Congruences between modular forms and functions

and applications to the conjecture of Atkin

By Masao KOIKE
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We shall prove some congruence relations mod p* between the Fourier coef-
ficients of cusp forms of weight p*—p™" with respect to I'=SL(2, Z) and those
of some modular functions with respect to I"¢(p) (Main Theorem, §6). This gen-
eralizes Newman [11] where p=13, and a==1, and enables us to reduce the con-
jecture of Atkin [2] on the Fourier coefficients of J(r) to the “p-separability” in
weight p—1, and some “p-vanishing” property in weight p"—p"™' (a>1) of the
eigenvalues of the Hecke operator T(p) in the space of cusp forms with respect to
I’ (Theorem 3, §8). As a corollary, we can prove some new cases of this conjecture
for a=1. In §§7, 8, we shall discuss the “p-adic eigenfunctions” of the “p-adie
Hecke operators”.

Our results are based on the following two facts: (i) there exists an algebraic
equivalent of g~'dg (g=€**~") in the p-adic completion of some unramified alge-
braic extension of the modular function field, and there is an algebraic formula
for (p“‘dq)%;‘l {mod. p) (Ihara [8], [9]), (ii) the p-adic rigidity of the function J(z)
-3 J(pr), conjectured by Tate and proved by Deligne. Tate predicted that this
rigidity might be essential in proving Atkin’s conjecture.

Recently, it is reported that Dwork solves the conjecture of Atkin, however,
the detail is not known and the relation to this paper is not clear.

The author wishes to express his hearty thanks to Prof. Y. Ihara for sug-
gesting this problem as well as for his encouragement during the preparation of
the present paper.

Notations.

Z, Q, R, C: the rational integers, the rational numbers, the real numbers and
the complex numbers.
Q,, Q;, o5, p: the p-adic numbers, the completion of the maximum unramified
extension of @,, the valuation ring of @7, the maximal ideal of 07.
F,, Fp: the finite field with p elements, the algebraic closure of F,.
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PART I. CONGRUENCES BETWEEN MODULAR
FORMS AND FUNCTIONS

1. Statement of Main Theorem

We shall fix a prime number p once and for all. Let  be the complex upper
half plane; $==:{r€ C\Im=>0}. Denote by N the space of all meromorphic func-
tions on © that are invariant under the translation r — r-+1. Define the operators
U(p) and T.(»™ on N for each k, n=0, 1, ---, by

(1) F(o) | Uip)=p* El F(T»}})-/_) '
( 2 ) F(”')i Tk(})n)-;pn (=1 2 F(-aig:é,>d~k for F(?) .
(i?:ﬂpﬂ /
bnodd

It follows immediately from the definitions that
(3) F@IU@Y=F@)| Tdp") = p* HFE) Tp" Meops
holds for any F(-)eMN.

Let I"=:SL(2, Z) be the modular group acting on $ by

ab

oy gores F00. for g=
/ cd

)el‘.
Let J() be Klein's modular function. It has a Fourier expansion
(4) Jo= 2 em)-q"  with o(—1)=1, e(n)€ Z, and g=e**7 .

The modular function field M with respect to I" is the rational function field
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generated by J(2): W=C(J(z)). Put Iyip)= (Z l()i)el e==0 (mod p) Then the

modular funetion field with respect to ['o(p) is given by C(J(z), J(p- ))

LEMMA 1. For each feM, fillp)" is a modular function with respect to
Lo(p).

Proor. Since Ni=C{J(z)), we may put f=H{J(c)) with H(X)eC(X). Asis
well-known, T,(p*) operates on 9} ; hence f| To(p™)=H, (J(z)) with some H,(X)e C(X).
From 3, AAU(p)*=H (J(z))—p H,_(J(p2)). q.e.d.

We consider the Z-module M generated by {fIUp)"; feZ[J(0)],n20}. By
Lemma 1, M is a submodule of the modular function field with respect to ['g(p).
Denote by &, the space of cusp forms of weight k& with respect to I', and by ;.
the submodule of &, consisting of all elements of <, whose Fourier coefficients
are rational integers. We define the notion of congruences mod p“ between cusp
forms and functions as follows. Let Q{g} be the power series field with coefficients
in @, and let Q{q}z be the set of all elements in @{q} whose coefficients are rational
integers. Then two elements f= X = a.q" and f'= §_‘, a.q” of Q{glz will be called
congruent modulo »® if and only if a,=a}, (mod p°) hold for all n. By Fourier ex-
pansions with respect to q, M and &, .z will be canonically imbedded in Q{g}..

Now our Main Theorem reads as follows;

MaIN THEOREM. Let a be a positive integer. Then, for each g€ M, there
exist h€ Z[J(t)] and F(z)€Eps_pa—t.; such that

g—h=F(z) (modp°).

These h and F(z) are unique up to modulo p°.
In particalar, if we put p==138, a=1, g=J{x)|U{18)= }_,c(l‘%n) -¢" in this
theorem, we obtain an alternative proof for the classical result of Newman [11].

In fact,
g--c(0=¢(13)d(z) (mod 13) .

Therefore ¢(18n)==-r(n) (mod 13) for d(z)== 2, r{n)-q", since c(13)==—1 (mod 18).

n=i

2. Preliminaries on valued differential fields and
associated differentials

Here we explain the general theory of the valued differential fields and the
associated differentials with respect to p/-th Frobenius maps according to Ihara’s
note [8].

Let K be a field and let D(K) be a one dimensional vector space over K. Let
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d be a differentiation from K to D(K) which, by definition, satisfies
dz-+y)=dz-+dy , dlzy)==ydz+zdy , for z, y€ K.

The kernel of d is a subfield of K and it will be denoted by k. Suppose that
these objects have the following properties; v is a discrete, additive and normalized
valuation of k, and V is a discrete valuation of K extending v, assumed to have
the same value group as v. Let K denote the residue field of K with respect to
V. Also suppose that K and K have the unequal characteristics and that d is
continuous with respeet to the V-adie topology of K and of D(K). We call such
a collection of objects {K, D(K),d, V) a valued differential field. Examples of
valued differential fields will be given in §§3, 4. Let {K;, D(K;), d;, Vi} (1==1, 2) be
valued differential fields. We call {K,, I(K)), d,, V.} is an extension of {K:, D(K,),
ds, Vol if the followings are satisfied; K, is a subfield of K,;, I(K,) is a vector
subspace of ID(K)), and the restriction of d; (resp. V) to K, coincides with d»
(resp. Vo).

For each positive integer f, let D"(K) denote the tensor product of i copies
of D(K) over K. Put DK)=K. We define a reduction of D*K) as follows;
£ will denote the valuation ring of K with respect to V and P will denote the
maximal ideal of ©. The continuity of d implies that the O-submodule of D(K)
generated by the set {dzlz€ D} is a free O-module of rank 1. Denote this module
by D(T). Now we extend the valuation V to a ZU{co} valued function on hléJDD"(K)

gatisfying the following conditions;

V(E®@y)== V(2 Vi), for any &, v€ U DMK},

hgo

Vidx)-=0, for any dz such that D{Q)==Dda .

With the above condition, V is uniquely determined. Put D"(Q)={: € D"(K)! V() 20},
and DXP)=PD*(DV). Then D*(I)/D*P) is a one dimensional vector space over K.
Denote it D"(K) and put D(K)==DYK). Then D*K)=K and D*K) (hz1) can
be identified naturally with the tensor product of h copies of D(K) over K. For
each 2€ D*(J), £ denotes the residue class modulo D).

The V-adie completion of {K, D(K), d, V} will be defined as follows. Let K,
be the completion of K, and consider K as a subfield of K, naturally. Put
DK== D(K)RK; (over K), and identify € D{K) with :®1¢€ D(K,). By the con-
tinuity of d, we can extend d to the unique differentiation d: K — D(K,). Then
{K:, D(K.),dy, V} is a valued differential field. Let k: denote the kernel of dy (in
general, &y does not coincide with the completion of k& with respect to ).

Suppose we are given a valued differential field (K, D(K),d, V}. Let ch(K)
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=p>0, and let p” be fixed positive power of p. We shall always consider K as
a subfield of Ky, identifying in particular the residue field of K, with that of K.
Now we define a p/-th Frobenius map o by an injective isomorphism from K to
K, such that the following two conditions are satisfied ;

{(6-1) s is V-preserving and induces the p’-th power map of the residue field.

{6-2) ¢ commutes with the differentiation, namely, k" Ck,, (K—kY< K, —k,, and

dz \° dw")
S} e A for any x, y€ K—Fk.
(dy) (dygf’ , or any x, ¥

Examples of p/-th Frobenius map will be given in 8§38, 4. For each h=0, DMK)
is canonically imbedded into D*(X,) and ¢ induces a map from D(K) to D" K,) by
(y(dx)Y =y°(dva®)". This is well defined by {(s-2).

Let ¢: K— K, he a p/-th Frobenius map. A differential w€ D(X) is called
an associated differential (with respect to o) if ’/w€k”.

About the existence and the uniqueness of o, the following result is known.

THEOREM A (Ihara). Let (K, D(K),d, V} be a valued differential field. Let
I be a kernel of d, and v be a valuation of k induced by V. Let 6: K-> Ky, be
a p’-th Frobenius map. Then we have the following:

(i) The associated differential with respect to o is at most unique up to
k*-multiples.

(i) Assume that K is complete and K is separably closed. Then for any
c€k with vlc)=v, there exists an associated differential o such that o’jw=c.
Here v i3 a positive integer uniquely determined by ¢ by the equality V(%)=
V(5)+hv (€ DMK)).

Now we define a certain special element of D*/~*(X) under the same situation.
Fix cek with w(c)=v. Take f€D(K) with V{{)=0 and put ws=c£?//¢°. Then
@x€D?Y(K) is proved to be independent of £, since, for zZ with Vi(x)==0,

c(@2)? [(we) =ce?! 167 - 5P [2°=ct?/[¢°. Furthermore the following result is known.

THEOREM B (Ihara). Let o be a p/-th Frobenius map of K. If there evists
an assoctated differential with ¢ which 8 normalized by the condition w’fm=¢
and Vi(w)=0, then we have

Finally, the most important point about the associated differential o is that @ is
characterized by some other conditions and, in some particular cases, @ can be

calculated explicitly using these conditions. For details and proofs, we refer to
Thara {7], [8], [9].
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3. Valued differential field and associated differential
in elliptic modular case

3-1. The Gauss valuation V of Q(J(z); with respect to J(z) is defined by

V<pﬂf—"’fi?l-) “n,  for f(X), g(X)€ Z[X], €pZIX].
glJ(z))

The valuation V is characterized by the following conditions: (i) the restriction on
Q@ is the normalized, additive p-adic valuation ord,, (i) V{J())==0, and J(z)mod V
is transcendental over F,. We give another definition of the valuation V as follows.
Let R, be a set of all elements of Q(J(r)) whose Fourier coefficients with respect

LYV o 8 k.

to g--e
€ Q(J(z)) with a, €Q belongs to N, if and only if Min (ord; a,)> —oo exists. Then
Mo I8 a subring of Q(J(x)) and its quotient field is Q(J(z)) itself. We define
a ZuU{wo} valued funetion V/ on I, by

are bounded from the below in the p-adic sense, namely, f= X a.q
ng N

V'(f)= Min (ord, a.) for f== EN a.q" €N, .
na N g

It is ecasily seen that
VI(f@)=V(f)+ Vg, V(f+g = Min{V/(f), VIig)}  for f, g€NR,.

