppose that the orientation of W is
induced from that of 0Z and that the number of connected components of W
is at most two. Then if x, y€x,.(E, F N) is in the kernel of iy: 7...(E, # N)
—>m, i (F, 5 T), we have
Az, 9)=0,
and
wx)=p(y)=0.
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Proor oF 3.5.1. In the case where W is connected, the corollary is a special
case of 3.5 with #’=%"=0. (In this case even the existence of another W’ is not
necessary.) (In the case where W has two components W,, W. some care is
needed because an element z in =, (E, 5 N) (=x,.(E,, 5 NP, (Ey, 5 N,))
is not in general represented by a pathed map of (D"**, S™ to (E,.~"N), but by
a pair of two pathed maps fi:(D**!, S*) ~>(E,, & N,) and f.: (D", 8*)—>(E,,
S N,). (We are considering that N, and ¥ N. have separate base points.)
Let a pair of pathed maps (g,, g.) represent . Then clearly

/:(17, y):"uzi(flr gl)u'}—)"‘?(fi! g.‘) '
()= (f)+p(f) .

By the hypothesis, 4,(2)=1,(fiDf)=1,(f)+.(f2)=0, thus ,(fi}=—1,(f). Similarly
1(g)=—1,(g)). Therefore, by 3.5, if the orientation of W. were defined by the
inverse of [0Z], then we would have A (fy, g)=2(~f:, —g:)=2(f2, ¢2) and g, (f))=
to(—fo)=p(f2). However, in 8.5.1 we are assuming that the orientation [W.] is
induced from [8Z], so in fact we have A(fi, g)=—2(f2, g.) and r(f)=—p(f).
Therefore, A(x, ¥)=4.(f1, g0)—A(f1, 90=0, and ple)=/(fi)—m(f)=0.

The proof for z(y) is the same. Q.E.D.

CHAPTER II. THE OBSTRUCTION TO FINDING A LOCALLY
FLAT SPINE.

§4. Necessary and sufficient conditions.

In §1.1, we have defined m-Poincaré thickenings. Here we introduce the
relative notions:

A pair (W™*, U™*!) consisting of a compact m-2-manifold W"'* and a regu-
lar m-1-submanifold U™ of 8W is called an m-Poincaré thickening pair if it
is a simple Poincaré pair of formal dimension m. Then, of course, U ig an
m~—1-Poincaré thickening.

Moreover, a triad (W=**; Um*, V"*') is called an m-Poincaré thickening
triad if it satisfies the following:

(i) U™ and V™' are regular m-+1-submanifolds in dW"'? such that UnVe=
aUN3dV. Denote the intersection by X™.

(i) (U™, X™) and (V™*!, X™) are m—1-Poincaré thickening pairs.

(i) (Wm*z, U1y V™*) is an m-Poincaré thickening pair.

DEFINITION 4.1. A spine of an m-Poincaré thickening pair (W"3, U""") is a
proper m-submanifold (L™, dL)yc (W, U) such that the inclusion 1: (L™, 0L)~—>
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(W, U) is a simple homotopy equivalence of pairs. Then clearly L is a spine of
Uum,

Suppose we are given a connected special m-Poincaré thickening pair (W™'2,
Um*Y) together with a locally flat spine K" % of U™, (For the meaning of
“gpecial”, see §1.1.) The main purpose of this section is to give necessary and
sufficient conditions for (W, U) to have a locally flat spine L™ such that ¢Lm=K"",
(4.12). For this purpose, the Seifert form (=,.,(E, % N}, 4, 1) plays an essential
role.

In chapter I, the Seifert form (z,,,(E, 5N}, 2, 1) is defined for an exterior
2-connected closed submanifold L** of a 2n-Poincaré thickening W**"*. However,
there we used essentially neither of the hypotheses that W is a Poincaré thicken-
ing and that L is a closed submanifold. In fact, the Seifert form (z,.,(E, % N),
2,11 is defined in the same way as in §1 for any oriented exterior 2-connected
submanifold (with or without boundary) of an oriented compact manifold W22,

In our case of a Poincaré thickening pair (W, U), the tubular neighbourhood
N of an exterior 2-connected submanifold (L, 5L)c (W, U) should be taken so that
NN U is a tubular neighbourhood of 4L in U. Denote by E, &+ N the exterior
W--N and the frontier ENN respectively, then we have the Seifert form
(z, (I, »"N), 4, ). All the results in §§1~8 are also valid for this form.

Lemma 4.2. There a ewxists locally Aat submanifold L™ with dL=K which
represents the fundamental class of (W, U) as a Poincaré pair. Moreover we
can perform codimension 2 surgeries on Int L to obtain anm exterior [m/2]-
connected submanifold.

This is proved in {10}, Lemma 3.4.

Hereafter we shall denote by L™ a locally flat exterior [m/2]-connected sub-
manifold with ¢L=K which represents the fundamental class of (W, U). Simply
we write 7, =m (S N), wl==ny (L), J==Z[z], 4==Z[z]]. Note that if m=4, =, (L)=
(W) (1.3, ().

THE ODD-DIMENSIONAL CASE

This ease is dealt with in [10], where the following theorem is proved:

THEOREM 4.3. Suppose m=:2n-+125. There is an obstruction W, U, K)
in the oriented surgery obstruction group L.(z!) such that n=0 if end only if
(W, U) has a locally flat spine extending K=,

THE EVEN-DIMENSIONAL CASE

This case occupies the rest of this section. Suppose m=2r=4. As the inclusion
i: L7—>W"" is a degree 1 map between Poincaré pairs, ig: Hi(L™; 1')—>
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H(W; ') is onto for Vk. Its kernel is denoted by K.(L; .t"). (Here H.(L™; 1),
ete. indicate the k-th integral homology of the universal covering of L», etec.)
The condition that L™ is exterior [m/2]-connected implies (1.8. (ii)) that i: L™
Wm** is [m/2]-connected and that K,(L™; .1)==0 except for k=[m/2]=n. Moreo-
ver, by Wall [29], K.(L™; 1) is a stably free, stably based .1"-module.

Let 1—>C-—>z,—>={—>1 be the ecyclic extension associated with W (1.6),

P~

t the special generator of C.
LevMA 4.4. The sequence

~

[/

1-¢
:n+I(E) fN) — To(E, SN)

» K (L V) =0

18 exact. ¢ is defined by the composition

@ Hurewicz

% 20 (5 N) > 2.(L) HL;.l).

tn%—!(Ey ~—9_N)

Proor oF 4.4. Let VT’LW denote the universal covering of W. Let
E=p(E), = N=p(sN), N=p-(N), L=p*(L). N and L are the universal
coverings of N and L, but, in general £ and N are not so. In, fact, =(F)=
m(‘;:/ )=C. By the Hurewicz theorem,

. o~ 1—t ~ ——_ Hurewicz L
‘.:n-{vl(E'y ﬁpN)w*ﬁn%-l(Er y-N) Hn+l(Ey y‘N)W’O
I .. - excision
is exact. On the other hand, m,.,(E, & N)=x,.(E, & N) and H,,,(E, 5 N) ===
H,. (W, \)=K,(L: #). This completes the proof. Q.E.D.

REMARK 4.4.1. Lemma 4.4 is reformulated as A’@x,.“(E’, F NY=KAL; A",

where {— .1 is induced from =, -, 7. Then ¢:m,.,(E, # Ny—>K(L; ) in
4.4 is identified with the mapping z+ 1Qx.
Following Wall [29], K.(L; 4’) has the structure of a special (-1)-Hermitian
form (4, 110);
Aot Ko(L; YKLy A)y—> 47,
ot Ko(Ly A)—>Qu(xl) ,
where Q.(z))=1'/v—(—1)slve A}, Let wy: Ad—> A, &x:QL(r)—>Q.(z]) be in-
duced by @, : 7, —>=x].
LemMma 4.5. Let (2, ¢) be the Seifert form difined in §1. The following
diagrams are commutative:

2
('i) 7z.n+&(‘E’, ‘QWN)XKW{'I(E) yN)MA
IxXa ‘ W
KoL A Ku(L; Ay~ 17,
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(i) muar B, 57N 2 Qi)
KL )= Q,=]) .
PROOF OF 4.5. & d(f, pr=walalf, ) -+ (D" A 05(f, @) =wwalf, g)=2,@f, og).
The proof for p is similar. Q.E.D.

Next we study the effect on (=, (K, 57 N), 1, 1) of surgery along a trivial
n-handle, i.e., an n-handle which represents the zero element of =.(E, 7 N).

For the calculation we need a precise description [10]. Let H=(2D"x D"
be a normally embedded trivial n-handle attached to L®" (3.2), where the suffix t
indicates a trangverse disk. We assume HN L==28""'% D"’ and HN E=D*x D',
We want to study the surgery on L** along H, but for later convenience we shall
perform a surgery along a slightly thinner handle H’==(2D") % ~§- D', Then we

have the resulting submanifold L= (L2"~28“*‘>< g—m”)uzz)ﬂx %s:. Let

@ : N-—=L* be the normal 2-disk bundle. It is proved in [10] that the restricted
bundle NU28»'xDr'") is trivial;

(%) NI@2S* < D; =28 ' x Dy Yy (D*x DY,

with NS "< D)1 L= (28" x D )% 0x0. Write D'=D' UD. where D.=
[0,1} and D!=[—1,0]. We may assume that HNN=(25"" xD}")» D' X0 by
identifying 2D"—D"x Dp*' with (2S*-'x Dr*'y% D\ x0. Consider the normal D'-
bundle of H in W', This is a trivial bundle Hx D!, suffix f indicating the
fibre D'-disk. We assume HXD,NN=@2S"'x D= (D'x D), where D} is
identified with the fourth D' in ().

