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§1. Introduction.

Let G be a finite group and let p be a prime. A subgroup H of G is called
a p-strongly embedded subgroup of G if (1) p divides the order of H and (2) p does
not divide the order of HN H® whenever g is in G—H. The purpose of this note
is to determine all the p-strongly embedded subgroups of A, and of PSLin, q).
Here we understand by 4, and PSL(n, ¢), the alternating group of degree n, and
the n-dimensional projective special linear group over the field GF(y) of g elements,
respectively.

Bender [1] classified finite groups with a 2-strongly embedded proper subgroup
and showed that a p-strongly embedded subgroup of a finite group G is closely
related to an equivalence relation defined among Sylow p-subgroups of G. That is,
G has a p-strongly embedded proper subgroup if and only if G is p-isolated in the
sense of Goldsechmidt [2]. In [2], he improved Alperin’s theorem on fusion and
showed that fusion of p-elements in G is determined by p-local subgroups L of G
such that L/O.(L) is p-isolated. Hence it is desirable to classify finite groups with
p-strongly embedded proper subgroups for odd p. Though Bender classified 2-
isolated groups and Goldschmidt showed that Sylow p-subgroups of a p-isolated p-
golvable group are ecyclic or generalized quaternion, classification of p-isolated
nonsolvable groups, p an odd prime, seems io be very difficult. So the author
wished to know more about p-strongly embedded subgroups of known nonsolvable
groups. This is the motivation of this work.

It is easily seen that if a Sylow p-subgroup of G is cyclie, p-strongly embedded
subgroups of G are exactly those which contain the normalizer of a subgroup of
order p (see §2). So we may state our results in the following form.

THEOREM A. Let H be a p-strongly embedded proper subgroup of A,., p
an odd prime. Then one of the following statements holds:

(1) n=2p, and H is a conjugate of the subgroup

{g H ge AZp ar'nd {1: 2: s p}g::{ly 2; Tty p} or {p‘{"lv P“i“zr fT Ty 2?9}}
@) p=n<2p, and ¢ Sylow p-subgroup of A. i8 cyclic of order p.
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TueorReM B. Let H be o p-strongly embedded proper subgroup of PSL(n, q),
p an odd prime. Then one of the following statements holds:

(1) n=2, ¢ is a power of p, and H is the normalizer of a Sylow p-sub-
group of PSLA2, q).

2) pn=38, -4, and H is a conjugate of the subgroup PSU@3,2), the
3-dimenstonal projective special unitary group over GF(4).

8) A Sylow p-subgroup of PSL(n,q) 1s cyclic.

A restatement of Theorem B will be given in §4 Theorem B* (see also the
remark following Theorem B¥).

Bender’s classification theorem asserts that simple groups with a 2-strongly
embedded proper subgroup necessarily have independent Sylow 2-subgroups, i.e.
distinet Sylow 2-subgroups intersect in the identity element (Finite groups with in-
dependent Sylow 2-subgroups have been classified by M. Suzuki.). On the contrary,
simple groups with a p-strongly embedded proper subgroup for odd p not neces-
garily have independent Sylow p-subgroups, even if Sylow p-subgroups are non-
eyelic. For instanece, Sylow p-subgroups of A:,, p an odd prime, are elementary
abelian of order p?, but are not independent. Note that PSL(3, 4) has independent
elementary abelian Sylow 3-subgroups of order 9.

In finite groups having a 2-strongly embedded proper subgroup, elements of
order 2 form one conjugacy class. On the contrary, finite groups having a p-
strongly embedded proper subgroup for odd » may have more than one conjugacy
classes of elements of order p. In fact, 4,, and PSL(2, p™), p an odd prime,
have two conjugacy classes of elements of order p.

The proofs of Theorems A and B are eclementary, but in one place we must
use the deep results of [3], [4] and [6]. It is desirable to avoid using them. In §4,
we will assume familiarity with the structure and embedding of the Sylow sub-
groups of GL(n,q). A good description of them was provided by Weir [5]. We
note that if 2+#plg—1 or p==2 and 4lg--1, the subgroup of monomial matrices con-
tains a Sylow p-subgroup of GL(n, q).

The author would like to thank Professors M. Suzuki, T. Kondo and Mr. H.
Enomoto for suggesting the present forms of the proofs of lemmas (2.3) and (4.1).

§ 2. Properties of & p-strongly embedded subgroup.