Hence V7’ can be uniquely extended to a valuation of Q(J(z)). We show this ¥V’
coincides with V; the characterized condition (i) and V/(J(2))=0 are obviously
satisfied. Since V/(J(=)*"—J()=V (g "+ -+« —g7'— --)=0, J(z)mod V’ is tran-
scendental over F,. Thus we have another definition of V.

Next we discuss the valuations of Q(J(2), J{p7)) extending V. We can define
a valuation V) of Q(J(=), J(pz)) using Fourier expansions with respect to ¢ in the
gsame way as above. Then V) is an extension of V from the way of definition.
We define another valuation V. of Q(J(z), J(p:)), which is also proved to be an
extension of V. For this purpose, we use some properties of the invariant trans-
formation equation @,(X, Y)=0 of degree p in characteristic 0. As is well-known,
Op(X, ¥Y)=:0,(Y, X), and €,(X, Y) is irreducible as a polynomial with coefficients
in Q(Y), and @,(J(), J(p))=0. Since @,(X, YV)=0,(Y, X), we can define an iso-
morphism o of Q(J(z), J(p<)) by

(.1_’_’.( J(2), J(p2)), )" = FUm:), J)

GUE), Jp) ) G(w), J()

We define the valuation V. of Q(J(z), J(pr) by Vulr)=Vi(+") for any »€Q(J(c},
J(pz)). Then the residue field of Q(J(z), J(pr)) with respect to V. ean be identified

for F(X,Y), (X, Y)eZ[X, Y].
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with that of Q(J(z), J(pr)) with respect to V,. We show that the restriction of
V. on Q(J(z)) coincides with the Gauss valuation V'; since o is trivial on @, the
characterized condition (i) is obviously satisfied. Also it is obvious that Vi(J(z))=0,
since Vo(J(e)=V(J(p:))=0. We have J(pr)—J(z}’= ”glc(n)-q"”~( idf:(n)'(f‘)”
=n( _2” c’(n)-q"), with some ¢’(n)€ Z. Hence we have sz:) mod V,::(.’}'(}) mod V,)?
fromn‘thpe definition of V.. It follows that J{rymod V.=J(p:)mod V|, which is
transcendental over ¥, Thus V. is a valuation of Q(J(c), J(pr)) extending V.
Then it is known and is easily proved that V, and V; are all the valuations of
Q(J(z), J(p7)) extending V, and that the ramification degree and the modular degree
of V, (resp. V,) over V is equal to 1 and 1 (resp. 1 and p). It follows that
Q(J(c))r can be identified with Q(J(s), J(p=))y,. Hence we can regard that @Q(J(z),
J(pe)) is contained in Q(J())r. Then the restriction of V to QJ(z), J(pr)) coincides
with V.

3-2. We shall apply the general theory in § 2 to the elliptic modular case. First,
we construct a valued differential field related to the modular function field Q(J(2)).
Let D, be the space of differentials of Q(J(z)) over @, and let d: Q(J(z)) —» D; be
the usual differentiation. As a discrete valuation of Q(J(r)), we take the Gauss
valuation V defined in §3-1. Then it is easy to see that {Q(J(z)), Dy, d, V} is a
valued differential field. We also construct a valued differential field related to
Q(J(z), J(pc)). Let D, be the space of differentials of Q(J(z), J(pr)) over @, and
let d,: Q(J(z), J(p)) - D, be the usual differentiation. As a discrete valuation of
Q(J(c), J(pz)), we take the valuation V) defined in §3-1. Then we can also prove
that {Q(J(z), J(p), Dy, dy, Vi} is a valued differential fleld. Q(J(z)) is a subficld of
Q(J(z), J(pr)), and D is canonically imbedded into D,. Then it is easy to see that
{QUI(z), Jip2)), Dy, dy, V} is an extension of {Q(J(=)), Dy, d, V}. Morcover, from
the discussion about the valuation V, in §3-1, the V-adic completion of {Q(J(r)),
D,, d, V} can be considered as an extension of {@(J(z), J(pz)), Dy, dy, Vi),

Next, we define a p-th Frobenius map ¢ with {Q(J(z), J(p1)), Do, d, V} by

FUEY =f(J(pz))  with f(X)e@Q(X).

From the discussion in §3-1, ¢ is in fact an injective isomorphism from Q(J(z))
to QUGE), Jip)cQ(J(z))». We shall show that ¢ satisfies (s-1) and (s-2). Since
= ﬂéva,,q"” for any r= 7§Na,,q”eQ(J(r)) with a,€Q, we have V(#%)==Vi{r).
Hence o is V-preserving. From the fact that J(p7)==J(z)?, v induces a p-th power
map of the residue field of Q(J(z)). It is obvious ¢ satisfies (s-2). Thus we
conclude that ¢ is a p-th Frobenius map.

The important point is that, in this case, the reduction & of the associated
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differential w with respect to ¢ is explicitly calculated by Ihara [7]. The result is
the following.
TueoreM C (Ihara). Put r==1 for p==2 and fr:—;-(pwl) for p=3. Then
[ JE ) Jor p=2, 3;

a) ===

L) (J@)— 12 PT@)TE)  for p25;
where @=:- (p +1) for p=:x1 (mod 3), bm— (pF1) for p==+1 (mod4), and S is

the set of all supersingular invariants in charcwtemstzc p, and P(X ):,;I'EIS(X_ﬁ)
eriXi.

Now using this theorem, we prove the following.

ProprosiTioN 1. Put J(po)=J()P-+-pR\(J(z)) (mod V?) with R(J()) in the
valuation ring of QJ(z)) with respect to V. Then

RU@=HI@+ 3, 5k,

where S* 18 the subset of S excluding 0 and 12%, and for 6€S*, 5, is a non-
zero constant in Fy2, and H(X) eF,,[X I

d,(J(p7)) =1 T

2.0 =1 E eln) -np-g™N E cn)-n-¢®Y™Y, we have

1 n=-1
V(dé(irg: T);) ) 1. Hence the constant v stated in Theorem A is equal to 1, and we
1
can take p as ¢ in Theorem B. Taking d(J(z)) as ¢ and calculating the reduction

Proor. Since

of wyg, we have

ax=(J@)" +RI(JONdJ@)* ,
where R(X) is a derivative of R, (X) as a rational function of X. Theorem B
implies that @x=&"! and @ is determined by above Theorem C. Hence the proof
is obtained as follows; the proof for p=5 and that for p=2, 3 being exactly same,
we only prove for p=5. By Theorems B, C, we have

(5) J@)+ Ri(J (1)) =J(2):* (J(e)— 1282 P(J ()2 .

On the other hand, we have @,(J(z), J(p))=0 and @ (X, ¥V)=(X*—-Y)}(X-Y?"
+pdX, Y) with (X, Y)e Z[X, Y] by the Kronecker congruence relation. Sub-
stituting J(pz)==J(@)P-+pRi(J(z)) (mod V?) in this equation, we have

= R{(J(2) - (J(2)—J@) )+ ¢(J(2), J()")==0 (mod V).
Hence we have

$(J@), J(2)’)

(6) RI(J(T))‘”:“— J(?)pZ___J(r)

(mod V).
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Expanding the right side of (5) into partial fractions and comparing with (6), we
obtain Proposition 1. g.e.d.

4, Reduction mod »" of cusp forms

4-1. We consider another valued differential field. Put @,(J()=Q(J(-)XQ;
(over @) and D"=D,RQ(J(=)) (over QUJ(=))). QJ(=)) and D, are canonically im-
bedded into @;(J(z)) and D" respectively. Let d~ be the unique differentiation
extending d with the @;-linearity. Let Q7 {g} be the power series field with coef-
ficients in Q7. For each r€Q;(J(x)), we can correspond an element of Q}{g}
naturally using the Fourier expansions with respect to ¢ of elements in Q(J(z)).
Call this element also a Fourier expansion of = (with respect to g). This corre-
spondence induces obviously an injective isomorphism from Q,(J(z)) into @y{q}.
By this Fourier expansions, we can define an additive, discrete and normalized
valuation V¥ of @(J(r)) in the same way as in the case V in §3-1. It is also
proved by the same argument as in §3-2 that {@3(J(=)), D™, d°, V™) is a valued
differential field.

Next we construct another one. Let R be the subring of Q. {q} consisting of
all elements ﬂ%}anq" in @7{g} such that the coefficients @, are bounded from the
below in the p-adic sense, and let & be the quotient field of % in Q;{¢}. We can
define an additive, discrete and normalized valuation V. in the same way as above.
Denote by © the valuation ring of V, and by i% the maximal ideal of ©. Let
D(R)=8-d,q be a one dimensional vector space generated by d.q over & We
define a differentiation da: & - D(§) by

do( 20 a.q)=( 2 amn-q"Vdyq .
rna N na N

It is clear that d, is a well defined differentiation and that the kernel of d, is Q.
We can prove D(f)):édﬁq as follows; take T:q:%::v a,.q"eN, with ¢,€q,. Then
der=( 2 a.n-¢""")d,q. Hence we have V,(g%)g Vaulr) for any reN. It follows
that V,(g’;)g Velr) for any re s, Therefo;e D(ﬁ)cﬁ-d“q. On the other hand,

& . ~
it is obvious D(D)DO-d,q. From this, it follows that d, is continuous with re-

spect to the V.-adic topology of $ and of D(#). Hence it is easy to see that
], D(®),d,, V,} is a valued differential field.
Now we define a p-th Frobenius map & with {&, D(#), d,, V,} by

(2 a.q")= 3 a.q".
ng X ng Y

 is an injective isomorphism from & to § itself, and it is easily proved that #
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satisfies the conditions (s-1), (0-2).

We note the relationship between these valued differential fields. The fields
QUJ(), Q,(J(z)) are imbedded into % by the Fourier expansions, and Do, D~ are
imbedded into D(R) by the identification,

AT =( S em)-n-qd,q

Under these situations, the restrictions of d, and V, to Q(J(z)) (resp. @5(J(z))
coincide with d and V (resp. d” and V™), and & induces ¢ on Q(J(z)) defined in § 8-2.

Now we consider associated differentials of 7. We have the following.

ProrosiTION 2. The set of all associated differentials with respect to & is
{a-q7'd,qla+0, € Q7).

Proor. Since (q“‘dﬁq);r:q“”dﬁ(q")r:p-q“‘d,q, ¢~'d.q is an associated differential.
By Theorem A about the uniqueness of the associated differentials, we obtain
Proposition 2. g.e.d.

On the other hand, taking d(J(z)) as ¢ and calculating &y defined in §2, we
attain at the following important identity by Proposition 2, and Theorem B;

@) =T+ BT aT@) -
With this identity and Theorem C, we arrive at the following.

ProposiTioN 8. Put d(J(z))=(gA)*dyq, with A€ R. Then A belongs to O and
salisfies the following congruences for any rational integer a=1;

(7) AP = (1) WP (mod B9
where
J(z)™t for p=2, 3;

We=
J(?)«G(J(T)““123)‘501:&1801(?)—-jg) fO’I' pg5'

Here the notations are as follows; S, S* #, a and b are the same as defined in

Theorem C and Proposition 1. For ¢€S¥*, j, is the unique element in o} such

that 72%==j,, and 7, (mod n)—-o and for #=0, 12* in S, j, is 0, 12® respectively.
Proor. Since A==¢~( E en)-n-¢")t and ¢(—1)=1, we have Vy(4)=0 by

definition ; hence A belongs to \: As is remarked above, we have
(8) (@) = (T + RITON 1 dTE)* .