For the sake of simplicity, we put Ve=HX D', N E(=D"x D! *x D') and V=
2D x ~§-I);‘*‘><D‘,U2S"“’>< ~-§~D?":»<D",, X D'. We specify the regular neighbour-

hood N’ of L’ as follows:
N'=NTV=V
Let E’==W_N’ be the exterior of N’, and % N'==E’\N’ the frontier of N’.

We also use the notations N*=NU V=N'UV’, E*=W—-N* s N*=E*nN*
Y o NUV, and Y'=0"N'UV’. Consider the following diagram ( f-coefficients):
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H(Y, #N)—> H{E, 5~N)—> H{(E, Y)—> H, (Y, < N)
!gexcision

(%) H(E*, 5~ N¥)

|

H(Y, Z"N')—>H/(E', & N')—> H(E', Y")-—>H_(Y’, "N’} .

Zexcision

Note that (Y, N)~(= NuUD", 5~ N) and (Y, " NY)~( N UD**, + N,
then by (*%) we have

H{E, 5" N)-—> H(E', 5 N} —>0 .

for i=n. Therefore, if L™ is exterior n-conneted, L’ is exterior n-connected, too.
Also the second row of (x#) with i==n--1 yields

(k) H, (Y, 7Ny~ H (B, 5Ny~ H, (£, Y)—>0.
Y ¢!
I
{
A

H,..(Y’, % N') has a canonical generator ¢**' which is represented by I)"*! of
1 .
g Di't of 2D LD,

Since H(=2D"xXD;*'} is a trivial n-handle, S*'>(p (where S*!=3(1D", peSi=
éD;"') bounds an n~disk D¢ in & N—{2S* ' x D) xo(D'x DY)} {(see (%)), and the
n-sphere DiUD"Xp (C %N’ is null-homotopic in E*. Thus it bounds an
n+1-disk DF** in E*. As an element of =, (E’, % N}, D}*' satisfies #(J(e"*Y),
Dr*Y)=1, where 2 is the Seifert form associated with L’ (Chap. I). (Of course,
the orientations of ¢(e"*') and D'’ and their pathes have to be chosen appropri-
ately.) Hence Ker ¢=0. Moreover, if we define ¢': H,.(F’/, 5 N')—>H, (Y,
SN’ by (2)=i(z,Dy"")-¢""", we have ¢ s¢=id. Therefore, the short exact
sequence (kkx) splits; H,. (&', & N)=H, (£, Y)D.1z, z standing for the

generator J(e")=0x %D;““‘. The first row in (#x) for 4==n--1 also splits, for

(F N'UD*', 5= N'), and ¢(e*"') is represented by 0X

H,(Y, 5 N)=:1 is generated by the boundary dD;"'. If the right inverse of
H,.,(E, Y)—>HJ(Y, 5 N)—=0 is defined by D7+ D', we have the splitting
H, (E, Y)=H,. (E 5 Nybiy,

where y=[D?'']. Hence by {**) and the Hurewicz theorem, we have
Tost(B, F N B, " NY DAz DAy .
Note that the union HU0X --é—D?“UD{‘“ is engulfed in a 2n+4-2-ball B***® guch

that B***N L*"==(a 2n-ball), because H is a trivial handle. So a map f: (D", 8%
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—>(E, .2~ N) representing an element of =,.,(E,  N) also represents the cor-
responding element of =,..(E’, 5 N}, if f is carefully chosen so that f(D"*)(N
Beritosg),
By the above, the Seifert form (7, ¢/} on =,.,(E’, .Z"N’) is calculated as fol-
lows:
(, p')ma B, " Ny=(4, 1),

(25)
Mz, m)~=#(z, y)=0 for all ze€r,. (E, 5 Ny,

M, =1, ¥y, z)=(=1",
(26)

P Y—

1 (@)= (y)=0 .

We shall call the form (%, /) over zP.dy which is given by (26) a standard
plane.

Let us summarize the above result.

LeMMa 4.6. Let L*" be a locally fat exterior n-conmected submanifold
(n=z=2). If we perform a codimension 2 surgery on L*" along a trivial n-
handle, the resulting submanifold L’ is also exterior n-connected, and the effect
on the associated Seifert form (m,.(E, 5 N), A, 11} 18 to add a standard plane.

This is the analogy of [29, Lemma 5.5] in our context.

SOME ALGEBRAIC DEFINITIONS
Here we clarify some algebraiec formulations we will need. Let & :;1—>C—>

w

T »z’—>1 be an extension of finitely presented groups such that C is a

(multiplicative) eyclic group with a specified generator ¢ which is contained in the

centre of =. Let A:=Z[z], V=2Z[z"], Q.x)=Allp—(-=1)"-tlve 1}, Q.(z")= 1"~

(=o' e 1) wa: A—> 1 and Ty QL(x) —>@.(z") are induced by =.
DEFINITION 4.7. A triple X==(G, 1, #) consisting of a finitely generated left

A-module G and maps 2: GXG—=_1 and s: G—>Q.(x) is called a ((—1)"-) Seifert

form over ¢ if it satisfies the following:

() Ma, pe=(—1DIy, 2)-t for Va, v,

(i) for any fixed y, A(x,y):G— .1 i3 a .{~homomorphism,

(i) e +y)=rdx)+ly) + (e, v),

(v) Az, )= p(z) -+ (—1)" () ¢,

vy rlax)=aplz)d for a€ 4,

(vi} the tensor product (:1’@@, Wxod, Txoy) is a speeial (—1)*-Hermitian form
over .1’ in the sense of Wall [29].

Although J'@?G is a stably free .4"-module by (vi), G is not assumed to be a
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stably free .f-module. This is because =,.,(E, 5" N) is not necessarily a stably

free -module. If G is a free .f-module, X is called a free Seifert form. This

notion is needed in later sections (§5~). Neither do we assume that 2 is
nonsingular. This corresponds to the non-triviality of the “Alexander polynomial”
4{t)y="det 2”. However wyci is nonsgingular by (vi), and this corresponds to the

fact that 4(1)=-1 in the classical theory. Cf. Seifert [22].

By 3.1, 4.4 and 4.5, the Seifert form (r,.,(E, .5 N), 4, 1} defined in Chapter I
is a {—1)*-Seifert form in the sense of 4.7.

The direct sum XP Y of two (—1)*-Seifert forms X=(G, 4, ) and Y=(G’, %, ¢)
is defined by (GDHG’, iPY, p4-p).

DEFINITION 4.8. Two Seifert forms X and Y are stably equivalent if the
direct sum of X and some number of standard planes is isomorphic to the direct
sum of Y and standard planes

Now we study the necessary conditions for the group K.(L*;.l') to be killed
by the surgery in codimension 2. ¥For this, we need

DEFINITION 4.9. A Seifert form X=(G, 2, 1) is said to be null-cobordant if
(i)  there exists a sub A-module HCG such that A(Hx H)==0 and p(H)=0,

(ii) H is mapped under the canonical map G—> 1'®G onto a sub-kernel H’ {in the
sense of Wall) of the special Hermitian form A’ Q?G. (Hence A’ @G is a kernel.
Wall [29] Lemma 5.3.) ‘ |

This definition is a generalization of cobordism of Seifert matrices due to Levine

[13]. We refer to the sub 4-module H as a Seifert sub-kernel of G. Note that we

do not assume that a Seifert sub-kernel is a free direct summand. A Seifert form

is stably null-cobordant if it is stably equivalent to a null-cobordant form.

DErFINITION 4.10.

(iy A triple f=(Wn*2 Un*!, K™} consisting of a special m-Poincaré thickening
pair (W=*2, U»*1) and a locally flat spine K" ! of U”*! is called an m-object.

(i) An m-object O=(W=*2 U=*1 K™-1) is null-cobordant if there exists a special
m-+1-Poincaré thickening triad (Z7%; Wm*2, X"*%) such that
(-1°. WnX=uU=",

(ii)-2°. the m-~Poincaré thickening pair (X, U) admits a locally flat spine M*
such that M=K,

(i1)-3°. the associated eyeclic extension of the pair (Z, WUX) is isomorphic
to that of (W, U). (ef. 1.6.)
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Fig. 6.

Prorosition 4.11.  Let O==(W==, U™, K™Yy be a 2n-object with 2n=4.
Suppose the number of the connected components of W is at most two. Let L**
be a locally flat exterior n-connected submanifold of W such that 6L=K. If the
object 0 is wmull-cobordant, the Seifert form (m..(E, S N), i, 1) associated with
L is stably null-cobordant.

Proor oF 4.11. The argument is an extension of those in Levine [18] and Wall
[29]. We use the notations of 4.10. M?* and L* are L-equivalent [27], so there
exists a locally flat submanifold Y of Z®***® guch that 0 Y=L**UM*. Applying
4.2 to (Z, WU X), we can make Y***! exterior n-connected. (In 4.2, 67 is assumed
to be a spine, but to prove 4.2 this assumption is in faet not necessary. See
Lemma 3.4 in [10].) As in §3.5, we denote by T, F’ and .%# T a regular (or tubular)
neighbourhood of Y, the exterior of T in Z and the frontier of 7' (=TNF'), respec-
tively. We assume that Fn W=F, & Th W=4%"N, and that 7O X is a regular
{or tubular) neighbourhood of M*®* in X™'°.