Throughout this section, let G denote a finite group, and let » be a prime
dividing the order of G. We define an equivalence relation among Sylow p-sub-
groups of G by: Py~P if and only if there exist Sylow p-subgroups P, P, ---,
P,=P of G such that P;_;N P;=+1 for :=1,2, -+, n. For each Sylow p-subgroup
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P of G we define G(P)={g; g€ and P~P?. We also define an equivalence rela-
tion among elements of order p of G by: z,~=x if and only if there exist elements
Zi, Tay * 5 Lo=2 of order p such that z;_,z;=mzx;-, for 1=1,2, ---,n. For each
element 2 of order p we define G(z)={g;¢g€G and z~2°. Then both G(P) and
G{x) are subgroups, G(P)=G(z) if z€ P, G(P)*=G(P° for any g€G, and G(P)
=G(Q) if P~Q. Clearly, G(P)=N4z(P), and G(P)=N;(P) if and only if G has in-
dependent Sylow p-subgroups. The number of eguivalence classes of Sylow p-sub-
groups coincides with that of equivalence classes of elements of order p, and both
are equal to the index |G :G(P)|.

Almost all of the following propositions were stated implicitly in [1]. But we
will furnish the complete proof here.

2.1) G(P) is a minimal p-strongly embedded subgroup of G. Conversely,
if H is a minimal p-strongly embedded subgroup of G, there exists a Sylow
p-subgroup P of G such that H=G(P).

ProoF. Set H=G(P). By the definition of G(P) and Sylow's theorem, the
equivalence class of P is the set of Sylow p-subgroups of H. Assume that geG
and that p divides the order of HN H’. Then there exist Sylow p-subgroups P,
and P, of H such that P,Nn Pi+1. Hence, g€ G(Py)=H.

Conversely, let H be a p-strongly embedded subgroup of G. Clearly H satisfies
the following condition :

*y Ny (X)< H for each nonidentity p-subgroup X of H.

In particular, H contains a Sylow p-subgroup P, of G. We will show that
G(P,)<H. Let geG(P,). By definition, there exist Sylow p-subgroups Py, Py, -,
P,= P! of G such that P;. ;N P;#1 for 1+:1,2, --- n. By Sylow’s theorem, ;==
P%, for some ¢:€G, 1=1,2,---,n. Since HNH"t PN Pirs1, it follows that
g€ H and that P, H. Proceeding by induction, we conclude that g.€H for
i=1,2, ---,n. Since Pjie2#n== Pf it follows that g€ N(P)H< H. The proof is
complete.

(2.2) Assume that a Sylow p-subgroup of G is eyclic or a generalized
quaternion. Then for each subgroup P of order p, N(P) is a minimal p-
strongly embedded subgroup of G.

ProoF. Let S, be a Sylow p-subgroup of G containing P. We will prove that
G(S)=N4P). Clearly, No(P)SG(S,). Let g€G(Sy. Then there exist Sylow p-
subgroups Si, Sz, -+, S.=S§ of G such that S;_{NS;+#1 for 41,2, ---,n. Since
each Sylow p-subgroup of G has a unique subgroup of order p, it follows that
pPcS; for 4=1,2, -+ n. In particular P<S§. Hence, P=P’, q.e.d.

(2.3) Let H be a p-strongly embedded subgroup of G. Then any subgroup
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of G containing H is also p-strongly embedded in G.

Proor. Let K be a subgroup of G containing H. Since H contains a Syvlow
p-subgroup of G and satisfies (%), K also satisfies (*) where H is replaced by K.
Assume that g€ G and that p divides the order of KNK? Let S be a Sylow p-
subgroup of KNK’ By (*), S is a Sylow p-subgroup of G. Since S, S 2K,
S#::81 for some k€ K. Hence, g€ KN,(S)~ K, q.e.d.

Proposition (2.3) has an obvious corollary, which is not used in this paper.

CoRroLLARY. Let H be a p-strongly embedded subgroup of G, and let N be
a normal subgroup of G. 1f p|IN|, then G=HN. 1If p}IN}, then HN/N is a
p-strongly embedded subgroup of G/N, and HN|N is minimal if H is minimal.

(2.4) Let H be a p-strongly embedded subgroup of G. Then H/O*(H) is a
homomorphic image of G/O"(G), where O™(X) denotes the subgroup of X gen-
erated by the elements of orders prime to p.

Proor. By assumption, HN H"<O”(H) for every g€ G—H. By a theorem of
Wielandt [6], H has a normal complement over O?(H). Hence the assertion follows.

(2.5) Let H be a p-strongly embedded subgroup of G, and let p” be the
highest power of p dividing the order of G. Then |G : Hl=1 (mod p".

Proor. The number of the right cosets of H contained in the double coset
HgH is cqual to |H: H H'f which is divisible by »" if ge G—H, q.e.d.