The right side of (8) is calculated in a more explicit form by Proposition 1. Hence,
substituting 4-d(J())=¢"'d,q in (8), we obtain
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(9) A=c¢W (mod D),

with a constant c€v,. Considering the Fourier expansions of both sides of (9),
we have ¢=(—1)". Therefore we have

10 A= (1) Wt po ,
with ¢€ 2. Raising to the p""'-th power of both sides of (10), we have

o Pn»l a1 e )
an AP (WP S (p,; )zft’»" (=1 W)y =

=1

Then we shall show

@1

(12) ord, ((pz )p';)g(x, for any 1<¢=<p™™t.

To begin with, we prove that
(13) p"—m-+1)=20  for any n=0.
In the case n=0, this is valid since p°~—(0+1)=0. Using induction on %, we have
"' —n+2)zpn+1)—m+2)znp—-)+(»-2)20.
Hence (13) is proved to be valid. From (13), we have
1—ord, 1—1=0 for any +=1.

Therefore we have
pa-1
ord, << i )IJ‘)*G 214 Max {0, o —~1- ord, 1} —a ,

= Max {{—a, 21— ord, 1—1}20 .

Considering (11) in modulo is“ with this result, we obtain (7). g.e.d.
REMARK. As for the known facts about supersingular invariants in charac-
teristic p, we refer to Deuring [4]. Here, we briefly recall some facts which are

needed later; the cardinal number of S* is equal to [—i%_} For pzb, 0 belongs
d
to S if and only if p=5, 11 (mod 12), and 12° belongs to S if and only if p==T7,

11 (mod 12). Hence W is rewritten as follows;

We=J(@)™1(J(5) =127 11 (J) =,

with m;—-[ 3 (p D_j’ M w7 (p 1):!.

4-2. Reduction mod p® of cusp forms of weight k(p“—p™"). Let QcC be
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the algebraic closure of @. Pix a divisor p of @ extending p of €@, and denote
by Q, the inertia field of p. Then p determines an unramified valuation of Q.
Hence Q7 can be imbedded in Q.. Henceforth we fix one imbedding. Thus, as
far as the clements of @, are concerned, they can be regarded as p-adic numbers.
Denote by o, the subring of @, consisting of all elements of @, which belong to
o, a8 p-adie numbers.

Let kz1, and a=1 be rational integers. If »=2 and a=1, we assume k is
even, We denote by ©p0.,«~1, the space of cusp forms of weight k(p®—p*)
with respect to ["=-SL(2, Z). As is well-known, we can take the following
elements as a basis of &, a1, ; let

desg 11 (1—g"2¢,
» 1

G=1+240 3 oy(n)-q" ,

Mzl
6:;?:1”504 i 0'5(?1) 'qn 1
nul

WiLh Ui(n)r‘: dE di. Put Goﬁjl, GQ:G%, GlOIG‘GG, Glzsz, and G“foGa. Put

fn
d>v

sm{—l—lgk(p"—p““):l. and t=k(p"—p")—12s. If s>0 except s=1 and t=2, a
basis of &, ye_ps-1, is given by the followings {Fi(r)} such that,
Case 1. If ¢+2,
Fi(0)=4'G5G, for 1=1=s,
Cage 2. 1If t=:2,
Fi(e)=4,G3: Gy, for 1=iss—1.
Call this basis a canonical basis of S, e, «-1.. The canonical basis {F;(c)} satisfies
following two properties;
(i) The Fourier coefficients of Fi() with respect to ¢ are rational integers,
and the first coefficient which is not zero is equal to 1.
(ii) Let F(z-)::fgvAnq"'iO, with 4, € C, be any modular form with respect to
I". Denote by ord,, (F) the first »n such that A4,:£0. Then we have ord, (F})=1.
Now we define the reduction mod p” of cusp forms of weight k(p"—p°™!). Let
@H,,n_,,wl,,% denote the submodule of S, ,a_,«~1, consisting of all elements
in & pr.pe-1, whose Fourier coefficients all belong to vy. Then 5k,pa_pa—1,,pr is a
free 0;-module with the canonical basis as its free basis by the properties ), Gi).

From definition, Sk.;w_,,a-l),\,r is canonically imbedded in O by the Fourier ex-
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pansions. Hence, for FF€Z; ;oop0-1,,.,, F (mod %% is well defined. Call F (mod ~§”)
the reduction mod p* of cusp form F.

ProprosiTION 4. Let p=b5. Let azl and k=1 be rational integers. Then,
Jor each F €S, a0t o, we have the following congruence;

o H(J(z))
(14) Fe= J(:).11‘~W11A-27“"1(J(.‘.)__123)1\12—7712&1)“"1( 1 J(,_,) ——jg)“’a"l
de 8

{mod 5]3“) .

- |3

- - .
with H(X)eo[X], where er:i —l—k(p“'mi)“"l)", Mzi‘[-%“k(ﬁa“‘p“l).l, M=
[é‘ (p—1) } mQ::EL-—i« (p—1) |, and S* and Je are the same as in Propo;ition 3,

§4-1. Moreover, the polynomial degree of H(X) is smaller than dim_ S, pa_pa-t,,
and while F' varies in Sy empa-t, op, all polynomials in 07lJ(7)] satisfying above
condition about the polynomial degree can appear as H(J()) in (14), and, for
each F, H(J(z)) is unique up to modulo ‘/E".

For p=2, 3, we have the following;

ProPOSITION 5. Let p=2, 3. Let a=1 and k=21 le rational integers. Put
d=dim &, po_pe-1,. Then, if d+0, for each FE€S, ,a_ a1,
gruence 1s valid ;

s the following con-

(15) F%ﬁg:(%)l (mod )

with H(X)eo[X] whose polynomial degree is smaller than d. Moreover,
while F varies in @kfpa_,,n—x;,w all polynomials in or[J(t)] satis fying the above
condition about the polynomial degree can appear as H{J(z)) in (15), and, for
each F, H(J(z)) is unique up to modulo ‘B".

REMARK 1. By definition of i%", (14) and (15) mean that the Fourier coefficients
of both sides are congruent in modulo v°. Hence this definition of the reduction
mod p° coincides with that defined in §1 for the elements in &, ja_,a-1, ,.

REMARK 2. The same argument of the proof of this proposition enables us
to consider the reduction mod p® of the entire forms of weight k(p®—p“™"), where
the entire forms mean the modular forms which are holomorphic on $. The
result is as follows. Let F(z) be an entire form of weight k(p"—p"™") with
respect to I” whose Fourier coefficients all belong to o;. Then there exists H(X)
€07[X] such that

{mod ‘ii") .

Flo)= H(J()) ]
()M 7 () = 120) M= T 1L o))

Here H(X) is unique up to modulo p"-0,[X] and its polynomial degree satisfies
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the following relation,
deg H=dim €y, eepa-y,—ord_(F) .

This fact is used in §7, but we do not give its proof, the argument being entirely
similar.
REMARK 3. We have the following table;

p prxme V ‘ My —mikpa-1 i My —maokpe—!
o 1 (mod 12)‘M 7~‘i ] | 0
ph (mod 12) s [ 3 kp~ “‘] 0
pT (mod 12) f 0 [% epe—t
p==11 (mod 12) : {'13‘ kp"—lj [% kpet

The proofs bcmg similar, we only prove for p=:11 (mod 12). Put p=12t+11. Then

we have m1:L4t+ £]~4t+3 and m2=L3t+ g i~3H~2. On the other hand, we
have xWIlmLicp"“’<4t - 130)J~ukp"“‘(4t -3)+ [ 3~kp“-‘], and Mgz[kp“—‘(sw -g—)]
“kp G2 | e qed.

Hence from Remark of Proposition 8, if 0 (resp. 12°) is not contained in S,

—mkep®t (resp. My—mokp™™") i3 always zero.

PROOF OF PROPOSITIONS 4, 5. The proofs of both propositions being similar,
we prove only Proposition 4.

Asg is mentioned in §1, I" acts on §. Put §*=9DU{0}UQ. We extend the
action of 1" on % to that on £* by,

(lex-+d) Hax+b) if ex+-d=0,

Ico if cx+d=0,
{¢c™'a if e¢#0,

g oo=
{co if ¢=0,

for v€Q, gf::( g 3)61’. As is well-known, I\ and I"\&* can be considered as
a complex manifold of dimension 1 and a compact Riemann surface of genus zero
respectively. I"\D is canonically imbedded into I"\$*, and this imbedding is holo-
morphic with the above structures. As a set, we have M$*=I"\9 U{one point}.

Let =:H - I"\% be a natural projection. Then = is holomorphic and is ramified
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fav

at =(¢) and z(e'_r) with the ramification order 2 and 3 respectively. J(z) is con-
sidered as a meromorphic function on /\%* and, then, generates the function
field of I'\9* over C. Hence, we take J{z}) as a local coordinates of I'\$¥, and
also as a coordinate of I"\$. Then = is ramified at the point of J(zr)=0 and J(z)
=12% with the ramification order 3 and 2 respectively.

Let k& be a rational positive integer. Let F(z) be a modular form of weight

; -\ -k
2k with respect to I". Then F(r)(dg(:‘)) is a modu]ar function with respect to

I by definition of modular forms. Put F(= )/ ‘” ( N P, with T(X) e CX).
This implies that the differential T(J(z))- d(J( )’“ on I"\% of degree k induces a
differential F(z)-(d7)* on £ by the covering map =. In general, let o be a differ-
ential on I\ of degree k and let o’ be a differential on % induced by « by the
covering map 7: 9D - . Denote by (v) and («’) the divisor of @ on I'\® and
that of «’ on $ respectively. Take any point P’€9, and put #(P)=P, and denote
by e the ramification order of = at P//P. Then we have the well-known formula;
(16) ordp (w+k=clord,(w)-+k) .
Apply this formula to o’=F(z)-(dr)* and w=T(J(z)}-d{J(z))*. If we assume that
F(z) is a cusp form, we have ordp (0’)=0 for any P’€%. Hence, by (16), we
have the following;

" if P is not equal to the point of J(z)=0 or J(z)==129,

. [ ﬂl if P is the point of J(z)=
[’ == i

if -P is the point of J(z)==12%

It follows that T(X):X‘[*S -1y [ sx), with some S(X)eCIX).
Therefore if we take F(z) € €y pue a1, we have

A\~ T S(J(2))
Fe#52 ) = O ) —12) s
with S(X)€ C[X]. Since %%zeriq, we have
IO\ EI)
an F(‘)< dq ) _-J(?')MI(J(T)--~12")M2

with H(X)M(Zrz)TWL” "-S(X)eC[X]. Moreover, if we assume F(r)€
Sipa_pa-ty,c, we conclude that H(X)eos[X]; because all the Fourier coeflicients
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. "rii:t;)“_,,ﬁ—i’
” F(T)J(T)MI(J(:}Mlza)glz(:g%ﬂ:)r) 2 belong to 5;. Hence, for each Fls)
: qdJ(z)

€€ mmpa-ty,.,, we can regard that (17) holds in Cr with the identification 771

Lpopa—y

= 44J) :
wtd

(mod &%) explicitly, we conclude that,

.@M@_)

Therefore, with Proposition 3 where we calculated ( d.a
£

e (1) H(J(z)) —kp1 Sa
FO=CD g gy W7 (meddD.

