Subgroups of the modular group

By Kisao TAKEUCHI
{Communicated by Y. Kawabpa)

§1. Intreduction.

Let I'(1) be the elliptic modular group SL:(Z) and I" be any subgroup of I"(1)
of finite index. Denote by Tr (I') the set of all traces tr () of elements y of I'.
Then Tr (") is a subset of the rational integer ring Z. In particular, Tr (I'(1))
coincides with Z. We are interested in the question if there exist any proper
subgroups " of I'(1) satisfying the following condition,

Tr(=Z. (1)

Put for any positive integer m,

I'im)= {(Z 3) € I'l)|a—1=b=c=d—1=0 (mod m)} .

Then I(m) is a normal subgroup of I'(1) called the principal congruence subgroup
of level m. Any subgroup I" of I"(1) containing some ['(m) is called the con-
gruence subgroup. The smallest positive integer of such m is called the level of
I’. In this paper we shall prove the following theorem.

TuroreM. Let I’ be a congruence subgroup of I'(1} such that Tr(l")=Z.
Then I' coincides with [(1).

When we express the level m of I as the product of prime integers in the

following way;
mzi_lfllp?" ,  lezD) (2)
we put
dim)= 3 e: . (3)

We shall prove our theorem by induction on d(m).

NoTATIONS: We denote by Z the ring of rational integers. Let m be a
positive integer. Then we denote by @ the reduction of ¢ (modm) in Z/mZ.
Denote by F, the finite field consisting of ¢ elements. Let S be a subset of a
group G. We denote by <S> the subgroup of G generated by S.
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§2. Several lemmas for congruence subgroups.

Let ©,, be the homomorphism of (1) to SLAZ/mZ) defined by

fo[ any (,‘I(;‘m@n() (’ @ b ‘

f I'ay.
¢ cl) ¢ )

LivMa 1. The quotient group I'(1)/(m) of ') by I'(m) is isomorphic to
SLAZImZ) by the above defined ¢,. As to the index of I'(m) we have the
following formula;

[ s 2 my=m? 1L a1 & (3)

This lemma is well known (cf. [1]). We shall omit the proof.

From now on, we shall denote by 7 (resp. S) the image of an element ;y (resp.
a subset S) of I'(1) under ¢.

LeMMA 2. For a positive integer m, we have

Tr(Cm))={ne€ Zin=2 (mod m?} .

Proor. Take any element 7 of I'(m). Then we can express r as follows:

‘r=<a' (I;)__:(H—mal, mb, ) (4)

¢ mcy, 1+md,
Taking the determinant of 7, we have

@x'{”dﬁ:‘*m(‘hdr‘bxcx) . (5)
Hence we see that
tr (2')::2”’m2(a/1d1“b101) .
Conversely, given any integer n such that n==2--m?, we put
._ﬂ(1+mzs, ms)
7= .
m, 1
Then 7 is contained in I"(m) and tr (7)==n. This completes the lemma.
LeEMMA 3. (1) For any prime integer p=5, SLg(Fp)/{iL} s a svmple group.
(1.} ts the unique proper normal subgroup of SLy(F).
(2) SLy(Fs)/{+1s} i3 isomorphic to the alternating group A, of degree 4.
The proper normal subgroup of SLx(Fs) is either {+1.} or

(3 5 (53
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(8) SLu(Fy) is isomorphic to the symmetric group S; of degree 3. \(ui é)\\
18 the unigue proper normal subgroup of SLy(F.). ‘

Since this is well known, we omit the proof (ef. [2h.

LemMa 4. Let p be any prime integer. Then SLo(F,) contains the elements
of order p, p—1 and p+1.

ProOF. This lemma is also well known (ef. [3]). Since SLAF}) is of order
p(p*—~1) by (8), the Sylow p-subgroup of SL.(F,) is of order p. Hence there
exists an element of order p.

Now put

7 (e 0)
e (0 liw /'

where @ is a generator of the multiplicative group F;. Then 7,., is an element
of SLy(F,) of order p—1.
Next let 7 be a generator of the multiplicative group (F,2)*. Then p=7"" is
of order p-+1 and we see that
p-p"=1, p"#p.
Since p-+0” is contained in Fp, we can find an element 7p+1 0f SLy(F,) such that

tr (7,)=p+p" .