§3. The proof of Theorem A.

Let p be an odd prime, n an integer greater than or equal to 2p, N=

{1,2, ---, n} and let M denote the set of subsets of p distinct elements of N.

(8.1) Assume n=2p-1-1. Then for any two elements a,, 5 of M there exist
elements «,, az, -+, =8 of M such that a;_\Na,=@ for i=1,2, ---, r.

Proor. If «,1 =@, there is nothing to prove. We argue by induction on
leyN Bl Assume layN Al=m =21, and that ay={a,, - -, @p.m €1, - - -, ¢x} and 5=1{b,,
coybpems €1y o0y Cu) Since m—layUSIZm-1, there exist m-+1 distinct elements
dy, -+, duiy of N not contained in ayUS. Set r={b,, - <, bpm dy, -**, dn} and
5@y, oty Gpemy €1y 00y Cmety Asale Then ayNy=@, 7Na=0 and |a,N fl=m—1.

The proof is complete by induection.

8.2) Assume n=2p-+1. Then A, has no p-strongly embedded proper sub-
groups.

Proor. This is an immediate consequence of (2.1) and (3.1), for each element
of order p of A, commutes with a p-cycle and any two p-cycles are equivalent in
4, by 3.1).
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3.3) Let z be a p-cycle. Then the centralizer of x consists of permutations
of the form x*y, where k is an integer, and x and y are disjoint permutations
(t.e. their cycle decompositions contain no common letters).

PrOOF. We may assume z=(1,2, ---, p). If z centralizes z, z fixes the unique
nontrivial orbit {1,2, ---, p} of z. Suppose that (l)z=(1)a*. It can be shown by
induction on ¢ that (f)z=(i)z* for i=1,2, ---, p, q.e.d.

By a similar argument we have:

(3.4) Let z=uxy where x and y are disjoint p-cycles. Then each permuta-
tion of odd order im the centralizer of z is of the form a*y*u, where h and
k are integers, and x, ¥y and u are disjoint.

Suppose n=2p. (3.3) and (8.4 imply that if (1,2, - -, p)~(a, @ ---, ap),
then either {1,2, ---, p}={ai, as, -+, ast or {1,2, - -+, piNiay, ay, - -, @p}=&. Thus,
the subgroup described in Theorem A is one of the minimal p-strongly embedded
subgroups of A:.. As is well known, it is a maximal subgroup of A,,, whenee p-
strongly embedded proper subgroups of A, are exactly its conjugates. The proof
is complete.

§4. The proof of Theorem B.

We restate the assertion of Theorem B in a slightly different form.

THEOREM B*. Let p be an odd prime, n be a positive integer, and ¢ be a
prime power. Then the following holds:

(1) In case plg and n28, PSL(n, Q) has no p-strongly embedded proper sub-
groups.

(2) In case plg—1 and n=3, PSL(n, q) has no p-strongly embedded proper
subgroups unless p=n=3 and q=4.

@) PSUB, 2) is a minimal 3-strongly embedded subgroup of PSL3,4).

(@) In case piqlg—1), let k be the smallest positive integer such that e}
(mod p), and set t=[n/k], the largest imteger mot greater than wlk. If 1=2,
PSL(n, q) has no p-strongly embedded proper subgroups.

REMARK. Sylow p-subgroups of PSL(2, p™) are independent and their nor-
malizers are maximal subgroups of PSL(2, p™). If pi¢g—1, p an odd prime, a Sylow
p-subgroup of PSL(2,q) is eyelic. PSU@3,2) is a maximal subgroup of PSL(3, 4).
Let p, q, k and t be as in B* (4). If ¢t<1, a Sylow p-subgroup of PSL(n,q) is
cyclic. Hence Theorem B can be obtained from Theorem B*.

4.1. The proof of B* (1).
To prove B* (1), it suffices to show that if =3 and plg, Sylow p-subgroups of
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&~GL{n, q) are all equivalent.

Let V be a2 vector space of dimension n over GF(g). If we identify & with
the group of linear transformations of V, each Sylow p-subgroup of & is charac-
terized as the stability group of a composition series of V. Let P and £ be the
stability groups of the composition series V=V, >V,,= .-- 2V,20 and of V=
W, W,., 7 --- 7W;20, respectively. If V.=W, for some i with 1=2iZn—1,
then B1Q /1 since the stability group of the series V> V;220 is contained in N L.