And, from Remark of the same proposition, we have

H(J(z))

(?)'”1"""1kﬁd:l(J(7);*lza)ﬂizmmzk”a_l(olg J(c’)“‘jo)k?a—l (mOdaD ) .
c 8"

Ve e k LC? 1
O

Now we discuss on the polynomial degree of the polynomial H(X). In the
eguality (17), considering the Fourier expansions of both sides, we obtain the
following equality ;

(19) ord,, (F)+ rék(p" =M+ My— deg H ,

where deg H is the polynomial degree of H(X)€0,[X]. From the well-known di-
mension formula of &y (,e-,«-1,, we have, if k(p*—p""")>2,

(20) dime S, (poopa-ty = —(p—p" ) —1} + {%—k(php“"‘)ﬂ}
,,1, a 1 ) ] l C a-1
+[8k(p D )Jf[lik( yu )],

=M, +M,— %k(p“mp“”) .

In particular, if we put k=1, a==1 in (20), we have dimC@pq:mmLmz-—»l" (p—1).

2
On the other hand, it is well-known that dim,&,.,= —1%] for any prime p=3.
Hence we have
en My~ 1 (2?“‘1)2[“&].
-2 12

12
Therefore, we conclude that the denominator of the right side of (18) is the

polynomial of J(r) whose polynomial degree is equal to dim. S, ,a_,a-1,, and that
deg H is smaller than dim,&, e ,a-1, since ord (F)>0 for any Fl(r)e

From (20), {21), we have dimﬁ@}kma_pn—u:(Mi——mlkp“‘1)+(Mg—m2kp“'1)+[JQ_]_



Congruences between modular forms and functions 145

@k’p“—p““‘;.sy-

Finally, we prove that if F(s) varies in Sy po-pa-tiop, all HUJ() € op[J(7)]
whose polynomial degree is smaller than dim, S, ,;+«-,a-1, can appear in the right
side of (14) for some F(:). Put d=dim,.S; pa-,»-1,. Take the canonical basis
{FeN, of &, pe_pa-t. For Fi(o), let Hyi(X)€p{X] be such that

B TR
Fe(r)(q'd‘](‘)) g (=1 " Hy(J ()

T dg J(@)M1(J(z)—128)"2

holds. Since ord_(F;)=4, we have deg H;=d-—i. Considering the Fourier ex-
pansions, we see that H;(X) is a monic polynomial because of the property (i).
Hence all H(X)eo;[X] whose polynomial degree is smaller than d is a linear sum
of H(X), 1=51=<d with coefficients in oy. q.e.d.

5. Reduction mod »° of some modular functions

Here we prove a certain proposition, which is needed to connect the Fourier
coefficients of some modular functions with respect to ['o(p) with those of cusp
forms with respect to /.

5-1. We need the following lemma.

LEMMA 2. Let 120, n=1 be rational integers. Let m be a rational integer
such that m=0 (mod p). Let Ty(p™) be the same as defined in §1. Then we
have

Min (n, 1}

pteerYTimele | To(ph)= = pregiey Timpn B
fex

R 2 Timpl s .V i ple
Proor. The left side equals to 3 e/~ a7°( 3 &) and the
add=>)8" ymodd

second sum takes the value 0 (if dtmpY), d (if dimp'). q.e.d.
Since (m+1—-2i)—(n—1)=1—120 for 0=1= Min (n,l), we notice the following

fact from this lemma; if we put Y= 'm?'| Ty(p™) == gﬂaje“":-“", with a;€ @, then
2

j-a; are all rational integers.

5-2. We also need some elementary congruence properties of the combination

number (n) Let ¢=1 be a rational integer and take t-+41 positive rational
T 1 .
integers 7y, 7y, ++, 7 With 7> > --- >r.. Put {rg, -+, r)= ll( s ) Then

$=0\ 741
we have;

LemMMa 3. Put ord, ri=1; and L-——'DIZI_E (). Then Q) (ro, -+, 1) i8 divisible
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by ptet. (i) If Lz1, then
(22) Pl (g, + - -, w0 (pTipy, - oo, pTir)  (mod ) .

Proor. Since (7 )= ("L, we have ordy ( )2 Max (0, i~k

Tinr/  Tisn \Pin—1 i1
t~1 .
Hence ordy (re, --+, 7)2 % Max {0, Li—li.}zl—L. (i) By definition, (Tr,)z
1~ £+1
i Ti8

R ey TiTE L - -
2 i If (s, p)==1, g (mod %), and if (s, p)=p, s

e, 1 . ~1g.
_gi_,f.em?z_:%. Hence we have p- Yo (o,z,_zi“)_( 7 )Ep—nax [o,l,rmliﬂ).( 1_11 T )
P p8 Tit1 PTTin

(mod p%), which implies p~ L (rg, - -+, r)=p~ ' (p~lry, -+, p7'r.) (mod pb).

g.e.d.

5-3. Let Q[[g]] be the formal power series ring with coefficients in Q. Let
Q{q} be its quotient field. By the Fourier expansion with respect to g, each
element of Q(J(r)) corresponds to an element of Qfg}. Then it is easily proved
that the restriction to Q[J(r)] of this correspondence gives an isomorphism of
Q[J(r)] as @Q-module onto the residue class @-module of Q{g} modulo ¢-Q[lgl].
Denote this isomorphism by ¢. The set { ;‘;; a9 ' l0: €Q, m=0) gives a full set of
representatives of the residue class of Q{qM} modulo ¢-Ql{gll.

Let d=1 be a rational integer such that d=0 (modp), and let n=0 be a
rational integer. Put ¢ p~"-¢=*")=H,. 4.,(J(r)). We prove:

ProrosiTION 6. Let n=1. Then,

(23) H, . (J@)=p" H, 4.a(J(2)")  (mod Z[J(z))) .
Proor. We note that ( }E‘,o a;-q~%) belongs to Z[J(z)] if and only if all a
belong to Z. Put

@) AHpe - IOP)= S (—alP ) —a
{m,pl=1
iao

o<mplcdp®
with e¢{*™eQ, 0si<dp". Let the Fourier expansion of J(z} be J(r)=
> eln)-q%, with ¢(n)€Z. Then, we have

B

- - 7 r

25) el = = P clna) o ’x..-c(m)n.( 0 )( i )
dpParg>r > drg>Te =0 To™ Ty T

tﬂg>--'>nl>ﬂ02-—l

VB (rg=riay) ng=—mpl
=0

+

. -( P ):2 p‘“.c(nOY'o"l v c(n‘)rg.(yo’ seey, 7-2) .
Te-1™ Tt

By using Lemma 3, we see that if at least one 7; is prime to p the corresponding
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term in (25) is a rational integer. Therefore, when we consider H, q..(J/(c)) modulo
Z[J(z)], we can omit that term. For [=1, put

tdomy — T.p-r.p ; r,p
(26) a,5i"'= = P clng) O el (oD, ey D)
tav
dp=rgp>Tip>ee > ryp>rp =0
; wg>ee>uyp>nga—1
,? ri~=ris; )"t"“"‘pl_‘
2o

Then, from the above we have

@7  HpoWJ@)—p "J() 7 =Y = (@)% q"")~as'® ™} (mod Z[J(x)]) .
(1:52}1:1
ocmplcdp™

1t is well-known that, for any rational integer e,

(28) a™'=q""""" (mod p")

holds. We apply this to al.si™; put L= }vsjii;l‘(ord,, (r¢p)). Then from (28), we
have

(29) c(ng) P+ =c(n;) "1 (mod pt) .

From (22) in Lemma 3, we have

(30) p="E(dp®, mip, e, rp)=p~ " (dp" N vy, -0, ) (mod ph)

Hence, we have from (29), (30),

p"‘c(no)'””“”"l c(m)ﬁ"-(dp”, )
=peelng " s el e (dp™ ™, oo, 1) (mod 1) .

It follows that

(31) @5 =p e i (mod 1)

And, also we have

(32) @ ple Z;

since, —mp'= g(pri——prm)n; and I=L, the p’-multiple of the corresponding
term in a/%;™ l;elongs to Z.

With these preparations, the proof proceeds as follows by using induction on
N=d-p"; it is easily seen that H, ., (J(z))=cg")=J(r)—T44, and, H, . (J(r))=
N p~t-gN=ptJ(z)’—p~!1-744 (mod Z[J(z)]). Hence, in case dp"=1-p', the prop-
osition is valid. From (27), it follows that,



148 Masao Koike

Hy a @) =p Iy =010 5 (—a 8™ 7" —at " ™) (mod Z[J(x)))

my

= B =gl ptHy o ()l
m i
im =i
fat
mpl<d;;”

(mod Z[J(=)]) .
From (31), (32) and the induction assumption, we have

Hy @) =p I S0 =t gt pH, (S0 plagt

pl-1
m >0 mp

{m,pj ol
igl
mapl <gp™

(mod Z{J(®)]) .
= H g (JE)) = p e p= 0 J(pr)d 7T (mod ZJ=)) . g.e.d.

mpt

COROLLARY. Let H, 4 ,(J(x)== 3 b'PJ@)™ 4-byd ™| with bi*meg, 0=
(rrr et
mul:fdifﬂ
1=2dp”. Then p'-b¢" telongs to Z.

Proor. We shall use induction on % with N=d-p". By the above proposition,
we have for any n=1,

(33) H,md.a:(X)Epml'Hp,d.n—l(Xp) (mOd Z[X]) .

Hence, if Iz 1, we have b/, =p~1-b):15" (mod Z). It follows that, I=1, pl-bE
==pi bl Y (mod Z). If 1:=0, from (83), bif ™ belongs to Z. Since it is obvious
that H, ,.o(J())=<"Yq ?)€ Z[J(z)], the induction assumption for Ne=d-p°® holds.

g.e.d.

5 4. From these facts, we shall prove the following.
ProrosiTiON 7. Let m=1 and n=1 be rational integers. Then the following
congruence 18 valid ;

JONUP = 3 twran p (T Iy ™)  (mod ZJ@))
o<mpl<dph
(m, oy
g

With Qum.t.q.n € Z.
Proor. It is well-known that J(©)/|Ty(»p" belongs to Q[J(x)]. Let J(z)*
= N empt-q " ey (mod ¢-Qllql]), with ¢n,0€ Z. Then, we have

o mpl <
Lyt
o

TENTYP)= S onpt g™ | Tolp") +col To(p") -
ocmpt <
£ N
o
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From (8) in §1, we have

TG’ = S e I TN =7 g I T ) )
o< mpt<d
im.pt=1
tzo

+eol To(p™)— D0 eol Tolp™ ™) .

Mi 7, . Min (n,
Yin (n,0) mepiba=2i Hin (n,1)

Using Lemma 2, ¢ "™Ty")= X p™*'q S pmipe e
. L=y [E=i]
™% Hence, we have

Min (n,l)

JEYIUpYy= = e 2 P Hy tane2s(J(2))

G<mptld §=0
{m,pi=1
120
Min ‘n—1, 1) 3
—p Z;'. P Hy omtsn--2:(J (@)} 0
By Proposition 6,
Min (n=1,0) A
34) JOUUE'= 3 eppl X P HpmronernlJ6))
whs "
n-iglz0
S LTI 6/(.1))) B Gt P Hy e (J(2))
o< mp* <
{m,p)=s1
tzn

(mod Z[J())) .

Since p‘“"-Hp,,,,,i_,,.(J(r))::"(q“”“"""), the last sum of (34) belongs to Z[J(r)]. So
by using Corollary of Proposition 6, we obtain Proposition 7. q.e.d.