E —> F
Let & denote ( T ? ), then we have
AN T
H, (E, &N, y—H, (F, &+ T; Ay—>H,{¢; 1)—>0
I i *2
{ | |

7[154‘1(1‘?; \r;"wi\"y) > zn+l(P’; u}'-T) —> 7:114»1(@) _40 0
We want to make H,.,(¢;.1) zero. The method is an analogy of [16]. Let
Df _*__?,Dfnl
( l T —>¢ represent an element x€ H.,.,(@; 1), where 6D"*'=D7UD*
St D7
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is the standard decomposition. f can be approximated by an embedding, and is
extended to a “normally embedded knob .J ™ attached to Y**"!. However, as in the
observation preceding 4.6, we need more detailed descriptions.

Let J=(D"*', D7, DYYyX Dt (F* 7%, B 57 T) be a knob of dimension 2n--2
such that the “core disk” (D™, D7, D")%0 coincides with the image of /, (here
D" is the transverse n+1-disk). We can suppose that &[(D”, S*")x Dyt (D",
S HX D —>(Y**1 L*") is an embedding, where & : .-~ T—> Y is the projection.
Clearly the restricted 2-disk bundle 7|&(D*x DY is trivial:

(%) TIED < D =D Dy (D' DY .
D' denotes [—1,1]. We can make the identification JN. " T=D < Dy e 3D
X Dp*)x1x0, and let D*1=D U(FD*> D )% [0, 1150} (D™ is the core disk
of J).

For the later convenience, the modification is done along a thinner knob

Jl =Dt —§—~D?" (as in 4.6). We obtain the resulting submanifold Y’

{Y~—%< "% %D?"‘)} U (]A)"“"‘ % ﬂg’wS;‘). It is easily seen that we obtain L'"=
YN W from L™ by performing a surgery in W*"* along a trivial n-handle, so
by 4.6, 7...(&, 5 N) is changed to 7,.,(E, 5"N)D(a standard plane). However,
this does not affect the stable equivalence class.

A normal D'-bundle of J in Z**** ig clearly trivial; Jx D), where D' denotes
the D'-fibre. We may asume JxX DN s T=&(D"x D)% {1}x Dt (ef. (*)), and
we write

V=Jx D},
and

V= (f)"‘l X A;;D;* ‘ ‘) KDY UGD DYy (-1, 0] x DY (ef. (%)) .

Let 7” be the regular (or tubular) neighbourhood of Y’ defined by 7"-(7TU V)= ",
F’ its exterior, and %77’ its frontier. Let N'=Wn1’, E'=WnF',6 .~ N':-
W1,

Some more notations are needed;

T*=TUV=T'UV’, F*=Z-T%
S T*=T*n F*,

N*=WnT* FE*=WnF* o N=Wns T*
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E* b F* Et — I;n’
Now we wish to compare g{;"-z( T T ) with qp’::( T 'f

FN* e G T N — =T
In what follows, coefficients are understood to be 4. First, note that by excision,
HJ(E*, oo NYy=H (E*UA, o« N*UA)=H(E', % N'UA’), where A'=WnV,.
Similarly, H (F*, 5 T*)=H(F', s T' U V). However (£, 5N’ UA’):(E’, SN’

U ; D,"“) and (F7, 5 T"U V)~ (F', ST %-DZ‘ ”). Therefore, H(E*, >~ N*)
= HAE, 7N’y for 1sn and HJ(F*, s T¥=HJ(F', 5 T’y for 1<n, so by the
Five Lemma, we obtain

H/(@)=H.(0% isn.

For i=n-+1, we have the diagram

H,., (;/‘N’ U %l),," 1 .f/‘N’) —— H,., <.;’T' U «é— Dy, ;}’z'—T')g.ﬂ

|

Hn m(E,, «;"‘N’) > H,w I(Fly S T') e Hnu((l’l) -0

! } !

H,.,I(E',.';“N'u—;—m“)wa (B, T UD ) —— Hou@%) —— 0 .

l }

0 0

This shows that erl(@,)g‘ n+1(q)*)o

Next we compare Hy (0% with Hy(®). Let A=Wn V. By excision, H.(E*,
SN H(E*UA, 5 N*UAY=HJ(E, & NUD"). On the other hand, H.(F¥*,
FTRHF*UV, s T*UViH(F, 5 TUJ). Here note that (F, 5 TUuJ)~
(F, 57 T), because J is a knob! So Hy(F*, 57 T*)=HF, 5 T). By these iso-
morphisms and the assumption H,(@)=0 for i<, we have H/(¢*)=0 for i:<n.
For i==n-+1, consider the following diagram

0

l

Hn») l(Ey y—N) TTT— Hn+1(Fy yT) T— Hn+l(@) ‘—_’0

| . |= | onto

Hnw‘l(Ex L5;‘“1\)'Ul)2) — Hﬂ-él(F; y‘TUJ) - Hrﬂ'l(@*) — 0

l

H (s NUD:, 55 N)=4.

!

0
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We assert thatt he element z¢€ H,.,(®), which is represented by the core disk
(D=4, D2, D)yx0c{F, E, 5vT), is in the kernel of H,.(@)—> H,.,(¢*). Since
(E, 5~ N) is n-connected, (D?,dD)G(E, 5 N) is null-homotopic, so there is an
n+1-disk 4**' in E such that 4"=D?, 4°< 5 N, where 617 =1:1" is the
standard decomposition. By gluing n-+1-disks J°*! and D*'! (the core of J) along
D?, we have an n-+1-disk (D3, oDy yc(F, .~ T). This is a lift of v H,..(®)
to H,..,(F, 5= T). Considered as an element of H,. (F, .~ TUJ), it coincides with
the image under ¢ of the element which is represented by (J°*%, 547 c{E,
# NuUD?. Thus by the exactness of the second row, we have H,,  (@¥%)=
H,.(@)/4x. Combining this and H,.,(¢")==H,..(0*), we obtain H,.,(@")=H, .(¢)/.Ix.
If L*™ and Y*%"*! are exterior m-connected, so are L’ and Y’ and the induction
argument can be applied. Since H,.,(®) is a finitely generated .I-module, H,.(®)
can be reduced to zero after a finite number of processes of modifications as above.

The proof of 4.11 proceeds as follows: Make =,..(@)(==H,.,(®)) zero. Then
7aei(E, 5 N) is changed to 7, (&, 5" N)P (some copies of standard planes), but
this does not change the stable equivalence class. Hereafter suppose =,..(@)=0.
Let H be the kernel of =,.,(E, 5 N)—>=r, (F, > T). This map is surjective
because =,.,(@)=0. Let A'=2Z[r,L]=2Z[x,Y]. Since the tensor product functor
A’Q? is right exact, we have

;1’8’)H—>A’§)rr,m(E', fN)———wl’Q?:r,,“(F, G Ty—>0

I onto ) 441 44.1
! {
Oﬁ—a’Ku"'l( Y; L; AI)___)K"(LQn; A,) — Kn(Y; A,)MO .

Wall [29, Lemma 5.7] proved that K,.,(Y, L:.l') is a subkernel in K(L;A').

Hence ,1’®H is mapped onto a subkernel of A’®rs,,“(E 4 N). Finally by 8.5.1,

HHx H)== 0 and p(H)=0; thus by Definition 49 the Seifert form (7,.,(E, » N},

A, 1) is (stably) null-cobordant. Q.E.D.
The next theorem is the main result in this section.

THEOREM 4.12. Given a connected 2n-object G==(W=™'2 Ui K ) qwith
2n=86, the following four conditions on 0 are equivalent:

(1)  W>** admits a locally flat spine M** such that M=K,

{i2) 0 1s null-cobordant.

(i11) For any locally Aat exterior n-commected submanifold L™ such that
dL=K, the Seifert form (z...(E, % N), 2, 1) associated with L 1is stably
null-cobordant.

(iv) There exists a locally flat exterior n-connected submanifold L*" such that
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aL:=K and the Seifort form associated with L is stably null-cobordant.
If 2n+-4, we have the impleations: (4)==) ({1)==(§i1) == (iv).

ReEMARK. In (i), we do not assume any exterior connectivity on M*".

Proor or 4.12. Suppose 2nxz4. If (i) holds, let Z**=WxI and X=UX
TUWx {1}, I==[0,1]. Then X has a locally flat spine KxIUMx {1} extending
K {0). So by Definition 4.10, the 2n-object 0=(Wx {0}, Ux {0}, Kx{0}) is null
cobordant. (iij==:> (iii) is proved in 4.11. By 4.2, there always exists a locally
flat exterior n-connected submanifold L™ in W such that dL=K. So (iii)==3(iv)
is trivial. We now prove (iv)==3 (i) assuming 2n26. By performing surgery on
L2 along trivial n-handles, we can add sufficiently many copies of standard planes
to 7,.(E, 5 N), (4.6). Therefore, we can assume that r,..,(kK, .%"N) is actually unll-
cobordant. Then there is a /A-submodule HCx, . (E, % N) such that A(HXH)=0,
1(H)=-0, and under the canonical map Tos(E, % N) _—»/1’@::,,”(1?, FNy=KJ(L; 1),
H is mapped onto a subkernel H’. Let e, ---,e,€ H" form a preferred base of
H’. Let é,, «-+, €& be their lifts in H, i.e., ¢; is an element which is mapped to
¢, under H—>H'. Since (¢, é;)==0, 11(¢,)==0 (¥4, 7), ¢,’s are represented by normally
embedded n--1-handles attached to I which are disjoint to each other (see 3.3 and
3.4). So we can perform the surgery on L°* along these m--1 handles to obtain
a new locally flat submanifold M*r< W* <2, Since the attaching n-spheres of

these handles represent €, ---, ¢, K, (M; A’) vanisnes, and the resulting sub-
manifold M* must be simple homotopy equivalent to W% (Wall [29], §5.6).
This completes the proof. Q.E.D.