Then #,+: is conjugate to the matrix ( g 2,,) Therefore 7,., is of order p-+1.
This completes our lemma.

LEMMA 5. Let p be any prime integer. For two positive integers e; and
es, the commutator group [I(p®), I'(p*] of I'(p*) and I'(p%%) is contained in
I(p°te).

Proor. Take any element 7; of I"(p®) (1=4<2). Then we can express 7; as
follows;

1=l pt 4, (6)

where 4;= (a; 3‘) is an integral matrix. Now we have
Cs §

rit=1,4p%-4f (7)

ﬁ:( d: "m)
' —C3 aq '

where

By (6) and (7) we have
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nireslet prtdirptt A (mod p1°"%) ,
rilpyte=l,-Lptt- dF L ple A fmod p'172) .
Therefore, we see that

Py e Py R ptt 4,88
+pie(dy Ay pte- 4, df) (mod pHTY)

In view of (5) we see that
dipdfppiddt=0 (1£122) .

Hence 7,707175! is contained in I'(p‘1i°2). This completes Lemma 5.

COROLLARY 6. If ex1, then the centralizer C(I'(p*)/I'(p*")) of I'(p)I'(p"™")
in I'QOIC () contains ip)/(p).

Proor. This is obvious from Lemma 5.

LEMMA 7. Let p be a prime integer and e be a positive integer. Then
I(pl(pe*Y) is an elementary abelian p-group of tyve (p, p, p).

PrROOF. By the formula (3) we see that the group I'(p°)/['(p°*') is of order
p®. By Corollary 6, I'(p°)/I"(p°*!) is abelian. Now take any element 7 of I'(p°).
Then we can express 7 as follows;

r=ltp°-d,

where 4 is an integral matrix. We have the following expansion;

p ok, fk
<k)p ‘

Since (f)ﬂ" (1=k=p) is divisible by p**', we see that 7” is contained in I'(p°*').
This completes Lemma 7.
LuMMA 8. Let p be a prime integer such that p=3. Let N be a normal

subgroup of I'Q(1) such that I'(p") "NI'(p**') for some positive integer e. Then

rP=l 2

v
P,
=1

N coincides with either I'(p°) or I(p™).

PROOF. Assume that I'(p°) 2 N2I(p"*'). Then N=¢,+1(N) is a normal sub-
group of D=0}/ (p*") contained in I'(p")/ [ (p**"). By Lemma 7 N is an
elementary abelian p-group of order p or p®. I'(1) operates on N by the conjuga-
tion. Hence we have a homomorphism g of /(1) to the automorphism group
Aut (N) of N. Since N can be considered as a vector space over F;, of dimension
1 or 2, Aut(N) is isomorphic to GL(F,) or GL,(F,) according to the order of N.
o is not trivial because the center of ') is {*1;} for any odd prime p. By

Corollary 6, the kernel Ker (¢) of o contains I'(p). Obviously Ker (o) contains
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—1.. Hence Ker (p) contains I'(p)-{+1,}.

First consider the case p=5. By Lemma 3 (1), Ker (o) coincides with /'(p)-
{£1.} and o can be considered as an injective homomorphism of I'(1)/I’(p)-{=+1.}
to GLoF,) or GL(F,). Comparing the orders of these groups, the image Im (o)
of p cannot be contained in GL,(F,). Hence N must be of order p* and Im (o)
is a subgroup of GL(F,). Since the matrix (é i) is of order p in I"(L);!'(p)-
{+1,), p((é i)) is of order p in GLy(F,). Hence it is contained in SL.(F,).
This shows that Im (o)1 SL.(F,) is a non-trivial normal subgroup of Im (). Since
Im (o) is isomorphic to the simple group 7"(1)/'(p)-{=+1.}, Im (o)N SL.(F,) must
coincides with Im (0). Hence Im (o) is contained in SL.(F,). Comparing the orders
of these groups, we see that Im (o) is a subgroup of SL.(F,) of index 2. Hence
Im () is a normal subgroup of SL.(F,) of index 2, which contradicts to Lemma
3 (1.