6. Proof of Main Theorem.

Here we shall prove Theorem 1 which is a slightly extended form of the Main
Theorem stated in §1.

THEOREM 1. Denote by M” the :p-module in @,(J(2)),= generated by { f1U(D)";
fe€Z[J)], n=0}). Let a=1 be a rational integer. Then for each 9EM?, there
exist h€o;[J(2)], and F(z) € Spao ot o such that

(35) g-—h=F(r) (mod 53").
These h and F(z) are unique up to modulo %".

To begin with, we show that Theorem 1 implies the Main Theorem; put
d=dimS,a_,«-1, and let {Fi(z)}%, be the canonical basis of &,a_,«-1. Take g€

M. Then, we have the following congruence by Theorem 1;

g—h=F(z) (mod%™,
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with heo[J(z)] and F(r)€Z,e_,a-1,. As the Fourier coefficients of g are all
rational integers, we can take & from Z[J(z)] by the fact J(r):”f‘:ilc(n)q”, with
e(—1)=1 and c(n)€Z. It follows that the Fourier coefficients of (g—h) are
rational integers. Hence, by the properties of the canonical basis stated in §4-2,
we can take F(z) from S ,a_ e, 4. q.e.d.

We prove this theorem using Propositions 4, 5 and 7, and the theorem of
Deligne about the p-adic rigidity of the map J(r) - J(pr). Deligne's theorem reads
as follows; we showed that J{pr) belongs to Q(J(c),, therefore, to Qo (J (1)) e,
Hence J(pr) has a V™ -adic expansion. Deligne’s theorem gives this V™ -adic ex-
pansion of J(pr) explicitly in the following form,

(36) J(pr)=J)"+p-H+ 3 ) AL TG,

ves a
with He Z[J(z)] such that JE) Ty(p)=p~'J(z)?-+H, and A €03, S and je being
the same as in Proposition 3. Furthermore, Deligne’s theorem gives the evalua-
tion of ord, Ai” as follows; for p=5, and =1, we have

1 np .
e e 2 foeS*,
p+1  pi1 |
'z L1, 3np S
387 ord, A" = Pl | EJ:I if 0=0€S y

L2 e yimes.
p+1 | pil

For p==2, 8, and n=1, we have

ST Ry 1) for p=2,
(38) ord, A, =+
)\ 5 -%-?n for p=3.
As for Deligne's theorem, we refer to Dwork [5] (p. 80).

Proor or THEOREM 1. First, we briefly sketch the proof; for any F(r)
€jayai,,, in Propositions 4, 5, we calculated F(z) (mod ‘i‘s") to be a rational
function of J{z) (mod ‘1"‘) in a definite form. On the other hand, by Proposition 7
and Deligne's theorem, we shall show that, for each gEM™, g (mod ‘13") can be
calculated to be a sum of some he€or[J(x)] and of some rational function of J(r)
in the same definite type as above modulo $°. Hence we obtain Theorem 1 by the
‘surjectivity’ of the reduction mod p* of cusp forms in Propositions 4, 5.
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To begin with, we need the following elementary lemma.

LEMMA 4. Let K be a field with an additive, discrete valuation V. Let O
be the valuation ring of V and let = be a prime element of V. Let re K(X)
be such an element that

(39) gL b S

i (X—a)"

[N
with mz1, ezl (i=1,---,m), and b, a;€D (i=1, ---,m), and F(X)eL[X).
Assume that V(a;—ae;)=0 for any 1=i<j=m. Then we have the following,
unique partial fractional expansion of r;

3 b, )
rzé ,E; (X“;‘;)" +G(X)
with b;,€0 (i=1, .-+, m,j=1, .-, e), and G(X)eT[X] such that Vib;))z V(b)
and G(X)ezV®O[X].

ProoF. Since the uniqueness of the partial fractional expansions is well-known,
we only prove that the evaluation of the coefficients b,; and of G(X) with respect
to V are given by the above. In case m':l,’ the assertion is obviously valid since,
for each F(X)eO[X], we have F(X)= éﬂ e(X—a,)! with some N and ¢, €D
(i=1, ---, N). In general case, we use induction on m and e,; we may assume
Fla))+0 for i=1, ---,m. Let m,>1 be a rational integer. Assume that the

assertion is valid for any 1s=m<m, From (39), we have T'(X‘“amo)‘”’ﬂxn,,,o
e b'FYam )

=bmy.m- On the other hand, 7 (X —amy) "‘Ol_\-aamo:;‘):rm" . Since V{gn,—as)

I (@y—a)

my— £t

1
=0 for 1=i<mo, I (@n,—a)" is a V-adic unit; it followst hat V(bu,.en,) = V(D).
1=}

Hence we have

o bmgemy b-Fy(X)
— by Mo
A=t ™ I (X0 g™

T

14

with Fi(X)eO[X]. Therefore, using induction on €ny we conclude the assertion
is valid in m=m,. qg.e.d.

Hereafter, since the proof for p=5 and that for p=2, § are entirely similar,
we prove only for p=5 and we write only the results for p=2, 8. Now the first
step of the proof is to givé the following; let m=1 be a rational integer. Then
we have

T =JE™ 4 phy+ B 5 B i)™,
el n=l
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with h,€.;[J(z)] and B.” €v;. Moreover, the evaluation of ord, B)" is given
by the same equation as ord, A" in (37); namely, for p=5, n=1 we have

Lo ges,
p+l  pt+l

(40) ord, Bz | —2 1 32 1y ges,
p+1 | p+l

Lo 2y pimes,
1 pri

and for p==2, 3 s0 on. Put J(pr)==J(r)’+pR with R€Q(J(r)),. Then, R is the

sum of infinite terms which consist of {p™ -4 -(J(r)—7,)"™ with 0€ S, n=1, and
of a polynomial He Z[J(r)]. Hence, we have

Jpr)" =J(=)"P 229 ( )Ra J(zypimen

Then R’ ig the sum of infinite terms which consist of {3:]; pALY (J() =g, )
-H""} with 158¢'=s, and of H". By the above lemma, the evaluation with re-
spect to ord, of the coefficients of the partial fractional expansion of »° (m)

11 P A (I )=Jo) - H* -J(x)*™ " is given by the following; if B,'? is the
coefﬁcxent of (J(z)—3,)™" in thxs partial fractional expansion, we have ord, B, =
s+ E (ord, 4:5" —1) and n= Zn, Moreover, the ord, of the coefficients of the
polynomlal part is not smaller than s+ 2 (ord, 4,7 —1), and its polynomial degree

is bounded by pm. Hence, we have for aeS*,

'l I
ord, B 28+ X (ord, AV —1)2(s—8") + —>e + P2 S ;|
. §( ! Y& (s s)Fp+1 p+]t21n
z-1_.mp
T pt+l prl
Similarly, if 0 (resp. 12% is contained in S, we have ord, Bf,“”g;{l_»l—-‘rf?_zll
(wsp ord, Bj"* = pil 2np>‘ Since Bi? is the sum of these B,%’, we obtain

the equation (40). Concerning to the polynomial part h,, A, is the sum of the poly-
nomial part of each partial fractional expansions of {p’“(?‘f ) }:I"p“’Affi" (J(£)—Jo,) ™
-H“““‘-J(r)”“’"“”}with 1sssm, and 1=5'Ss, and of H*® with 1=s<m. Since the
polynomial degree of each polynomial part is bounded and the ord, of its coef-

ficients is not smaller than s+ X (ord, A%’ —~1), h, becomes an element of
[
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o, [J{)].
Next step is to show the following; Let m=1 be rational integer such that
(m, p)==1 and let {=1 be a rational integer. Then we have

(41) PHIEP Sy =k S }“flC;,”‘(J(.—)ﬁﬁ)’“" ,

ved mo

with h,€0,[J(z)] and C\# €0,. Moreover the evaluation of the coefficients C\*

with respect to ord, is given by, for p=5,

CmP Ly ifgesx,

p+1  p+1
3np 1 . v
:10) > bl uAt . — | f [/ € s
(42) ord Ci#' = P i 0eS

2np 1y it p=120€S,

D ptl prl
and for p=2, 8,
~1—2§n+—1é1——1 for p=2,
(43) ord C,=
I B for p=3.
2 2

We make the similar argument to the first step. Put J(pz)"=J()""+pR, with
R, €Q,(J())y=. Then we have

T =T S p"(pH)RT Ty
N k4

R, is the sum of infinite terms which consist of {p~-B\" -(J(r)—7,)"} with
0eS, nz1, and of h,eu;[J(z)]. Hence Rj, for 15s=p!™t, is also the sum of in-
finite terms which consist of {i_l pt B (J(2)—=7,) - R} with 158’8, and of
hi. By Lemma 4, the evaluajcgc;n with respect to ord, of the coefficients in the

-1 i i » — ‘s .
partial fractional expansions of p'-(p . ) U p-BAY (J(r)—3,)"i-hi™" is given
1

by the following; if C}'? is the coefficient of (J{z)—~7,) " in this partial fractional
i-1 L i a’

expansion, we have ord, C,'* =g+ ord, (p . )+ 3 {ord, BYY—~1) and n= 2‘; n:.
i-1 4=

Moreover the ord, of the coefficient of the polynomial part is not smaller than

11 L n
s+ ord,(p )+ >, (ord, B;."Z"—l) and the polynomial degree is bounded by p'-m.
8 %=1
Hence, by Lemma 38, we have
[§28)

ord, C,'” 28+1—1— ord, s+ -‘%"‘,' (ord, B.;" —-1)
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’

>(g—~g"V+]—1— +_§___ (7
=(s—8")+1—1-ordy 8 p—}~1fp-!~1
=22 . 8 41 1-ord,s.
p+1  p+1
Therefore, for (42), it is sufficient to prove
-5 _ S [ __1_.___.“ >
(44) i ord, s—1z e 1, for s=1.

This is equivalent to show that,
pbl—(p4-1t=0,  for tz20.

If =0, we have p°+1—(p+-1)-0==2, and if t=1, we have p'+1—(p+1)=0. For
t:2 we use induction on £; if t=2, we have p*+1—2(p+1)=(p—1)*—2>0 since
pz5. We have p'+1—(p+1t+Dzpl(p+1t—1}+1-(p+ D+ =p*t—2p—t=
tpP—1)—2pz p--1—2p=(p—1)*—2>0. From (44) we have s+ ord,,(p:l>+
,é,(ord" BV —1)—lz 5’%§1—pii——1:~~})—f—1— >--1, Hence the polynomial part
of each partial fractional expansions in (41) belongs to o3[J(+)]. Therefore we
obtain the second step.

Put n,=[p Halp+1+1}], n,=[3p){alp+1)+1}] and n¥=[2p)Ha(p+1)-+1}.
We prove that,

-
5) msrt, ais[ gt | and wis| o .

If a==1, we have n,=[p U p+2)]=1, and nj=ni==0; hence (45) is valid for a=1.
For a2, we shall prove that p“—a(p+1)-+120; from this, (45) is obviously valid.
If «-:2, we have p*—2(p-|1)—1=(p—1)*~4>0 since p=5. For «z3, we use in-
duction on a; p*"t~{(a+ Dip+ D4 zplelp+ D+ —{la -+ Dp+ D+ 2 a(p*—1)—2
>0,

Finally we prove Theorem 1. For this, it is sufficient to prove (14) only for
g==J(@){U(p)*. By Proposition 7 and (41), we have

P

g=h+ 3 3 al?JE@)—j)"  (mod P,

veS n=1

with k€ o [J(0)], and alf’ €0r. Here for € S* n'® is the maximum integer such

g
that ;)L' -—p-li —1<a—1, and 2, 2" are the maximum integer such that
4
Q100 asd
Snl —-—~~»1A~~—1>‘;a‘—1, LN S Py | respectively. Hence we have n'?’ =
p+1  p1 p+l  p+l

n, for 0€8*, n®=n/ and 0" =n/. Therefore from (45) and Proposition 4, we
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obtain (14). q.e.d.