§5. The obstruction theory.

In this section we shall introduce certain abelian groups and reformulate the
results in §4 in terms of these groups.

According to 4.3, we know that there is nothing new to do in the odd-dimen-
sional ease (except 5.11 below), so in this section we treat mainly the even-dimen-
sional case.

With Theorem 4.12 it seems quite natural to define an even-dimensional ob-
struction group as the quotient of the Grothendieck group of all (fre or not)
Seifert forms over a cyclic extension & modulo stably null-cobordant forms.
However, this definition has two difficulties:
1°  Are all Seifert forms geometric?; Given a Seifert form X=G, 4, is X
isomorphic to a geometric Seifert form (m,..(E, S N), 4, ¢)?

We do not know any complete answer. However, if X is a free Seifert form
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(c.f. 5.1 below), we have an affirmative answer to this question (cf. 5.2).

2° Is there a cancellation theorem for Seifert forms?; If XcBY and Y are
stably null-cobordant, is X also stably null-cobordant? Although we have no
general solution, we can prove it for free Seifert forms (cf. 5.3).

To avoid these difficulties we must define the obstruction group by using only
free Seifert forms. Unfortunately a geometric form (=...(F, %"N), 4 1) is not
always free, so we need a certain device to modify the situation. This will be
done in sections 5.6~5.9.

Let us begin a more detailed discussion, throughout which we fix a cyelic

extension of finitely presented groups &7, 1-—> (> = z'—»1 such that
Cceentre of =, where C is a (multiplicative) eyclic group with a specified gener-
ator t called the special generator. A 2n-object 0=(W, U, K) (or a Poincaré thick-
ening triad (W; U, V) is said to be over  if the cyelic extension associated with
W (1.6) is isomorphic (preserving the speecial generators) to & .

All 2n-objects and Seifert forms considered below are understood to be over
se. Let A=Zz], A'=Z[7'].

DEFINITION 5.1. A {—1)*Seifert form X=(G, 4, ) is free if
(i) G is a free .I-module with a specified basis {¢,, -+, €.

(ii) The special (—1)"-Hermitian form A’@X is actually .V-free.
(i) {1®é,, ---,1Q¢;} is a preferred basis of J’@X.

The next lemma tells us that all free Seiferé forms are geometric. Let U**!
be the total space of an oriented D*-bundle over a compact connected oriented
9n—1-manifold K®*-!, such that, considered as a 2n--1-Poincaré thickening pair,
the eyclic extension associated with (U, UI0K) is isomorphic to & {preserving ).
The existence of such U>'! is stated in §1.5. K*' is considered as a sub-
manifold of U™ by the zero-section.

LEMMA 5.2. Suppose 2n=6. Given a free (-——1)"-Seifert form X=(G, 2, 1),
we can find @ 2n-Poincaré thickening triad (W& '*; U™, 271y over  such
that
(3 U2 has the structure of the total space of an oriented D*-bundle over a

compact manifold K" ' which is simple homotopy equivalent to K. We

think of K2 as a submanifold of U"* by the zero-section,

(1) UnU,=UldK=U,|10K, and KNK,=0K=0K,,

(i14) there exists an exterior n-conmnected locally fat submanifold L* of W
such that dL=KUK. and the Seifert form (z.(E, 5~ N), 2, 1) associated

with L is isomorphic to X,
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(iv) (W; U, U.) is simple homotopy egquivalent to (K< 1; Kx0, Kx1UcKx1I).

Proor or 5.2. Note that fl’Q?X is a special Hermitian form. Theorem 5.8
of Wall [29] asserts that there exiéts a compact manifold triad (L®**; K****, K"
and an n-connected map ¢:(L; K, K.)—> (K« I; K0, Kx1UGKxI) of degree 1,
such that
(1°y ¢|K: K~> K <0 is the identity map,

(2°) ¢|K. is a simple homotopy equivalence,

(8°) there are pathed framed immersions g;: S"—>L*", 1=i<k, with each g, re-
presenting 1®¢, in K (L*; Ay (=H,.,{¢; &) and

(4°) (self-intersection of g\)=axeu*(é,), (intersection of g, and g)=wx24"(¢,, €;).

Let rN**'% denote the total space of »DP-bundle (rD* denoting a 2-disk of
radius 72=0) which is associated with the induced bundle (pe@)*(U) over L*",
where p: KxI-—>Kx0 is the projection. We simply write N***® ingtead of
1N  Clearly N{K=U. By U, we denote N|K,.

We can find disjoint pathed framed embeddings §.:S"—>.%# N such that
@oii==g;, where ©:. 7 N-—>L* denotes the associated S’-bundle of N. Consider
oy, §;) (1<4) and (g,) (§1). «(gy, §,)'s are elements of A, and a(§,)’s belong to
Q.(z). Note that =,(5 N)——m(L) is identified with z—— ', and that the
following sequences are exact:

@) A 200 T
X (1-1) ot
(28) Qo) 5 Quir) —— Qul=") .

(Proof of (28): Suppose a= 3 m.g€ 1 is such that x(a)=0 mod {/ —(—1)*'|v’€
A}, For the sake of simplicigy, we assume that w.la)=mg’—(—1)"mg’™*, where
g’ €x’. Suppose g’ is not involutive; g’+#g’~*, and fix g€x such that w.(g)=g’.
Then since xzsgtti=sgt-t== ... mod 1—1)4 for Vxe=, we have a=mg—{(—1)"mg 't
mod (1—-8)-1. So as an element of Q4(z), @ is in the image of < (1—t); this com-
pletes the proof in the non-involutive case. In the case when g’ is involutive,
the proof is similar.)

We continue the proof of 5.2. Since wy{a(d:, §,)}=intersection of g with g,,
we have @yla(f:, 5.} =L, é,)} by (4°). Similarly, Tula(@)}=aT«(¢’é)}. Thus
by (27) and (28) we can find certain elements b;;€ 1 and b; € Q,..(z) such that

PAI( é:’)““(gi §;)=(~*1)"“(1“—t)b;; s
e —a(y=(—=1)""{(1—0)b; .

(29)
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Now we apply again Wall’s argument in {291, Th. 5.8, and we construct framed
regular homotopies of §.’s, F.:S*xI— "N I such that

I self-intersection of F,=b,, and
(30)
( intersection of F, and F,==b,;.
Now identify .+ "N xI with 2N—N, and attach n-+1-handles to 2N by attaching
maps F,|S*x1. Let W be the resulting manifold. Also let E be the exterior
W—N. By the construction, =,.,(E, 5 N) is a free d-module and its basis is given
by pathed framed immersions f, : (D"*!, §")—(E, % N} which are defined by ad-
joining the images of F, in 2N—N and the core disks of attached handles. From
(29) and (30), we know A(f,, f)=2%¢; é,;). To show that p(f)=r"@¢), we must
prove &(fi}=0. However, this is clear, for the frame of f, is obtained by ex-
tending the frame of §,; the latter is a direct sum w* (frame of gJ&@
(1-frame tangential to S'-fibres). So we have x(f;)=*¢é,). Hence by the corre-
spondence &;+ {f}, two Seifert forms (G, 2°, ¢°) and (z,.(E, 5 N), 2, 1) are iso-
morphic. Now (i), (ii) and (iii) having been ﬂest:abhshed it remains to prove (iv).
By the hypothesis, the compositions aD"“fi'OD“‘l&wN = L«f;» Kx1I are null-
homotopic, s0 ¢ is extended to ¢: W—>KxI. We wish to prove that ¢ is a
simple homotopy equivalence. Let ¢:L*"—> W denote the inclusion, then we
have the diagram

CUF b

0> Co(L) — Co(K X I) > Cylgp) ~—>0 .

According to Lemma 2.5 in [29], in order to prove that ¢ is a simple equivalence,
we have only to show it for 0. Let .7 denote the homology exact sequence as-

sociated with C*(V)—“**C*(qﬂ), then we have =(Ci(p))==t(Cil¢))+c(0)+(2") ([19]
Th. 3.2). However %’ has only two non-zero terms H,.,(¢) and H,..(¢) both of
which are based isomorphic to K,(L;A’). By the construction, #, induces the
identity of K.(L; #4’), so =(:#")=0. On the other hand, the basis of H,.,(¢) and
that of H,.:(¢) were chosen so that 7(Cy(#))=2(Cy(¢)=-0 ({20] p.27). Hence we
have 7(0)=0 as desired. Q.E.D.

As an application of 5.2, we can prove a cancellation theorem for free Seifert
forms. Although the statement of the following lemma is purely algebraic, its
proof is geometrical. It would be interesting to find algebraic proof.

LEMMA 538. Let X and Y be free (—1)*-Seifert forms over #. If XPY
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and Y are both stably null-cobordant, then so is X.