Now let us consider the case p=3. Since Ker (o) is a normal subgroup of
I'(1) containing I"(8)-{=1,}, Ker (0) coincides with either 77(3)-{-~1.} or

/ 0 1 1 2 )
{r ; .
\ 3), <-1 0), <~—1 _1>> by Lemma 3 (2)

Assume that Ker (0)=1"(3)-{=1:). Then N is of order 3% and Im (p) is a sub-
group of GL,(F;) and is isomorphic to the alternating group A4, of degree 4.
Since SLy(F;) is a normal subgroup of GL.(Fy) of index 2, Im (o)1 STo(F,) is a
normal subgroup of Im(g) of index at most 2. Since Im(p) is isomorphic to 4,,
by Lemma 3 Im (p)N SL,(Fy) must coincide with Im (0). Hence Im (p) is contained
in SLy(F;). Comparing the orders of these groups, we see that Im () is a normal
subgroup of SL,(F3) of index 2 which contradicts to Lemma 3 (2).

Assume that Ker (p):<1"(3), <m(1) (1)), (i M2>>. Then Im(p) is of order
11

3 and is generated by p(( 0 1)) Hence N must be of order 3%. Since Aut (N)

is of order 248, Im (o) is a 3-Sylow subgroup of Aut(N). Therefore, by taking
a suitable basis {7, 7.} of N over F,, we may assume that

Ao 1)=G 1)

in GLy(Fy). 1t follows that 7, is fixed by o{(; 1)) and o((_] 1)), Hence 7
is contained in the center C(I"(1}/1°(8**")). Therefore we have 7,=:—1,, which is
a contradiction because 7'(3°) does not contain —1,. This completes Lemma 8.
LEMMA 9. Let N be a normal subgroup of I'(1) such that I'@) 5 N2
for some positive integer e. Then N=N/I'(2°) is one of the following two
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subgroups;

4212, if N is of order 2,

Proor. By Lemma 3 we distinguish the following three cases;
1) Ker(o)==1'(1),
e [0 1y
@ Keer:(ren( ] 1)
3y Ker (p)==1'(2).
In the case of (1), N is contained in "@)NCI'(1)). Since the center C(I'(1)

of I'(1):=1"(1)/I"(2""") can be deseribed explicitly as follows;

— f{:’f-iz} if e=1,
Crmys= o
({41, +14-2°-1,} if ez=2,
we sce that for any ex=1
N 09201,
Next consider the case (2). Take any element y of N and put

T:<1+2°a, 2‘b1)
2601 1~§~2°d1 )

Since ( 0 1) is contained in Ker (0}, we have

-1 -1

0 1 “1<1+2p(l1 zabl ( 0 1):::(14‘290’1 qul ) 241
(L 1) (o aima)( 1 D)=(oer i) moazm.

Hence we see that
e =b+d;, (mod2),
¢ =—b, (mod 2) .
By (5) we have
a,+d=0  (mod?2).

Hence we see that
by==e=0 (mod 2), a;=d, (mod2).

Therefore N is contained in C(I'(1)), which contradicts to our assumption.
Finally consider the case (3). Since Im(p) is isomorphic to SLy(F,), N must
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be of order 4 and o can be regarded as an isomorphism of SLx(F:) onto SLy(F:).
Since it is easy to see that any automorphism of SL:(F:.) is inner, by taking a
suitable basis {7, 7.} of N we may assume that
o()=r  (mod2)
in SLy(F,) for any ¢ of [(1).
Put

=(1'2'i“ lf;’ d;) 12i52) .