PART 1I. APPLICATIONS TO THE CONJECTURE OF ATKIN
7. p-adic Hecke operators

Now in the following sections we deal with the applications of the facts we
proved so far, mainly Propositions 4, 5 and Theorem 1, to the conjecture of Atkin.
It is performed as follows. Atkin asserts in [1] the following:

Congjecture. Let p=23 be a prime number and ! be a prime other than p.
Put t.(n)==c(p™n)/e(p®) with the Fourier coefficients c¢(n) of J(z) in (4). Then it
holds that,

a,(nz)~ta<n>ta<z>v+z~*t,,(%)z=-o (mod ) ,

ta(np)—ta(n)tap)==0 {mod p%) ,

where ta<%—) is defined to be zero if » is not divisible by . Moreover, examining

the case for large primes by the aid of a computer, he asserts a conjecture of
similar type for general primes. Atkin says in [1] that he proved this conjecture
for p=2, 3, 5, 7, 13, but it seems that they are not published vet.

First we define certain p-adic Banach spaces and p-adic Hecke operators acting
on them. The conjecture of Atkin is closely connected with the existence and the
construction of simultaneous eigenfunctions of p-adic Hecke operators on the
space .. Secondly, we shall prove the conjecture of Atkin for p==13 completely,
studying eigenfunctions of a p-adic Hecke operator U,(13) on & ® by the result of
Atkin and O'Brien on modular functions with respect to I",(13) ([3]). At last, we
shall show that, if we assume certain assertions, the same procedure of the proof
in the case p==13 is applicable to the general case. However, new assumptions
themselves have not been proved yet.

7-1. Let p=5 be a prime number, and let % be an even rational integer.
For any positive integer a, put V;“m%;.g‘pn_,,aux,,,,l, and put dF = dim ;v o1,

ProPOSITION 8. Let a’>a be two positive rational integers. Then for each
Fe VY, there evists F'€ V¥ such that,

Fr=F (modf%,
and F' is unique up to modulo i&“.

Proor. From Remark 2 of Proposition 4, it follows that there exists a
regular form G of weight (p” “—1)(p"—p"~") with respect to /" whose Fourier



156 Masao KOIKE

coefficients are all rational integers, satisfying G==1 (mod ’:,B"). Put F/'=F.G.
Then F’ belongs to V' and it holds that F'=F (mod "iS"). g.e.d.

From this proposition, it follows that there exists a system of free basis
{F? }f of V.’ over v, such that F 4 =F_, (mod R for any a’>a. Hence
the sequence {F.’)7 , has a P-adic limit in ¢-.[[¢]], and it will be denoted by
Fi¥. We call this system of free basis of V." the compatible system of free
basis of V¥, Let ./’ be a p-adic Banach space admitting the orthonormal basis
{F7y7, over @,. For the definition of a p-adic Banach space with an orthonormal
basis, we refer to Serre [12]. Namely, by definition, -~ '*’ consists of all the
elements ﬁlaiﬁi“ with «.€@Q%, such that there are only finitely many a; with
ord, a; <t }br any positive number ¢t. Therefore ./ '* ig contained in ¢-@3llg¢l].

PROPOSITION 9. (1) v ‘4 does not depend on the choice of the compatible
system of free basis of ViF'. (2) S,,, is contained in  ©. (3) For each
Ferwo Fre. 0 F.F belongs to .7**3". Especially 7% 1is a ring.
@) {(JG&@)~34) "}1_m<m forms an orthonormal basis of ~ ™.

Proor. (1) Let, {F”}%} be another compatible system of free basis of V%
over ¢;. Put F/™=:lim F7'%. Then for any a, there exist a;;€o0r, 1S5=dV,

aipt e atA
such that F/ A = 2 a:; F*;, Hence we have Frvs §_‘, ;i F”‘ (mod $7), so F4»
belongs to .7¢%, "

(2) By the same reason of the proof of Proposition 8, it is proved that there
exists a certain regular form G. of weight »"—p"™' with respect to /" whose
Fourier coefficients are rational integers satisfying G.=1 (mod ﬂ‘.‘»" Therefore,
for any I'€@,,,,, F-G, belongs to V.»' and it holds that lim F'- G,=F.

x—soo

(8) Let {F*}, {(F*)}, {FZ1*"} be each compatible systems of free basis.
For each Flle Vi, FPieVi, FA.F*! belongs to, €2 ps-t,. By
Proposition 4, there exist a, €y, for 1£I=d3%%7, such that F.F =

’
d" 2’

[P
4

\‘ aF350 (mod %), so that we have F¥.Fl= 2‘, aF3+2 (mod $7).
Hence F® I‘ 49 helongs to ./ tAFAY,

4) By Proposxtxon 4, we can choose a compatxble system of free basxs {F®}

3, for any (J('\.’)_‘Jg) ", there exist some « and 7 such that FP=(J(t)—j,7"
(mod %%). Hence we have lim F =(J(z)—j,)*. g.e.d.

IEatee]

An element E a;F; in .~ %" such that all a; belong to o will be called an

integral element Thxs does not depend on the choice of the compatible system
of free basis of Vi%'.



Congruences between modular forms and functions 157

7-2. We shall define the p-adic Hecke operators on .~ %', which are seemed
to be the counterpart of the classical Hecke operators in this case. Before this,
we recall briefly the classical Hecke operator theory. Let %£=12 be an even
rational integer and let I be any prime number. Denote by &, the space of cusp
forms of weight & with respect to I”. The Hecke operators T:(l) on &, are defined
by

. ! bty L o
FOITh= 5 {atnb-+1 “\z)) ,

R

for F(z)= § aln)-q"€%,, with a(n)e C. Here a(%) ig defined to be zero if n is
not divisible by I. 7.(l) are mutually commutative.

ProprosiTION 10. Let | ke anywprime other tkanwp. Then for any Fos g}A(n)-
gte N with Aln)€ @S, both ”_?:lA(np)-q" and E,l{A(an-l‘“A(%)}q" belong
to 18,

Proor. Let {Fi*.} be the compatible system of free basis of V¥, We may
assume that F is integral, namely F== i a:F; with ;€. Then F is congruent
modulo ‘is“ to a finite sum of these af? 1t follows that, by Proposition 4, there
exist some rational integer k. and Fa(f)egu,kamﬂ_p"—’,,nr such that FHF',,(:) (mod
B). Put F.(0)= ﬁj‘. A.(n)-q". By definitions of Hecke operators, T, (pa—pe-1,(1)
and Tz+ka<p"~p“‘lz'(7;) act on Spyp,pr-pr- ... Since PHRa "D =11 (mod p%) for
any prime ! other than p, we have

Fu®)| Tiriyompot, (= 3 g A nly+ 1 “’““”M"“Aa(-?“)} q"

= | 1,4 (PN on Gie

E.‘(A“(nl)+l A"(l )} ¢ (mod PY).
1 AN < 5 -1 n )

Putting F= z;l }A('nl) +1 -A(—l )}-q , we have

F=F | Tisiyipe—pe-n(l)  (mod F) .

Therefore F, belongs to 7', Put Fp= ilA(np)q". As for F,, we can take
sufficiently large k, satisfying 24k (p"~p"")—~1~—a=0. Then we have

Fu@l Tsttgromrrty(p)= 3 | Aonp)+ p‘*‘"""’"“”“‘”-"‘*“(%)} v

nll

%é)l Anp)-¢"  (mod %),
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S0 f‘ﬁp belongs to 7741, q.e.d.

By this, we can define the p-adic Hecke operators as follows.

DEFINITION. Let I be any prime other than p. We define the p-adic Hecke
operators U,(p) and Til) on .72 by

PO (p) = S’; Alnp)-q*,

[

AT .?(A(nl)»+-l*“1A(%‘-\)} ",

for I En'j An)-g*€ /', Here A(*?) is defined to be zero if n is not divisible
[ 2 )

by 1. 1t is clear that Uip), T:il) are mutually commutative.

8. The conjecture of Atkin

8-1. In this section we discuss the case p—13 using the results of Atkin
and O'Brien [3]. Put f(r)xrnli.ll(lmq”), and glz)==q{ f(13z)/f(c)}®. Then it is well-
known that the modular function field with respect to /7(13) is generated by g(z)
over C.

ProposiTion 11. {g(c)*)5e, forms an orthonormal basis of & as a p-adic
Banach space over Q.

Proor. Put Jz)==J(r)--744. By Lemma 5 in [3], it holds that
(46) JU)UA8) = g(r) +13%(z)| U(13)2 .

From the above equality, it is easily seen that g(z) is p-adically approximated by
the sequence {—-‘_i:o 185 J%(=) | U(18)*+) s, On the other hand, it follows from
Theorem 1 and Proposition 9 that J%<)|U(13)", for n1, belong to .7 @, Moreover,
using the fact that there exists only one supersingular invariant in characteristic
»=:13 and that it is 5, we have by Theorem 1,

JOIUAY=~(JE)~j)"  (mod ),

with j; €05 such that 7i=1, j; (modp)=5. Therefore g(c) belongs to @ and it
holds that,

) gly=(J@)—j)*  (mod ).
With this and the fact that {(J{)—7:)*15., forms an orthonormal basis, the prop-
osition is completely proved. g.e.d.

Denote by ’ém_n the residue class module of gk(;’“‘”‘ﬂ‘ modulo i Then
Sip-ny i8 the vector space over F,. Denote by T:i,-,(p) the induced operator
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on &y from Thip—p(p) on Eppn By definition, for any Fe€&; 51,00 We

Boope
have

(48) BT p-n(p)Xmod 1‘) = F(mod 1’)! ’11.(. n(p) .

By Proposition 4, it can be considered that ©;(,—;, is contained in Sy ., with
k' >k, and that Ty, (p) induces Ty p—y)(p) on &to-n. For each integral element

f of 7, there exists some k such that f{mod iﬁ)eé“pmn, and then we have
(49) F10(p)mod ) =f(mod )i Ty p-r, (p) .

In the case p=13, Atkin and O’Brien determined the action of U(13) on each
element of {g{z)*}-, in [8]. By definition, it is clear that g(z)*| Us(13)==g{z)*| U(13),
s0 that their result gives a certain explicit representation of U,(18) with respect
to the orthonormal basis {g(c)*}%-; of . This fact is crucial to the proof of
Atkin’s conjecture.

ProrosITION 12. There exists only one non-zero eigenvalue of T.2:(18) and
its etgenspace is of dimension one.

Proor. It is well known 4(z)|T5(13)==7(13) - 4(z), and the fact 7(13)==-—b77738
#0 (mod 13) is easily checked. From Proposition 4, it follows that S is the
vector space with a basis {(m) _, over F,. Put j=g(r) (mod%). Since
G=(J(z)—7°)"!, we have &= 2 Fo-gs By Lemma 4 in [3), we have for k=1,

(50) o U3)= 3 o0 9)",

where ¢.., are integers satisfying ordy ¢i.,=[187—k~1/14]. Hence the representa-
tion matrix of T,.(13) with respect to {§'}%., is given by {e:. ;(mod 18)]is:,55%. For
any positive integer k, let denote by 7. the maximal integer such that [18r.—k
—~1/14]<1. Then it is easily proved that 7, is smaller than %k except k=1,
Therefore [¢;. (mod 13)}i5¢,;5+ is & lower triangular matrix whose diagonal elements
are all zero but one. q e.d.