Proor or 5.3. Let U**! be as in 5.2, with a sufficiently large n. Then ap-
plying 5.2, we can find 2n-Poincaré thickening triads (W:*%; U, V,) and (Wi =
~U, V,) “representing” X and Y, respectively, where ~U denotes U with the
inverse orientation. Glue W, to W, along U, and denote the resulting manifold
by Wi Then clearly, W, represents XHY. Apply 4.12 to W, and W,. Then
since Y and X'BY are stably null-cobordant, we can find 2n-+1-Poincaré thicken-
ing triads (Zi*'*; W, Xu) and (27" °; —W;, X)) over # with X, X, admitting
locally flat spines M., M,. Gluing Z, to Z, along W,, we obtain a 2n--1-Poincaré
thickening triad (Z,UZ;; W), X,UX;) over . See Fig. 7. Note that X,UX,
admits a locally flat spine M,UM;. (If we denote the zero-section manifold of
D*-bundles U, V,, V, by K, K,, K,, respectively, we have oM,=KUK. and aM,=
—~K,UK,. So M,UM; is a submanifold with d(M,UM,)=KUK,.) Therefore, by
Definition 4.10 the 2n-object (W3i»*2, Uiy Vir! K2»-1 K" ) ig null-cobordant.
Hence by applying 4.11, the Seifert form X, which is associated with this 2n-

object, is stably null-cobordnt. Q.E.D.
X,
W, Z,
W,
Z3
X3
Fig. 7.

For a Seifert form X=(G, 4, /), we denote by —X the inverse Seifert form
(G, =2, 1.

LemMMa 5.4, XB(—X) is stably null-cobordant.

Proor or 5.4. Adding some copies of standard planes, we can assume that
;I’Q?X is actually a free special Hermitian form. Let {e;, ---, ¢} denote a prefer-
red basis of IRX, {61, -+, 0) its lift to X. By (&, -, éll, {6V, -+, e0), we
denote the corrésponding elements of the two copies. Then the sub .-module H
of XP(—X) generated by the elements é/+¢é//, 1<5i=<7, satisfies (H x H)=0 and
#(H)==0, and the image in A’@(X@—X) is a subkernel ([29] Lemma 5.4). By
Definition 4.9, XP(—X) is null-cobordant. Q.E.D.
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We define a relation X~ Y between (—1)"-Seifert forms over ¥ as follows:

X~7Y, if and only if X B(—Y) is stably null-cobordant.

LeEMMA 5.5. Being restricted to the category of free Seifert forms, the
relation ~ becomes an equivalence relation.

Proor oF 5.5. The relation is obviously reflexive (by 5.4) and symmetric.
Suppose X~Y and Y~Z, then XB(—Y) and Y P(—Z) are stably null-cobordant,
thus so is (XB-Y)P(YP—2Z), but this is isomorphic to (XD 2) (Y H—Y).
Therefore, if X, Y, Z are free Seifert forms, XD(—Z) is stably null-cobordant
by 5.3, for Y B(—7Y) is stably null-cobordant by 5.4. Hence the relation is transi-
tive. Q.E.D.

DEFINITION OF GROUPS P, ().

The odd-dimensional case; We define P.,..(¥) to be the Wall group
L....(=", 1), where 1:z’—>Z, stands for a trivial homomorphism. This is moti-
vated by 4.3. Hereafter we shall write L.,.,(z") instead of L.,.,(z,1) for the
sake of simplieity.

The even-dimensional case; Let 57,,(%) denote the semi-group under & of
Jree (—1)"-Seifert forms over . Since the equivalence relation ~ is compatible
with 3, we may consider the quotient semi-group .573,(¥)/~, which is an (abelian)
group by 5.4. P,,(¥) is defined to be .5,,.(&)/~. Note that a free Seifert form
X represents 0 in P..(¥) if and only if it is stably null-cobordant.

ALGEBRAIC PERIODICITY

As is immediately seen from the definition, we have an isomorphism

p:P,,,(Z)—E—’ . 15(&7) called the algebraic periodicity. For m odd, this is shown
in [28]. For m even, this is obvious since .#..(%) and % ..s(¥) coincide as
sets.

FuNCTORIAL PROPERTIES

By a morphism #,—> %, we mean a triple (0, ¢, ¢) of homomorphisms such
that
(i) the diagram

?9‘,1 1 C] Ty 7[;’ 1
T
%2 1 ‘Cz g 7!" 1

is commutative, and

(i) @ preserves the special generators.
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A morphism #,~ %, induces a homomorphism P,(#,)—> P.(¥,) as follows: For
m odd ¢ :=!—>=! induces a homomorphism L,(z))-—=L.(z)) [29]. For m even,
let X==(G, i, 1) be a free (—1)"-Seifert form over #,. Then (1’8(} ©xh, Txlt) 18 @
free (~1)~-Seifert form over %, defining the desired homomorphxsm

We want to reformulate the result in §4.12 in terms of the groups P.(%).
As we remarked at the beginning of this section, geometric Seifert forms
(o (E, +"N), %, 1) are not always free, and we have to proceed as follows. Let
X=(G, 2, /) be a (not necessarily free) (—1)"-Seifert from over . By adding
some copies of standard planes, we may assume that /I'Q?G is an actually free}
special Hermitian form.

DEFINITION 5.6. A free core of X is a free (—1)-Seifert form X*=(G*, 2*,
/%) over < together with a 4-homomorphism ¢:G*—>G such that
(i) ¢ preserves the structure of (—1)™-Seifert forms. (Precisely, i*=lo(ex¢),
pF=zpel)

(i) ¢ induces a simple isomorphism 1&c¢: 1’®G*M> 1’®G

LemMa 5.7. Any (—1)"-Seifert form X= (G 2,1 such that A’ ®G is actually
A-free has a free core.

Proor or 5.7. Let {e, :--,e¢} be a preferred A’-basis of 1’®G {1, -, 6}
its lifting to G, i.e., €, is such that 1®¢é;=e,. Let G* be a free 4- module of rank
r with the indeterminant basis {z,, ---,z,}). We define a structure of (—1)"-
Seifert form (%, #*) on G* by setting

(g, x)=2€,, &),
.”*(xi) s=p(e;) .

X*:(G*, 4%, 1%) is a free Seifert form over #, and by defining ¢(a2,)==¢;,, we can
easily prove that it is a free core of X, Q.E.D.

The following lemma is an essential step in our formulation of the obstruc-
tion theory.

LEMMA 5.8. Let 0=(W?¥*2, U K*-1} be @ connected 2n-object over &, L™
o locally flat exterior n-connected submanifold such that 6L=K. By X we
denote the associated Seifert form (..., 5 N), 2, 1) with L', and let X*=
(G*, a*, «*) be a free core of X (we may assume that 1'®X is A'-free).

If 2n =6, the following two statements are equwalent
(&) @ 18 null-cobordant.
(11 X* s stably null-cobordant.

If 2n==4, we have the implication (z)==>(11).
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Proor oF 5.8. Let {x,, ---,2,} be the preferred basis of G*, and consider
elements clz;), 1£i=r, where ¢:G*—>z,.(E, 5 N) is the .I-homomorphism in
the definition of the free core (5.6). Let f:: >(E, 5"N) be pathed im-
mersions which represent c¢(x.). Since =, (& N)~~" (E), these f,'s are regular

homotopic to mutually disjoint embeddings f/ (for a precise discussion, see the
proof of 3.3). (One should remark here that this does not imply A(f/,f7)==0, un-
less wf{(S")Nwfi(S)=¢ (3.4). This does not imply s, f’)-—O either (3.3).)

Let W* be a (smooth) regular neighbourhood of NU Uf (DY in W, E* the
exterior of N in W*, ie., E*=W*—N. Obviously E*~ S NU Uf’(D’“‘), and
.. (E* 5 N) is a free A-module with a preferred basis {fi}, 1<1<r Since
AFL =), ele)) =21z, ;) and p(f1)=plelx))=*.), two Seifert forms (G*,
*, %) and (z,.,(E*, % N), 2, #1) are isomorphic to each other. In this sense, we
ghall call W* a geometric realization of X* or a geometric free core of W.

ReMARK. In the case of (2n—1, 2n-+1)-knots, the concept of geometric free
core corresponds to that of simple knots {13].

PROOF OF 5.8 (continued). In the same way as we did at the end of the
proof of 5.2, it is proved that W* is simple homotopy equivalent to W by the in-
clusion and that a triple #*=(W*, U*, K**1) is a 2n-object over &, where U*==
NAU=, Glue W*x[0,1] to Wx[1,2] along W*x1, and we have a 2n-+3-
manifold denoted by Z**%.

We now prove that 6% is null-cobordant if and only if ¢ is null-cobordant.
This does not need any requirement on the dimension 2n.

First suppose 0 is null-cobordant, then by Definition 4.10, we can find a 2n-{-1-
Poincaré thickening triad (Z7; W%, X¥*3) over & such that X**'* admits a
locally flat spine M® with oM=K?*"! Glue Z’ to Z by identifying W (of 27)
with W22 (of Z). Then we obtain a 2n--1-Poincaré thickening triad (ZUZ’;
W*x0, U*x[0, 11U U x[1,2]U X", Since a 2n-object (U*x[0,1JUTUX[1,2]U
X+t U*x0, K% 0) admits a locally flat spine Kx[0,2]UM*", the 2n-object
g*=(W*x 0, U*» 0, K x0) is null-cobordant by Definition 4.10. The proof of the
converse is the same.

To complete the proof of 5.8, we have only to make the following observations
(i) If 2n=6, 6* is null-cobordant if and only if X*, the associated Seifert form
with 6%, is stably null-cobordant.