Then by the following relations;

<__(1) é>—}'71'<\*~0 1\):_——;-'.2 (mod 2°%Y) ,

(1 1>—l_v_(1 1>
01/ "\ 1
1IN /1 iy
(0 1) ’2(0 1)“‘2 (mod 29,
we see easily that

f:<i}‘_‘2‘ 0 ) ;:(1}“2‘ h"g“:)
AN - A 1420/

=72 (mod 2°*'},

This completes Lemma 9,
LemMA 10. Let p be a prime integer. For an element 7 of I'(1), 7* is
contained in I'(p) if and only if 7 satisfies the following condition ;

tr (7)==2 (mod p) . (8)

Proor. Let S, be the subgroup of I'(1) generated by I'(p) and ((1) i) Then

S,=8,/I'(p) is a p-Sylow subgroup of /'(1). Let r be an element of I'(1) such
that 7 is contained in I'(p). Then by the Sylow's Theorem there exists an
element 7, of 7'(1) such that

;’T‘-T%E((l) i) {mod p) . (9)

Hence we see that 7 satisfies the condition (8). Conversely, consider the element
v satisfying (8). Then we can find an element 7, of GLy(F,) where F, is the
algebraic closure of Fjp, satisfying (9). Hence 77 is contained in I(p).

LeMMA 11. Let p be a prime integer such that p=5 and ¢ be a positive
integer. Then 7v* i3 contained in I'(p**') if any only if v is contained in I'(p*).
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Proor. We shall prove this lemma by induction on e. First consider the
case e=1. Let us denote by ¢ the trace of 7. If 7” is contained in I'(p?), then
77 is contained in 7'(p). Hence by Lemma 10, ¢ can be expressed as follows;

£=2-+pt,y
We have the following formula (cf. [4]),

gt b, (10)

()= o)) w

Now we have the following relation;

(2 B YL YT

Since we have the following formula;

(mi (1)\)“3(1:;’? 13’%)

for any integer n, we have

where

S Dk, =S (1)
k-0 k20

P e
(1 o) =2 o)l (mod .
e S et Dk

nocl 1 »- -1
Since ?}q (f4-1)%, :Eu k? and 3 (E4-1)k are all divisible by p for any prime integer
4 i k u

»b, we have

(4 ey ) e

By (10), (11) and (12) we have
pr+Q—-ple=1,  (modp?).
Hence we see that
r==1, {mod p) .

Next consider the case e=2. Assume that ;7 is contained in I'(p**'). Then
1* is contained in F'(p°). Therefore, by the assumption of the induction 7 is
contained in I"'(p*"). If we express y as follows;



Subgroups of the modular group 179

re=letpie g,

where J is an integral matrix, we have

iT=1 - pte 4 ?p:. (g)-p": e frsal, (mod pTYY

Since (Z)p”“""” (25 k<p) is divisible by p*"’, we see that

ped=0  (modph) .
Therefore,
pcﬁl JEEO (mod pp) .

This shows that 7 is contained in 7'(p°). The converse part of our assertion is
contained in Lemma 7.
LemMa 12. For any positive integer e, ;° is contained in ['(3*"") if and
only if either v is contained in I'(8°) or r satisfies the following condition;
tr ()==—1 (mod 3°71) . (13)
Proor. If 7 is contained in I'(3), then by Lemma 7, ;® is contained in 7'(3°*").
Let 7 be any element of I°(1) satisfying (13). By the following relation;

P="—Dr—t-1,, (14)

where t=tr (y), we see easily that y° is contained in I'(3°*').
We shall prove the converse part of our lemma by induction on e. Consider
the case e=1. Assume that ;® is contained in /'(8°). Hence by (14), we have

(t+1) - {{t—1)-r—1.}=0 (mod 3% . (16)
Since 7® is contained in I'(3), by Lemma 10, we have
t=2  (mod3). (16)

Hence ¢t-+1 is divisible by 3. If t-+1 is divisible by 3% then 7 satisfies (13). 1If
t-+1 is not divisible by 32, then by (15) we have

(t—1)-7—1.=0 (mod 3) .

In view of (16), we see that 7 is contained in I'(3).