Denote by .7 the submodule of 57 consisting of all elements Lafg( )
with a,€0; satisfying ord, a,=[18r—2/14]. Lemma 6 in [3] says that I"( )IU(13
all belong to .7~ for a=1. We extend this lemma as follows;

ProrosITION 13. For each f€ M™, there exist a unique h€90,{J(z)] and Fe
< such that f:h—}—}?‘.

Proor. By Theorem 1, we have the following unique decomposition of f;
f=h+F with heo3[J(0)], and Fe *®. We shall show that i belongs to -~", By
the same argument of the proof of Lemma 6 in [11], it is easily proved that U(13)
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operates on -2 . Hence it is sufficient to prove that the proposition is valid
for J(z)™U(13) with m=1. We use induction on m; for m=1, Lemma 6 is our
proposition itself. We assume that our proposition is valid for J()}|U(18) with
1<i<m. It is easily seen that

&l 137 g ~ )+ 139 T3 =g(e) ™ +187 ()" G(13)

is an entire modular function with respect to /7, so that we have

~ -1 A
(52) g(z) ™18 gy U, (18) =J ()™ + 2}) bJ(D),
with b;€ Z. Here we use the fact that 13g<—~~1~;~»> g(z)"l. Also we have
(53) g( - ﬁ;) +13g(0) " U(13) =18g(e)" +18- (o)™  T,(13),

(%]
=18 X ¢J(z)t,
it
with ;€ Z. From (62), (58), it follows that,

et [%]
(54) )"+ 35 bJ@)HUA3) = IR OL
—13"-1g(z)"—182g(x)" | U,(13)%) .

Using Lemma 4 in [3], it is easily seen that 13™*'g(z)™|U,(13)> belongs to 7.
Therefore the proposition is proved to be valid for J{(z)™|U(13). q.e.d.

Now we discuss the eigenfunctions of U, (13).

ProPOSITION 14. The eigenfunction of Uy(13) in & whose eigenvalue is
not zero modulo v exists and is unijue up to Q7 -multiples.

Proor. We may assume that an eigenfunction F is integral and is not zero
modulo . We shall show this F exists and is unique up to 03 -multiples. For
the purpose, it is enough to find a sequence {F,},., of integral elements in 57
such that F,.=F, (mod£%), and that F,|Uy(13)=k.F, (mod ) with k.€ 02", and
to show these F, are unique up to 3" -{1-+9°-multiples. By Proposition 12,
this is valid for a==1, Suppose that {F.}%i, {ki}¢=: are already found and that
their uniqueness is already proved. Let us denote by n. t,he maximal integer

such that [13n.,—n,—1/14]sa—1. Then we may put F,=g+ E ¢:¢* with ¢; €05,

where we denote simply g* for g'(c). Since F,=g (mod ), we have ¢:==0 (mod p)
for 25¢=n,. We may also put
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. Pai -
FlU08) =k F.~p" 3 bg' (mod W'Y,
il

Pa it
with b;€9,. Put F,.,=F, +9" 5_‘, dig. and k..o==k.--p°t, with d;, t€.. Then,

in order that F..|0.(13)=k,.,F.+: {mod LY, it is necessary and suflicient that

(55) [bly cT Ty b'na.}-;]":{' [O’ dEr ST d’?'uf.l][cij] Hlimrg .,
Etrly O: fT Ty 0]%‘]{'&[0; dts YT, d”ﬂ-H] (nlod 1‘) .

Hence we have
(56) [O’ d2’ Tty dnn+1][cijmk<t&£j]1:;i‘i»,jéﬁa . L:_“"[t':”bh bi) Y bnn.H] (mod 2) »

where 8,;==1, and 4,;=0 if 7#j. Since k.z0 (mody), the rank of the matrix
[é‘ij“—‘lgaaij]:gi,jgna:; is M..1—1 by Proposition 12. Hence in order that the con-
gruence equation (56) has solutions {0,d., -+, d.,.,] and ¥, it is necessary and
sufficient that the rank of the matrix [g’:(;i‘b"ﬁ”]‘é’"‘] 18 %es1—1. By Prop-
osition 12, the solution £ is uniquely deter:’ni;x,ed 1'1pm§>1 modulo » and the d;,
251 S M4, 2lso are uniquely determined up to modulo ». q.e.d.

Moreover, Atkin and O’Brien proved the following fact in [3] (Theorem 1).
Put J,(0)=J)=J, ()| U(13) and J.(c)==J1(z)| U,(18)*t. Then there exists k.€ Z not
divisible by 13 such that J,.(z)==k.J.(r) (mod i%“). By the same argument of this
proof and with Proposition 13, we obtain the following;

PROPOSITION 15. For each f€M™ such that f= éla(n)q" with a1)=0 (mod
v), put fa=flU,(13)"" for az1. Then there exisis a constant k.€s, with k.%0
(mod v) such that,

forr=kafo  (mod ) .

The proof is exactly the same as that in [3], so we omit this.

Now we prove the conjecture of Atkin in the case p=13. The author does
not know the proof of Atkin, but perhaps the following proof is the same as

that of Atkin.
ProOPOSITION 16. Let 1 be o prime other than 13. For each feM™ such

that f= E:X a(n)-q" with a(1)#0 (modyp), put t.(n)=a(181-n)/a(13™Y). Then we
have, for any n=1,

67) to(nl) —ta(m)tall) +z‘1ta(—l’i):~.—o (mod v°) .

Proor. By Proposition 15, we have f,,zél{ a(18*'n) -g"=kyy - -+ ko f (mod sj_},).
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Since k;#0 (mod ), we have {13120 (modp). Hence t,(n) are well defined and
belongs to oy, and we have f,==a(13*™") 2 tdn)-q". The congruence relations (57)

are equivalent to the following congruence,
68) flToO=t )£, (mod ) .

Put £/ 21 t.n}-q*. Then we have fl,,=f! (mod ’1’»“) by Proposition 15, so that
{f2¥7.1 has a $-adic limit /7 in .~ It is clear that f')U,(13)=k /" with ke v3".
Since 17,(18), T4(l) are mutually commutative, we have

(TN To(13) = £ T30 Tty
sl VT .

By Proposition 14, we have f/|To()=1)f" with t()eos. Since f'=f! (mod ‘3"),

we have {(I)=:t.(l) (modv®), so that we obtain (58). (g.e.d.)
Especially applying Propositions 15 and 16 to f==J(), we obtain the following ;
THEOREM 2. The conjecture of Atkin is valid for all a in the case p=18.

8-2, Let pz13 be a prime number. We shall prove that, assuming the
following assertions (H-1), (H-2), the conjecture of Atkin is proved to be valid.
The process to the proof is similar to that in the case p=18, namely, correspond-
ing propositions to Propositions 12, 13, 14, 15, and 16, which are slightly modified,
will be proved. However we do not know whether Proposition 11 has any corre-
gpondent in the general case or not.

{H-1) The eigenvalues of Y—‘,M(p) are not zero and are not equal to each other.

(H-2) For each positive rational integer n, we put n,=n for 0€ S¥, n,=3n,
and n;0==2n. Then we have

O~ 0= B 3 el oI —G0) ",

9’68 r=

-

where ¢/, 4, €0} satisfying,
(59) ordy ¢ir. gy =pre—1i,—1/p-+1].

From (H-1), it follows that there exist Gy== 5_‘, as.o(J(z)—35)" with 6€S* and
@00 €05 such that Gl Uup)=k,G, (mod ) l’\:i.ibth k,#0 (mody), and that det
[@s.o]2.00es« i3 not zero mody. Put G,,=Gy, and G, ,=(J(z)—7,)™" for n=2,
€ S* and for n=1, 0€S—S*. Then {Gi.;}scs.15icw also forms an orthonormal
basis of .. If we represent the operator U,(p) with respeet to {G;.;}, we have
by (H-2),
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Gi,dl?o(p)f: ‘E: 2 CirinGrn

H#reN 7zl
where ¢;,.5:0 €0, satisfying,
(60) ord, ¢:r .54 2[Prs—1y—1/p+1} .

Moreover we have ord, ¢,y.,,:=0 and ord, ¢iy. 5521 for 00,
ProposiTION 17. Assume p=13. If we suppose (H-1) and (H-2), there exist

only [—1%] non-zero eigenvalues of Ty, 1.(p) and each eigenspace is of dimension

one.

Froor. We saw in 4-2 dim;‘-p@;,_,:i—%} From the assumption (H-1), the
eigenvalues of 7,.:(p) are not zero. By Proposition 4, we have @k(p_l)::
S8 FUE=I)7 with k7 =k for 0eS%, chmz[«gi} and k“*n:[g—}
Since vfe have (J(2)—J )1 Us(p) (mod P)=(Jt)—=7,)""| Tsr-1,(p), the representation
matrix of Ti-n(p) with respect to the basis {(J()—7,) }ses. zizeen is given
by lcir.po(mod v}l s esisistr s seten.  Using (B9), it is easily proved that
Zrov! Tep1(P)CE opy (p-p. Hence the eigenvalues of Ty(,-1(p) which do not
come from those of Ty, -1 (p) are all zero. q.e.d.

Denote by = the submodule of 5”@ consisting of all elements 2‘7 @, {J(T)—7,)7
with a,., €0, satisfying ord, a,.,2[pr,—2/p+1]. Then we have the following ;

ProprosiTION 18. Assume p=5. For each f€M™, there exist h€0;[J(r)] and
Fe.w uniquely such that f==h-+ F.

ReMARK. Here, we obtain another proof of Proposition 13. The method of
that proof is not applicable to the general case, because we do not have enough
facts on modular functions with respect to [y{(p).

Proor. This follows essentially from Theorem 1. We proved there in (42)
that we have

P T =l TS CL @50

[A%:
with some h,€0,[J(z)] and C{» €9 satisfying,
ord, C1” z(np,~1—p—1)/p+1.

Since ord, Ci®' is a rational integer, we have ord, Ci zlpn,—2—p- p/p-i-1]=
[pn,—2/p+1]. q.e.d.

PRrRoOPOSITION 19. Let p;, léié[*l—% ', te the eigenvalues of T,.(p). If we
L1z

assume (H-1) and (H-2), for each p; there exists an eigenfunction F of Uy(p)
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in &, such that I} Ufp)=EF with €. satisfying Fimodr)=p;. For each
pi, this I is unigue up to Q, -multiples. Moreover any eigenfunction of Uy(p)
in Y whose eigenvalue is not congruent to zero modr, coincides with one of
the above eigenfunctions.

The proof, being entirely similar to that of Proposition 14, is omitted.