(i) For 2n=4 if 6* is null-cobordant then X* is stably null-cobordant (4.12).
This completes the proof of 5.8. Q.E.D.
LEMMA 5.9. Let X=(r,..(E, # N), 2, it} be the Seifert form associated with
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an exterior n-connected submanifold L** of 0=(W=+2, U™, K* ) with W con-
nected. Suppose 2nz4. Then the equivalence class (under ~} of a free core of
X depends only on # and not on L™,

ProOF oF 5.9. Let X* be a free core of X, and W* the geometric reali-
zation of X*. Take another exterior n-connected submanifold L’ and the associ-
ated Seifert form Y. Let Y* be a free core of Y, and V* the realization of Y*.

Consider a 2n- 8-manifold Z**** defined by

wr<(0,1] U Wx(l, 2] U Vrxiz, 3}.

A triple (W< 0U—V*x3, (W*nU)yx0U(V*NU)x3, KXOUK x3) is a (non-con-
nected) 2n-object representing X*P(— Y*), and this 2n-object is null-cobordant via
a 2n-+-1-Poincaré thickening triad (Z2*"%; W*xQ0U—V*x8, (W*n U)x[0,1JUU %
[1,21U(VFn U)x[2,8]), for a 2n-object (W*NU)x[0,HUU (1, 2]u(V*nU)x
[2, 8], (W*N Uy x0U(V*N U) =8, K x0UK »3) admits a locally flat spine K*"7'x
[0,8]. So by 4.11, X*@(—Y™) is stably null-cobordant, i.e., X*~Y* Q.E.D.

According to 4.12, 5.8 and 5.9, we can now establish our obstruction theory
for the even-dimensional case, and combining this with the result (4.8) for the
odd-dimensional case, we obtain our main theorem.

THEOREM 5.10. Let 0=(W™2, U™, K™') be a connected m-object over &
with m=4. There is a unigue obstruction element n(0)€ P, (%) such that the
following three statements are equivalent for m=b.

() 9(0)=0,

(#1) 0 1is null-cobordant,

(#13) 0 admits a locally flat spine M™ with iM=K.
If m=4, we have the implications (191) == (i1) ==>(3).

Proor or 5.10. We have now only to define 7(0).

The odd-dimensional case [10]; Let L™ be a locally flat exterior [m/2]-con-
nected submanifold with 0L=K, po:(W,0W-U)—=(CP,,CP,..,) (s:large) the
Pontrjagin-Thom map for L. Then the normal bundle N is induced from that of
CP,_,, but the latter is extended to CP,. Thus the 2-disk bundle N is extended to
W: denote the bundle by £. Let » be the stable normal bundle of W. Then
*(ePv)Dr, has a canonical trivialization F. (i:L™—> W denotes the inclusion,
which is degree 1.) Therefore we have a normal map ({1}

(normal bundle of L)—— §Dv

L

L W,
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and by the usual surgery theory an obstruction element o{L, i, F) € L..(z") (=P,(¢9),
for m odd) is defined. Our 7(?) is defined to be this element .

The even-dimensional case m=2n; L™ denotes again a locally flat exterior
n-connected submanifold with ¢L=K, We take a free core of the Seifert form
associated with L°*. Its cobordism class (i.e., the equivalence class under ~)
depends only on (the cobordism class of) . We define 7{¢) to be the element
(€ P, (%)) represented by the free core. Q.E.D.

COMPLEMENT 0. As a matter of fact, 7(0) does not depend on U™ in 0,
but depends only on W= and K™'.

PrOOF. Let T™*! be a tubular neighbourhood of K™ ! in W which is con-
tained in U™*'. Then a triad (Wx[0,2]; Wx0uU—~Wx2, Ux[0,11UT (1, 2}
provides a cobordism between 6 and #,=(W»*: T»#t Kn-1}, In fact, UX
[0, 1JU T x[1, 2] admits a locally flat spine K»* [0, 2]. Thus 7(8)=5(0,).

QE.D,

CoMPLEMENT 1. (Additivity and naturality)

Let U™*! be o D*-bundle over a compact m-1-manifold Q"*. Suppose that
there are two Poincaré thickening triads (Wp+2; Umtt, X7y and (Wpie; —~ U,
X7 containing = U, and that X' has a locelly flat spine K7 such that
K.NaX,=0Q" " (i=1, 2). Then, 5(0)=4.(p(0,))+37.(0(8,)). Here 0=(W,UW,, X,UX,,
K\UK,), 0,=(Wy, UrtyXpe, QUK Y, O,=(Wpt, =Ur yXptt, —Q™1y
Ky, and

Jit Pu(&)—P(¥) (1=1,2)

18 the homomorphism corresponding to the morphism &i—>& which i induced
by the inclusion W,——> W, U W.. & and 5, i=1, 2, are the associated extensions
with 0 and 6,, 7=1, 2.

In particular, if 0. admits a locally flat spine extending —~Q UK., then
we have 7(0)==7,(n(0,)) which reveals the naturality of the obstruction elements.

The proof is not difficult.

As is shown later (§6.6), our groups P,.(#) are in general very large, but
they are not too large;

CoMPLEMENT 2. (Realization theorem)

Suppose m=6. Given any element ne P, (¥), we can find an m-cbject 0
such that p(@)=y.

Proor. For the even-dimensional case, this follows from 5.2, The corre-
sponding fact for the odd-dimensional case is stated in the next lemma.

Q.E.D.
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LemMma 5.11. Given any element 7 in P., (&) with 2rn+1=7, we can find
a 2n-+-1-object 0 such that y(0)==7.

Proor or 5.11. We use the notations of Wall [29]. Suppose 7 is represented
by a matrix AeSU,(4"). By 1.5, the extension ¥ is realized by an S'-bundle over
an oriented manifold X™ with the fundamental group =’. Here we assume
m==dim X)=2n26. Let U™ be the mapping cylinder. U?**? is a 2-disk bundle
over X**. Fisrt perform codimension 2 surgery on X (within U**"% to “kill”
r trivial (n--1)-spheres. The surgery trace M:™*! is isomorphic to

XxIgS*xD*g8*x D' -+,

7 copies

where z denotes the boundary connected sum. M?"*! is also realized as a locally
flat submanifold in U***x[I such that M\NU x0=X and M,NUX1=X # (r-
copies of S7x<8"). the latter is denoted by X’. Note that X’ is an exterior
n-connected submanifold in U <1 and the associated Seifert form is isomorphic to
the direct sum of 7 copies of standard planes é‘(Ax[@Ayi), see 4.6. Let A be a
A-matrix such that wx(A)=A, where wy: 1 ;/1’ is induced by w:x-—>=z'. By
(26) and 3.1, we have A(Ay,, Ay)=0 (Vi, ), (Ay)=0 (V4). Moreover {JAYdiz1, ...,
0 : 70, (B, 7 N)—>K,(X'; A") gencrate a subkernel (for dAy,=Ady,, and A is a
simple isomorphism). So we can perform codimension 2 surgery on X’ (within
Ux1) to kill n-+1-disks Ay, ---, Ay, (cf. the proof of 4.12). Denote the result-
ing submanifold by X’. Then X'’ is simple homotopy equivalent to X, and the
surgery trace from X’ to X'’ is realized as a submanifold M:"'' in U x[1,2].
Glue M, to M, along X’ to obtain a 2n--1-submanifold M*** in Ux[0,2]. Wall
[29, p.66] proves that the manifold M represents the surgery obstruction » which
is determined by A. So if we define a 2n-+1-object ¢ as (U*™**x[0,2], Ux
QUUIRX) [0, 21U U 2, X x0UaX xTU X’ x2), we have 7(0)=1. Q.E.D.

“AN IMPORTANT SPECIAL CASE” IN OUR CONTEXT

Let 0==(W=*:, U"*'} be a connected m-Poincaré thickening pair with m=86.

THEOREM b5.10. A. Suppose the extensions & and %, which are associated
with W and U are isomorphic via the inclusion. Then we can find o locally
fAat spine (L™, L™ of 6.

Proor. U™* is itself an m-—1-Poincaré thickening whose obstruction »(U™*%)
equals zero. (For U™*"' is null-cobordant in the sense of 4.10. Here we take
¢ as X of 4.10.) So there is a locally flat spine KX™! of U™*!, Let # be the
obstruction of the m-object (Wn*:, Um*' K=-1), By 5.2 and 5.11, one can find an




Knot cobordism groups 307

m-Poincaré thickening triad (V=*%; 77, T"*) with T"°! a tubular neighbourhood
of K™ in U™*!, such that

(i) T’ has a locally flat spine K.

(i) (V= T'U—-T, K'U—K)=—7.

Gluing V to W along T, we obtain a new object (W', U’, K’). However, V is
isomorphic to a product

Ta w3 e [O, 1] .

This follows from the construction in the case with m odd; in the case with m
even, it follows from the construction and the relative s-cobordism theorem. There-
fore, (W', U'y=(W, U), and by the eonstruction of W’ and the additivity of 7,
we have n(W’, U’, K’)=0. So (W’, U’) (and hence (W, U)) admits a locally flat
spine L™ extending K. Q.E.D.

GEOMETRIC PERIODICITY

It is well-known ([24], [29]) that there is a geometric Periodicity of period 4
in the usual surgery obstruection groups which is induced by multiplying a com-
plex projective plane CP,. Here we will give an analogous theorem for our
groups P.(&). As a special case, this gives a geometric interpretation of the
periodicity of the knot cobordism groups [13] which is known only algebraically,
This point will be clarified in §6.5.