Consider now the case ¢=2. Assume that ;° is contained in 7'(3°"'). Then
7% is contained in I'(8%). Therefore, by the assumption of the induetion, 7 is con-
tained in I"(3°"') or t=tr (;) satisfies the condition;

pe=—-1 {mod 3°) . a7
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If 7 is contained in 77(3"""), we can express ; as follows;
FEES PREF ARy I8 (18)
Therefore we have
Pl 34 B 2 G =1, (mod 37
Since 3% and 3%~ are divisible by 3*', we have
3% d==0) (mod 3°"") .
Hence
340 (mod3).
This shows that 7 is contained in 1'(3%).
If t satisfies (17), then by (14) we have
E+DB - {E~1)-7-—~1,1=0 (mod 3). (19)
Assume that (£4-1)/3° is not divisible by 8. Then we have
(t—1)-y—1l=0  (mod3).
By (17) we see that y is contained in 7'(3). Hence by Lemma 2,
t==2 {mod 3%) .

This contradicts to (17). Therefore, £4-1 must be divisible by 3°*!. This com-
pletes Lemma 12.
For any positive integer e, we denote by N, the subgroup of /'(1) generated
by I"(2*") and an element 6, of /(1) defined by
de==(14-291,  (mod 27 .

Then N, is a subgroup of /7(2°) such that N,=N./I"(2"*)) is of order 2 (cf. Lemma
9). We shall prove the following lemma.

LeMMa 13. (1) 7 is contained in N, 1f and only if either ; is contained
in @) or t=tr () satisfies the condition;

tr (;)==0 {mod 2°) . (20)

(@) For any positive integer ¢, i° 1s contained in N... 1f and only if v is
contained in N, -1,
Proor. (1) For any element y of I'(1) we have the relation;

At 10, @

where t==tr{;). Assume that ;® is contained in N,. Since N, coincides with
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(2%, —1.>, we see that
-v==0 or 2-1, (mod 2°) . (22)

Hence we see that ¢ is divisible by 2. If ¢/2 is divisible by 2, then t satisfies
(20). 1If ¢/2 is not divisible by 2, then by (22) ; is contained in I'(2). The con-
verse part of our lemma is easily proved by (21) and Lemma 7.

{2) Assume that ;* is contained in N,.;. This means that

yr=mz, 1 {mod 2°°%) ,

where ¢,.;==1 or 1427, By (21) we have

toye=2-c,-1, (mod 2°%%) |
Hence t is divisible by 2 and we have
t/2-y=¢,-10 (mod 2*1) . (23)

Taking the determinant of both sides of (23), we have
(t/2)°=1 (mod 2°*Y) ,

Hence
ti2=1x¢, (mod 2°71) .

By (23) we see that y is contained in <N,, —1,>. The converse part is easily
seen by Lemma 7 and by the following relation;

(L42=1-+27"  (mod 2*7)

for any integer e=2.

§3. Proof in the case m=p.

In this section we shall prove our theorem in the case dim)=1 i.e. m is a
prime integer p. Let I' be a subgroup of /(1) containing I'(p) with the condition
(1).

First consider the case p=3. By Lemma 4 there exists an element 7 of I'(1)
such that 7 is of order p—1 in SL,(F,). Since I" satisfies the condition (1), we
can find an element y,.; of I’ such that tr(f,-))=tr(7) in F,. Then 7,., is of
order p—1. Similarly, we can find an element 7,.; of I" such that 7, is of
order p-+1 in SL,(F,). Now take an element y, of I" such that tr(y,)—2 is
divisible by p but not by p®>. Then by Lemma 2 and Lemma 10, we sce that 7, is
of order p in SL.(F,).

Let ¢ be any prime integer and ¢” be the highest power of ¢ dividing
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{(p--Lip(p+1). If ¢ is an odd prime integer, ¢ divides one of p—1, p or p-+1
because {(p—-1)/2, p and (p -1)/2 are mutually relatively prime. If ¢==2, then 2"!
divides » -1 or p-1'1 by the same reasons as above. Therefore we see that the
order of /'//°(p) is a multiple of p(p*-1)/2. This means that /" is of index at
most 2. Hence /7 is a normal subgroup of /'(1). By the following proposition,
we see that /7 coincides with /7(1).