Put N7==M"1q-o7llgll. N7 and 2, ., have not any intersection in q-orlfall,
but, if we consider the reduction modulo ‘i%, the residue class module of N” mod
ean be considered to be contained in that of 1'5;,_1,3,1. mod *I%. Moreover we have
the following ;

ProrosiTioN 20. Let p=12, and let M™ be the same as is defined in §6-1.
Put N”==M"“0vq-o0dlq}). Then the residue class module of N” mod B coincides
with that of ©,.,.., mod 9,

Proor. From Proposition 4, it follows that the residue class module of
Sptay mod % is the veetors pace over F, with the basis {(J(z)—7,) "}ses-. Hence,
it is enough to show that for any 0€S* there exists some f€ N:’ such that
fimod B)==(J(r)—7,)". Let m be a rational integer with 1§m§[—1722— i Then, by
Theorem 1, we have i

T U@ =hat 3 an @) ~j)"  (mod §),

with by, @n.,€0, for 1gmg[%} 0 € S*, where b, is the constant term of the

Fourier expansions of J(r)". On the other hand, we have
J(TW‘ Lr(p) :;:J(T)m! 1‘0(?}) — ple(pr)m ,
r"f;i:f;?)-»1{'](?)7:11)_‘!](2)?):1&} (m(}d Z[J(’;')} ,

w0 — J (po)) -{’g JP I (mod ZLI)) .
Since J(po)=J()* (mod ‘1%), we have

. g=MAL T 5" NP (mod p) .

Moreover, from Proposition 1, it follows that a,., is not congruent to zero mod y.
Hence the determinant of the matrix {@m.o}, <m 4 » ] is not congruent to zero modp,
12

feS*
s0 that we have

[&] -
(J(o)—jg) = E__lcm(J(F)"—bm)lU(p) _(mod P) ,
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with some c¢,, €05. g.e.d.

Let p=13 be a prime. Assuming (H-1) and (H-2), we showed in Proposition
19 that, for each #€S%*, there exists Fe.or™ satisfying F=G, (mod‘ll) and
F1Uyp)=1k,F with k,e03, and that this F is unique up to {1--po)}-multiples. Fix
one of these ' and denote it by .

ProPosiTION 21. Assume (H-1) and (H-2). Teke any clement He N
satisfying H=G, (mod B with some #€S*. Then HiO,(»™! is congruent
modulo ii“ to @ linear sum of F 2 € S¥, with eoeflicients in o).

PrOOF. By Proposition 20, for any /e S*, there exists a H,€ N” such that
H,=G, (mod L). We may put HO~ \%‘J e al?.G; ,, with a{9%. €0, Since H,=G,
{mod %), we have ord, ai’; =1 for 0’¢0€S Moreover, by Proposition 18, EH, belongs
to .77, so that we have ord, e/ =[pi,y—2/p+-1]. Now fix one of the elements in S*
and denote it by 6,. Take any He N” satisfying H=G, (mod ¥). Put Fi=H
= {4 al ,Gig with a; €05, Fi=F|Uyp)= ?;;, a’?,G;., and Foe=Fit+p _ S%lwobdxﬂox
_2 at ,Gi., with a’?, bi1, a®,e05. Define ;% 5 =alla} ,—aiaf’y for 1=,
j<co and 0, ¥ €S and also 7}j ,p=al 0} p—al e’ ;. Then we have
( ord, yil.er =1 for ¢, e S*,

61)
ord, 71%.pp 2 1-+Ipis+pjp~—~6—2p/p-+1] for otherwise .

This follows from the facts that '] 170(11)":45001? . (mod ), and that Fi, F% belongs
to /. Since af,=a%+p I bjial’), we have

lesv
wt gy

apl P 1 { 1
fgj.oo'-—fijoo -p-aj, 01}_.[)‘161, A —D-a; a\“ byrai?y

so that ord, 71,4, satisfies the same inequality as (61). Put Fi=1I%] U(p) = %aﬁ?oG;,g,
and 72 40 =a’3al p—ai,0’’y. Then we shall show that there exist some bj1eoy
for 7te S*, 0's£0,, which is unique up to modulo p, such that ord, ri%.,, satisfies
the following inequality;

{ord, 71,40 22 for 0, 0'e S*,

(62) »
[ ord, ri%. g0 22-+1piy 4+ 0fp —6—2p/p-+-1] for otherwise .

Since we have a/%;= }_} a%.0Cricager AN @Y% 0 == 2 G5.0,C05.0,0 -+ D E biia'?Y., so that
7] e g
7.0 8.y / 50
we have

2 — ol i
Vij.00 = r% % 776.010:Cr8.0,6Cs5.0,8'
My 8,0y
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S pebal N a0

G s gta g, .y
-t 1 aYy 2 5
- { 2 T)‘ba‘a;’?() [ aa.[)zcsjko",/]’) .
ohe S plad, 8.4y -

If follows that, for #e S*, 4, we have
7% 005 any CrteanCirogy— P by1ai% - at. o €r1.gg, (modp?) .
Hence, for #e S*, 0+4,, b, is uniquely determined up to mod p such that ord, 71500,
22. The sccond inequalities are obtained as follows; we have
ord, (711.0,0.C10.0,0"€15.0,0°) 21-HD1—1-1/p+1]+[pj,—1—-1/p-+1],
224-[pi,+piy—b—2p/p+1] for 0, '€ S*,

and,
ord, (i'%e.0,0,€1.0,0€05.000) Z14-[P7y 4 P89, ~~62p/p-+-1]-+-[piy— 1y, —1/p+-1]
+[PJy—89,—1ip+1],
214-[pi;+pjp—5—p/p+1] for otherwise .
Also we have

ord, (pa'?ya’ 4,C.:.9,0 214+1pjp—2/p+1]+[pry,—2/p+1]
+[pip—1y,—1ip-+1],

21-+piy+pip—4—p/p+1] .
From (62), it follows that Fg!&,(p)zﬁ];”o}?g (mod ), so that it holds Fy=a, Ty,
(mod %) with a,€07 by Proposition 19. Therefore we have
F lU(.(p)»m 1',, —p 2 I)”x]f (mod gi;z) ,

wleye
/\AN)

so that our proposition is valid for a==2.
For «a=3, by the same argument, it can be proved that there exist some
b%,eoy for #'e S*, #':£0,, which is unique up to mody such that,
F, IUO(;D) = I@O~~~p 2 bamel Uo p»—p* = by Hp {(mod 3}8) ,

olegy
01 ¥ uu 22 8

with a.€0. Since HulUyp) is already proved to be congruent mod i‘sg to a linear
sum of F’o with 0e S*, our proposition is valid for a=3. Proceeding the same
argument, we obtain the complete proof of this proposition. q.e.d.
COROLLARY. Put JD)=J(=)—744, and J)=JMNUlp). Then, for azl,
JOTm* is congruent modulo R to a linear sum of f’ﬁ,(ie S*, with coef-
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ficients in o%.
Proor. From Proposition 20, it follows that there exist some H,e N with
0e S* satisfying H,=G, (modP) such that,

Ji(o)= E a@H,, .
HEse

with a,€0}. Hence the corollary follows from the above proposition. q.e.d.

8-3. With these preliminaries, we discuss the conjecture of Atkin. First, we
shall write down a slightly modified (stronger) version of the conjecture of Atkin,
as follows. Let p be a prime number, and let a, % be any positive integers, and
put {.(n)=c(p"n)/e(p®). Then the conjecture asserts %ﬁrst that ¢(p*)+#0, and that
t.(n) are p-adic integers. Now put d= Max {1[-1732— ;}' Then it asserts secondly
that for each 1=7=d there exists a sequences {t“"(wﬁ)}i’f:; in ¢, and for each a an
element @, of o}, satisfying the following congruences and the identities;

d
(1) taun)= El et (n) (mod v%) ,

(2) let ! be any prime number other than p. Then for all 4, I, and % it holds
that,

t”f"'(nl):—-t‘“(n)-t“’(l)——l“t“’(—l&) ,

£ (mp) =t (n)-t" (p).

Here, t‘“(%) is defined to be zero if n is not divisible by [

Now we assume,

(H-3) for az=1, ¢(p®) is a p-adic unit.
Then we have following ;

THEOREM 3. Let p=13 be a prime number. Assume (H-1), (H-2) and (H-3).
Let | be any prime other than p. Put J,(o)=c(p™)1J ()] Us(p)® iz 2 tdn) 4",
Then, for each 1<i=<d, there exists F; in >~ which is a 3imultan;o;s eigen-
Function of Uyp) and Tol), and some a' €0, for azl, such that,

L

d -
Ja(f):‘—: E a;“ 'Fz (mOd %"f') 3

holds.
Proor. With (H-38), this follows immediately from Corollary of Proposition

21. q.e.d.
Therefore we have the following ;
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COROLLARY. Let p=13 te a prime number, and assume (H-1), (H-2), and
(H-3). Then the conjecture of Atkin is valid.

§9., Numerical examples

9-1. By the aid of a computer, we can compute the eigenvalues of T;,,;,,-,;(p)
for some small p. The obtained results are as follows.

(1) the case p:=17.

For 1--m==4, we have vlimi.[1¢,,,(17}"“¢“;.

(2) the case p==19.

\

For 15m 52, we have S, emh Tyam{19) == 318.

(3) the case p=23.

For 1:2m 52, we have Soppn) Torn(23)=Ess.

(4) the case p==29, 31.

For 15m=2, we have Sy ey Tnipey (9)=2,_,, and the characteristic poly-
nomial of 7,..,(p) is irreducible over F,.

(5) the case p==37, 41, 47.

The characteristic polynomial of T(,-,(p) is not irreducible over F,, but has
only one root in F, which is not zero.

(6) the case p—=43.

The characteristic polynomial of 7 ,-,,(p) is irreducible over F,.

From these results, it follows.

ProrosiTioN 22. (H-1) is valid for 13<p=47.

92, As for (H-2), we have a certain result for p=>5, 7. Let f(c)= 11 (I1—g™
and gD =2q{ fBDF O g:@=q{fT/f (=)}, Then it is well-known 7’2hlat the
modular function field thh respect to /7(p) is generated by g,(r) over C. Also,
it is well-known that 0 and 12° respectively is the only supersingular invariant in
characteristic p==5 and 7.

ProrositionN 28. (1) We have g,()==(J()—7,)! (mod ‘J:i) with 0=0 for p=5,
0==12% for p==T7.

2) {9,071 forms an orthonomal basis of #717,

() Put g, Uylp)= E ¢:.-95(2)". Then cv., are rational integers satisfy-
ing ords e 2 [pre—ke—1/p J~1]

Proor. With the results of Lehner about the coefficients of the modular

The author wishes to acknowledge Whis gratitude to Mr. Machida for making the
program to compute the eigenvalues of Tip-1,(p).
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equation ([10}, 145, 147), the proof is easily obtained by the same method of that
of Propositions 11, 12, and that of Lemma 4 in [3].

9-3. Concerning to the assertion {(H-8), we have a following result.

PROPOSITION 24. (1) The assertion (H-3) is velid for 13::p:23. (2} For
135 p=97, c(p) s not divisible by ».

Proor. (1) Put J.(o)=J () Uu(p)* ", for @ =1, and denote by F the generator
of the free module Z,_,. ., over »7. Then, from Proposition 1 and Theorem 1, it
follows that J,(o)=c(p)-(J(z)—j,)"" (mod B 7€ 5%, and it is seen that ¢(p) is not
divisible by p. Also we have, by Proposition 4, Jiz)=elp)-F (mod k). Since
J A = o) Oolp) " z=elp)- FI Ty {p)* " {mod L), our proposition follows from Proposi-
tion 22.

(2) By Proposition 1, it is seen that c(p)(mod p)=— X 3,. Also, by Proposi-
gEN®
tion 1, it is seen that ﬁom‘-'ﬂ’"x(()mlza')”z& lle( (0—6")"14%. We can check the asser-
w1 €8
tion (2) using the table of the supersingular invariants in characteristic p in
Deuring {4]. q.e.d.
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