THEOREM 5.12. Suppose m=5. Denote by 0 X CP, the m-+4-object (W2 CP,,
Urt' X CP,, K» ' X CP,). Then we have 7(0x CP,)=o(y(0)), where p is the alge-
braic periodicity isomorphism given earlier.

Proor OF 5.12. The proof is similar to that of the usual case [29], so we
give only an outline of it. We have only to consider the even-dimensional case;
m=2n. Also by considering a geometric free core (§5.8), we may suppose that
jO (A#n-41)

31 H(E, 5 N; A)=
a free A-module (i=n-1-1),

where K, .~ N are the exterior or the frontier of an exterior m-conneected sub-
manifold L*",

Let (e, ---,e,) be a /A-basis of H,, (F, 5 N; Ny=z, (K, o N) which are
represented by pathed nice immersions f,: (D"*!, S")—>(E, »"N). According to
2.7.1, by introducing some self-intersection points to m>f;, we can make < ( fi)==0V4q.
Let S° denote a complex projective line in CP, with the canonical orientation.
Consider immersions g,:(D***xS?, 8" %8 —+(E» CP,, N % CP,) defined by
g:=fi Xinclusion. Since the intersection number S*-S*=x1 in CP,, we can put g.'s
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into general position so that the numbers of the (self-} intersection points of
wgdlS* 8% (or gD~ S%) are equal to those of wfi(S™ {or £i(D**'})). We may
assume that g (D' 1,8~ 1) (18 are mutually disjoint embeddings. Perform
surgeries on L~ CP. in codimension 2 along these n+1-disks to obtain a new
pair (E’, " N’). Here note that dim E’=2n-4-6. It is shown that

H(E < CP,, #“NxCPy; 4y i#n+1, 12n+38,

(82) H(W, “"N; =

0 p=n-+1.
By (31), (32) and the Kiinneth formula, we have
(33) H{E', ~"N'; Ay=s:

VH, (E, 5" N; ), i=n-+3.

We have performed surgery along the n--1-disks g.(D"*'»1, S*.21), but by this,
g (D" 8%, 8°xS%) are changed to immersions gf:(D"*?, 8% —>(F’, = N,
Recall here that g (D"'!' <S% S*<8%'s have the same intersection as f,(D**?!, S%).
So the immersions g/(D""*, 8"*?) have the same intersection numbers as f,(D"*!,
S™, too. It is proved that {g/} represent a A-basis of H,,,(E’, > "N’; d) and that
the isomorphism H, . (E, " N:Ay—> H,.,(E’', 5" N’; A) is given by f,~+g!. This
together with the above remark tells us that the Seifert form defined on H,,,(E,
" N; A) is isomorphic to the form defined on H, . ,(E’, . "N’;.1). From this we
have the desired conclusion. Q.E.D.

CONCLUDING REMARKS

REMARK A. If the cyclic group C in & is a trivial group, i.e., ¥={l—

d
! » ¢/ —~>1}, then P,(%) coincides with the Wall group L.(z").
Indeed a free (—1)"-Seifert form over & is nothing other than a special (—1)"-

1=’

Hermitian form over Z[x’].
In particular, if 1 denotes the trivial extension

1—>1—>1—>1—>1,

then P,(1)=fthe Kervaire-Milnor group L,(1) [12]. This fact is essentially con-
tained in the work of Montgomery and Yang {20].

ReMARK B. With an extension 8’?—*{1——->C——>rr——[f~—>::’ —>1}, we associate
id
an “almost trivial” extension ¥’={l—>1—>x’—2z'—>1} and a morphism
b: &—> &' defined by the diagram
1—C » T o 1

b, s

UL
1— 11— 80y,
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by
The morphism b induces a homomorphism P, (i) =, P,(#"y. By Remark A,
P.(#y=L.,(z"). Thus we have a canonical homomorphism

b* . Pm(;r!’A)__"_)Lrn(r’) .
ASSERTION. by is surjective.

The proof is not difficult and is omitted.
More generally, it can be proved that if b is a morphism of the form

&1 C 7 =’ 1

#l > C, 5 = 1,

then 5* 1 P(#)— P, (&) is surjective.

§6. Simply connected cases.

In this section we will give some remarks about the simply connected cases
where =’=1. The extension appears as

1——>C—t—» C—>1—1.

Here we use the notation P,(C) instead of P,(1—C—>C—>1—>1). This
notation was used in [17]. An object over (1—>C—>C—>1——>1} will be simply
called an object over C.
Let 6=(W=+%, U™*!, K™ ') be a connected m-object over C with m=4.
ProrositioN 6.1. There is a simple relation

Proor oF 6.1. Let L™ be an exterior 2-connected submanifold extending K™-'.
The proposition follows from the definition of C; C=r,(E)=2H,(F), and the fol-
lowing diagram

H~W, Uy=Z

I

H(W)—— H{W,dW—U)—> HGW-U)—>0

T

HAW) ——— Hy(W, E) H(E) 0.

I

H™~(L,8Ly=Z Q.E.D.
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Next we show that the P,(Z) are isomorphic to the Kervaire-Levine knot co-
bordism groups C,,., (of (m—1, m+1)-knots) with m=5.

Let 3" '8t he an (m—1, m-+1)-knot with m=5. Let U be a tubular
neighbourhood of 3~-' in S*'!, and D"'? an m+2-disk bounded by S™*!, Since
H(S"*'~Un"y==Z (cf. [9)), the m-object 0=(D"**, U™, 3%} ig over Z by 6.1.

The obstruction 7(4) of 5.10 belongs to P,{(Z). One easily verifies that 7(0)
depends only on the cobrdism class (in Levine’s sense {13}]) of the knot S»-1c8n*1,
Thus #(9) provides a map %:C..,—> P,(Z) which is a homomorphism by the
additivity of 7 (Complement 1 to 5.10).

PROPOSITION 6.2. 7:Cpey~—> P (Z) i3 an isomorphism (m=5).

Proor or 6.2. Suppose 7(0)==0, then by 5.10, § admits a locally flat spine M™
such that M =2""', Since M"~D"**, M™ is contractible, so the knot is null-
cobordant (in the sense of Levine). Therefore, 7 is injective. The surjectivity of
7 follows from 5.2 and 5.11. (Although 5.11 is not applied to the case m=S5,
the surjectivity is trivial, for P(Z)=2L,(1)=0.) Q.E.D.

REMARK. We can show geometrically that the above isomorphism C,.;
P,(Z) is induced by sending a Seifert matrix A to the Seifert form(—1)"A--tA’
(up to the sign #1). A’ denotes the transposed matrix of A. However, we have
no algebraic proof that the map is an isomorphism.

ISOLATED SINGULARITIES OF SPINES

—

As a corollary of the fact that Poy.(C)=%L,.(1)==%0, one sees that any l-con-
nected m-object with m=0dd=5 admits a locally flat spine (cf. [10]).

An even-dimensional (2n-) object 0 does not generally admit a locally flat
spine, but it is known [10] that if 2n26, @ 1-connected 2n-object #=(W:*3, U, K)
admits a spine L*" which is locally flat except (possibly) at a finite number of
points. We define the singularity at a point pe L' by the (2n—1, 2n+1)-knot
op(L)=:(Lk(p, L), Llk(p, W)), where Lk denotes the link of the point p in L (or in W).

The total singularity of L is defined by 21. ap(L) (in Ciuey). 0,(Ly=0 in
Cines If L is locally flat at p, so the summation pi; in fact a finite sum.

ProposiTION 6.3. The total singularity of L* is related to 7(0) as Jollows:

7O=( 3, 0,(L) .

Here j denotes the composition Cg,m—:*PZH(Z)LPzn(H‘(6W~—U)). be is
given in Concluding remark B in §5. (See also 6.1.)

COROLLARY 6.3.1. As an element of P..(H,@W—U)), the total singularity
of a spine L** depends only on the object 8 and not on the choice of the spine.
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In particular, if HGW—-U)=Z, the knot cobordism class of the total singu-
larity of a spine 1s uniquely determined by 6.

Proor oF 6.3. (Outline) Let W’ be a regular neighbourhood of L in W.
Then W’ and W are “cobordant”, i.e., W U(—~W) is null-cobordant in the sense
of 4,10. (The cobordism is W’ <[0,1]U W x(1,2).) Therefore, p(d)==7(W)==y(W’),
but the obstruetion 7(W’) is “concentrated” to the knots at singular points. Hence
we have the desired relation by the naturality of 7(@). Q.E.D.

REMARK. The relation 6.3, is stated in [17] with the extra assumption
m(W—L)y=r, (6 W-—U) (there U=¢). However, this assumption is not necessary.

ON THE REDUCTION OF CODIMENSION 2 SINGULARITIES

Let M™ be an arbitrary PL m-manifold (m=5) which is PL embedded in
another PL m-2-manifold T™**. The singular set Z(M™) of M™ is, by definition,
the set of points of M™ at which M™ is not locally flat in Tm*2, I(M™) is a sub-
complex of M™ [21].

Suppose that X(M) is connected and l-connected, and JS(M“NoM:=¢. A
regular neighbourhood of Z{M™) in M™ (or in T"°) is denoted by N, (or N;).
We may assume that

NrnM::N)[ .

The pair (N,,dN,) is homotopically equivalent to (N,,oN,), and N, is l-con-
nected. As remarked above, there is a submanifold L™ of N, extending oN,
which is locally flat except at a finite number of points. (Without loss of gener-
ality, we may assume that the number of the singular points is at most one [10].)
Therefore, we have

ProprosiTiON 6.4. If X(M) is l-connected, there is a submanifold M’ such
that
(z) X(M’) consists of at most one point,
(1) M’ Ca regular neighbourhood of M in T, and
(117) the inclusion in (ii) is a homotopy equivalence.