ProrositioN 1. Let 1" be a normal subgroup of I'(1) with the condition (1).
Then I' coincides with I'(1).

Proor. By the condition (1) I” contains an element y» (resp. ;) such that

1 . .
1 0 resp. y; 1s conjugate to

tr {72)—-0 (resp. tr (y5)==1). 72 is conjugate to ,i:(
0 1., H 0 1 0 Iy . o .
( 1 1) ) Henee 1 ) and ) are contained in /°. Since these two

0 —1 1,
clements generate /°(1), /' coincides with /°(1). This completes Proposition 1.

Next consider the case p:==2. In the same way as in the case p=3, we can
find an clement j, (resp. 73) of I such that 7, (resp. 75) is of order 2 (resp. 3) in
SLy(Fy). Hence I coincides with SL,(Fs). This shows that I” coincides with 1I'(2)
in the case p=2.

§4. Proof in the case m=7p°.

In this section we shall prove our theorem in the case m=19" for a prime
integer p. Let 7" be a subgroup of /'(1) with the condition (1). Assume that I”
contains I'(p") for a positive integer ¢. We use the induction on ¢. In the case

any integer smaller than e. <, I'(p"")> contains ['(p°"!) and satisfies the condi-
tion (1). Hence by the assumption of the induction we see that <", I'(p~')
coincides with /'(1).

Since I'NI'(p°") lies between I'(p°) and I"(p°™), by Lemma 7 I'N I (p*) is a
normal subgroup of I'(p™'). On the other hand, /"N I’(p°"') is a normal subgroup
of I'. Therefore I'NI'(p*") is a normal subgroup of <I°, Npy>=1I(1).

Now consider the case p=5. By Lemma 8, I'NI"(p*~") coincides with I'(p‘™Y)
or I'(p". If I'nI(p>"y=I(p°"Y), then I" contains I'(p"~'). By the assumption of
the induction, we see that I” coincides with 7”(1). Assume that I'NI'(p*")=I"(p).
Now we consider the subgroup I'NI'(p*?) if e=3 (resp. I'nSy if e==2 where

p:_:<f'(p), ((1) DB) Then I'NI'(p%)/[(p%) (resp. I'N S,/ (p?)) is an elementary

abelian p-group of order p® (resp. p). Hence by Lemma 11, I'NI'{(p*~? coincides
with I'(p*~*) if e=23. In this case I" contains I'(p*'). Hence I'N [(p*H)=I(p"Y),
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which contradicts to our assumption. If ¢=2, then by Lemma 11, I'1S, is con-
tained in I'(p). Hence I'(pH=I'Np)=L""S)Nnp=1'NS,, which is a eon-
tradiction.

Next consider the case p==3. By Lemma 8 we see that /1 /(3")) coincides
with 7'(3°y or I"(3%). If I'n M@ ~")=1"(3"""), then I" contains 13", Henece by
the assumption of the induction, we see that I” ecoincides with /°(1).

Assume that I'N/7"3)=I'(3"). Take an element ; of /" satisfving the fol-

lowing conditions;

tr (y)=-—1 {mod 3°7'}y, (24)
tr(n=—1 {mod 3°) . (25)

This is possible because I satisfies the condition (1). Then by Lemma 10 and
Lemma 12, 7 is contained in '8~y 7I"=17"(3°). Hence by Lemma 12, in view of
(25), we see that y is contained in /'(3*-'). By Lemma 2, we have

tr (7)==2 (mod 3*¢“~") | {(26)

If e=3, then this contradicts to (24). If e=2, we may take 7 such that tr ()=5,
This contradicts to (26).

Finally consider the case p=2. If I'NI"(2°"") is of index at most 2 in I'(2°Y),
then I' is of index at most 2 in I'(1). Hence 7" is a normal subgroup of I'(1).
By Proposition 1, we see that I” coincides with 7'(1). Now we may assume that
r'nr@1n/r@" is of order at most 2. By Lemma 9, I’N /(2% is contained in
N, =K%, 6o,

Assume that ¢e=2, We take an element y of I" such that

tr (y)=6. (27)

Then by Lemma 10, 7? is contained in I'NI'(2). Hence it is contained in N,. In
view of (27), by Lemma 13, we see that 7 is contained in /'N7(2) and hence in N,.
Therefore, by Lemma 2, we see that

tr{p=+2  (mod2%.
This contradicts to (27).