Proor. We have only to define M’ by the following:

M =(M—-Ny)UL"™. Q.E.D.

REMARK. Of course, if m=o0dd=5, then we can take M’ such that S(M’/)==4,
for Poua (C)=Losa (1)220. We will call the singularity at the point of Y(M’) a
reduced form of 2(M). In general, a reduced form has some ambiguity, but in
the following situation, it is uniquely determined as an element of C,..,.

ProposiTiON 6.5. Let #=(Sr'cSr") be a PL (m—1, m~+1)-knot (m=5). The
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reduced form of the singularity
CP, 7 cone r==(CP, < cone Sy ' CP, < cone SI™)
is p(e). Here p:Cn.1—+C,., 18 the algebraic periodicity.

This is a corollary of 6.4, 6.3.1, and 5.12,

INFINITENESS OF Py o(Z),)

The ecalculation of our groups P,{(%¥) seems to be very difficult. In the
cases when C={1}, the calculation is reduced to that of the Wall groups
(Remark A at the end of §5). The only case of non-trivial C for which we have
full information is the case where ¥={1—>Z-—>Z—>1-—>1}; the group
P.(1— Z—>Z-—>»1~>1) is isomorphic to the knot cobordism group C,.., (§6.2)
{18]. It is known that this group is not finitely generated if m==even [11]. It
would be natural to conjecture that P, (C) (=P, (1—C—»C—>1—>1)) is also
infinitely generated if C#({1}.

In this paragraph we will show that if C is a cyclic group of even order,
then P,...(C) is infinitely generated. Since there is a surjection P,(C)—> P, (Z,)
which is induced by the quotient map C—>Z, (Remark B at the end of §5), it
will be sufficient to show.

PROPOSITION 6.6. P..2(Z.) is infinitely generated.

We need a lemma.

Consider Z; as a multiplicative group with the generator ¢ of order 2. Let
A=Z{Z,}.

Let (G, 2, 1) be a free (—1)*-Seifert form over Z, (i.e., over 1-—>Z2,—>Z,—>
1—>1) which is stably null-eobordant.

LeMMa 6.7. G is stably equivalent (§4.8) to a null-cobordant form G’ of
which a Seifert sub-kernel H' (§4.9) is a free A-direct summand of G'.

Proor oF 6.7. We may suppose that G is itself a null-cobordant form with
a Seifert sub-kernel HcG. Put Hy={zeGlIme Z—{0}, mxe H}). Then it is easy
to see that H, is also a Seifert sub-kernel of G and that G/H, is a free Z-module.
Thus we may regard G/H, as an integral representation of a group Z..

Any integral representation of Z, is a direct sum of some copies of the fol-
lowing {-modules (see for example [2]):

4
Z~ =7 with a Z.-action defined by t(1)=—1,
\ Z*=Z with a trivial Z,-action.

By the definition of a null-cobordant form (4.9), H, is mapped by G—->G§A§)Z onto
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a Z-free direct summand of G®Z of rank r=1/2 rank, (G%Z) S0 (G;H.))%Z is
a free Z-module of rank ». Smce zZ ®Z Z,, no copies of Z appear in the de-

composition of G/H,. Therefore, the decomposxtlon is of the form

1D DADZ D - BZ

a suxr;mands b sum‘mands
where a-+b=7.
Hence there exists a -4-homomorphism
j . z”lr““)G/H‘)

which is surjective. Here 1" denotes a free 4-module of rank ». Let p:G-——>
G/H, be the quotient map. Since G is a free A-module, there is a A-homomor-
phism 5:G—> 1" such that n=jo5. Let C denote the cokernel of F. (See the
diagram below.)

0
o 1
0 —— Hy — G —— G Hy — 0
N s

AT

AN

C

AN

0.

We choose a set of A-generators {e,, - -+, e} of C, and their lifts {¢;, ---, é,) to A
Define G’ by the direct sum

P §_: {Ax DAy,

where x, and y; are indeterminates. We give to each 4x.B1y, the structure of a
standard plane (see §4.6). Choose S, f,€G so that p(f)=j) (=1, ---, 8),
and define o’ : G/ —> A= 4" @E Ay, as follows:

E p'G=p,
P'(xi):ée”“ﬁ(ft) , and
o y)=y. .

To complete the proof of 6.7, it will be sufficient to verify the following:
(1°) (G, 2,1 is stably equivalent to (G', 7, '), where (¥, 1'y=(Q, 1)éd 2(1{,/4«)
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and (4, ;1) are the structures of standard planes over Az Sdy..

2°) oG ——> A" is surjective. Therefore, H =kernel (o) is a .1-free direct
summand,

(3°) H’ is a Seifert sub-kernel of G'.

(1°) is obvious by the construction of G’ and the definition of the stable equiva-
lence. The elements ¥, clearly belong to the image of ¢’. We will show that any
element ¥ in 47 is in the image of ¢’. Let z:4’—>C be the quotient map. We
can write 7!(:£/)‘~ﬁ?i1 e, a,€14. Let yeG’ be ;Zla'if’@,i‘la‘xi' Then =zo/(y')=

N(ia¢(7(fs)"¥“ ia,(ﬂ“ﬁ(fi)))“ﬁ(ﬁaiéi)fﬁﬂ(y). Hence y—o'(y’) belongs to Kernel
(z)-~Image (7)< Image (¢"), so y& Image (o).
To verify (3°), first we prove that H’CHO{;Si Ax;. In fact, let z be any ele-

8 2
ment in Kernel (¢o')=H’. Write z=ulvtw, wueG, ve X Az, and we 3 Ay..
[ 21

By the definition of ¢/, o’ is injective on X Ay, so w=0. Then we have
L SEN)

(%) 0=30"(2)=50"(w)+jo' W)==p(u)-+Jo'(v) .
Since jo'(w)=7j¢—a(fN=j)—p{f)=0 (i==1,---,8), we have jo'(v)=0 for
Yve 2/1901--

Substituting in (%), we have p(u)==0, i.e., u€ Kernel (0)=H,. Therefore,
H cHyD 2 Az, as asserted. From this, it is easy to see that X(H’~ H’)=0 and
;z'(H’):r-O.HSince H’ is a A-free direet summand of G’ of rank r+s=1/2 rank(G’),
H’ is clearly a Seifert sub-kernel of G’. This completes the proof of (3°) and
henee the proof of 6.7. Q.E.D.

Proor oF 6.6. (cf. Kervaire [11]) Let (G, 4, 1) be a free (—1)*-Seifert form
over Z.. Define 4,e€.1 by det A If G is null-cobordaht with a Seifert sub-kernel
H which is a .I-free direct summand of G, then 2 is of the form

The involution —:.1—>.1 is the identity for A=Z2[Z,], and we have d;=
+¢ (det A)%, 1=0 or 1. If two Seifert forms G,, G, are stably equivalent, we have
do=xt'4,,, 1=0 or 1. So by Lemma 6.7, if G is stably null-cobordant, J;=
+t'a’® for some a€.l. Consider a multiplicative abelian group &°;
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& =Z {0}/ £(Z~—{0})" .

By 4.(s) (e==1), we denote the value obtained by substituting t=:. We get a
homomorphism

d . P?.:;(Z;‘.)M"}(N ’

which is defined by d(G, Z, y=4:(—1), (4,{—1)==0, because J.{—1)z=4,(1) mod2,
and 4;(1) is the determinant of A®1 which is non-singular. cf. §4.7, (vi).) If
2n=4k, 4,(—1) is always a square integer (cf. Levine [13] §14). Thus in the case
2n=4k d is a trivial homomorphism, and we cannot deduce any information.
(Problem: Is P.(Z,) infinitely generated?)
Now let 2n=4k+2, and m an arbitrary integer. Consider the following (--1)-
Seifert form (G,., 4., tt.) over Z, of rank 2:

G,=AxBAy ,

Aa(@, Y =—20y, ¥)-1=1,

ta@y=mt , u,ly)=t.
(This is constructed by Kervaire [11].} Note that

2 :<m(t»1), 1 )
" —t, t—1
Therefore, d(Gw, An, ftu) =m{E—1)*41|,..,=4dm—1. The set {dm—1|{m € Z} generates
an infinitely generated subgroup of ¢, for there are infinitely many prime num-
bers in {dm—1lme Z} (Dirichlet’s theorem!).
This completes the proof of 6.6.

Added in proof:

The following result was used in Step (II) of §3.5 without proof. Here we
will give an indication of the proof. (For the notations, see §3.5.)

ASSERTION. The contribution of C,NC, to A(fs, g,) i3 equal to zero.

OUTLINE OF PROOF. Consider the restriction of the S'-bundle .5 7'—> Y2+
to the circle C. The total space is a torus T We give it a trivialization 7=

St St with which C, is identified with S* < pt. The homotopy class of the composite
incl. proj. . . .
map C,L——’ T —> pt < S* defines an integer with the absolute value p. Since

C, and C, are contractible in = T, we have t"=1. If p+#0, the contribution of
C,NC, to Alfs, g») is proved to be of the form eg(l-+t- --- +¢7~"). Therefore,
the contribution to 2A(fs,g,) is equal to (—1)""'(I1—t)eg(l-+t-+ --- -+t )=
(—1)"*leg(1—¢")==0. On the other hand, if p=0, the contribution to A(f., g,) is
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already equal to zero. Q.E.D.
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