Assume that e=8. Take any element y of I'N{’(27%. Then 7 is contained
in I'nI"(2"""). Hence it is contained in N, ;. By Lemma 13, 7 is contained
(Nes, —12>. If —7 is contained in N,.,, then it is contained in I'(2"%. Hence
-1, is contained in I'(2°-%). This is a contradiction if e=4. Therefore, if e=4,
then 7 is contained in N,.,. If ¢=3, then —1, is contained in N,. Hence 7 is
contained in N;. Therefore, we see that I'N1"(2"%) is contained in N,., for any
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e¢=8. On the other hand, we have (2% ==(I"N1"(2°7%), '(2*Y))> because I, I'(2*"Y)>
coincides with I'(1)., Hence I'(2°%) is contained in N,.., which is a contradiction.

§5. Proof in the general case.

Let I” be a subgroup of 7'(1) with the condition (1). Assume that /" contains

I'(m), where m is expressed as follows;
m== $I'I pii (e;=1) .
41

Since we have already finished the proof of our theorem in the case r=1 in §4,

we may assume that 722 Now put
M=/ p; lsisr). (28)
By the assumption of the induction, we may assume that
Y=, I'my> (Asisr). (29)

Now we shall prove the following proposition.

ProprosiTION 2. Let the notations be as above. If r=2; then under the
assumption (29), I'NTm) ASi<r) is a normal subgroup of I'(1).

Proor. Since /" normalizes I'NI"(m;), by (29), it is enough to show that I'(m))
(7+#1) normalizes I'N I'(m;). Since both of I'(m;) and I'(m;) are normal subgroups
of I'(1), the commutator subgroup [{"(m;), 1"(m,.)] of I'(m;) and I'(m;) is contained
in l'(m)NI'(m;). Hence it is contained in I'(m). Therefore, r;'(I'NI"(my)r; is
contained in "N I"(m;) for any element v; of I'm;). This completes Proposition 2.

Consider the case e;==1 for at least two indices ¢. Since I'(m:)/"(m) is iso-
morphic to SL:(F3), by Proposition 2 I'NI'(m;)/I"(m) is isomorphic to a normal
subgroup M; of SLo(F,). By Lemma 3, as to the index of M;, there are the
following cases:

1,2, 6 if pi=2,
[SLo(F,) : Mil={ 1, 8, 12, 24 if pi=3, (80)
1, ppi-D/2, ppi—1) if p:=5.
Since we have the following equality ;
Q) : Pl=[00ma) : ' Fma))=[SLo(F,,) : 1]

for at least two indices 4, we see easily that [I"(1): I'|=1.
Consider the case e;==1 for only one index i. Then we have e¢;=2 for any
J#14. Hence I(m)/I"(m) is of order p%. In view of (80), [7'(1) : I')=[SL,(F;,): M)
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divides p% if and only if either [I'(1); I']=1 or p,=p, However, the latter case
is impossible.

Finally consider the case ;=2 for all index ¢. In this case [//(1}: "] must
divide p? for all ¢. Hence it is equal to 1. This completes the proof of our
theorem.

References

[1] Shimura, G., Introduction to the arithmetic theory of automorphic functions, Iwanami
and Princeton Univ., 1971.

{21 Huppert, B., Endliche Gruppen I, Springer, 1967.

[3] Gierster, J., Die Untergruppen der Galois’schen Gruppe der Modulargleichungen fiir
den Fall eines primzahligen Transformationsgrades, Math. Ann. 18 (1881), 319-365.

{4] Takeuchi, K., On a Fuchsian group commensurable with the unimodular group, J.
Fac. Sci. Univ. Tokyo, Sec. I, 15 (1968), 107-109.

(Received October 24, 1972)

Department of Mathematics
Faculty of Science and Engineering
Saitama University

Urawa, Saitama

338 Japan