If V. W, take the stability group "t of a composition series 0 V, = V,+ W,

.- <.V and the stability group © of a composition series 0 W, =V, + W, -.-
V. By the preceding paragraph we have PNM~1, RN&E=£1 and ENLV#1.
Hence P~L, q.e.d.b

4.,2. Necesgsary lemmas,
In this subsection, we will prove two lemmas needed in proving B* (2) and B* (4).
Notations introduced in this subsection will be used throughout the remainder of

this paper.

Let V be an n-dimensional vector space over an arbitrary field K. Let n=d,
+dyd -+ 1-d, be a partition of n, where d; is a positive integer for ¢=1,2, ---,
m, and let ¥=:¥(d,, ds, - - -, d) denote the set of all unordered m-tuples (V,, Vs, -- -,
V..) of subspaces of V such that V is the direct sum of V,, V3, ---, V,, and that
after a suitable renumbering of V.’s we have dim ,V.=d; for 1=1,2, ---, m.

Clearly, GL(V) acts on X by (V,, Vy, -+ -, V)g=(Vig, Vog, -+ -, Vag) for each g€
GL(V). For each element z=(V,, V,, ---, V) of X we define:

Nx){g; g€ GL(V), and zg=2u} .
D)= {g; g€ GLIV), and V,g=V,; for i=1,2, ---, m}.

We define a reflexive and symmetric relation in X by: (V|, Vy, -+, V. )=(W,, W,,
.-, W.,.) if and only if, after suitable renumberings of V’s and of W.'s, we have
V=W, for 122 and V4 Vo= W+ W,.

4.1) For any two elements x, and x of X, there exist elements x,, %2, -« -,
ze=x of X such that xv,-¢=z; for t==1,2, .-+, 8.

Proor. To prove this, it suffices to consider the case d;=d.= - =d,=1
Assume that xe=(V,, V., ---, V) and a=(W,, W,, ---, W,). Let 0z%v,€V, and
0:71w:€ W, for 1==1,2, .. .n. Define an element ¢ of GL(V) by v, g=w, for i=1,
2, ---,n. Then xg=x. Let G be a matrix of g with respect to the basis v, vs,

b It can be proved by another method that groups of Lie type of characteristic p and
of rank greater than 1 have no p-strongly embedded proper subgroup.
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«+o,v,. If G is diagonal, then V,=W; for each ¢ and z,=~z. If G is an element-
ary transformation, we also have x,=~x. In general, G can be represented as the
product of diagonal or elementary transformations: G=A.4. - - 424, Let g:€
GL(V) correspond to (A; ;- - AsA) 1A (Ao --- A:A,) with respect to the basis
¥y, Vs, *++, . Then the matrix of g,g, -+ g: is A:;--- A:4,. In particular, g==
gig: - g,. Since A, is the matrix of g, with respect to the basis v;g:¢2 - 91
j=1, 2, .-+, m, we have x,0:gs -+ Gi-1=ToG1¥2 - - §i» 3-°1,2, --+, 8. The proof is
complete.

(4.2) Let W be a subspace of V such that dimx Wzn/2. Let %) denote the
set of all subspaces U of V such that V=U+W (direct sum). For any two
distinet elements U, and U of ), there ewist elements U, U,, ---, Us=U of Y

PROOF. If n—dim ,W=1, the assertion is clear. Assume that n--dim ;W
=k=92. Let uy, s, -+, ux be a basis of U and w,, ws, - - -, wr be linearly independ-
ent elements of W, and set U’=<u,+w,, Us+ews, + -+, wr-+we), subspace of V gen-
erated by u;+w;, 9=1,2, -+, k. Then clearly U"e¥) and UN U’=0.

If U,n U==0, there is nothing to prove. So we may assume that U,n U+ 0.
We proceed by induction on k— dim xU,N U. Since Uy# U, there exists an element
w of U such that u=u,+w with u,€ Uy—U and we W--U. Choose a basis u,, - - -,
w,, of Uy,N U and extend it to a basis %y, ) Ums Ums1=Uo, -~ *, Uz Of Up. Let 2z
be an element of W independent of w, and let wy, -, Wa™=W, Wna1==wW-+2, -+, W
be linearly independent elements of W, and set U,=<u,+wy, -, wxt+we>. Then by
the preceding paragraph, U;€%) and U,N U,;=0.

Let ~wy, - -+, —Wms 2, Zmaz, * - *» 2 e linearly independent elements of W, and
set Ua=<tq, =+ %y Umy Uy Uiz FWmazFZmrzs 75 Ut W2, Since wos=<(ugbwi) —w;
and #= Ups-+Wnss)—2, it follows that U.€9 and that U,NU,=0. Furthermore
dimy U,Nn U<dimg Uz U. The proof is complete by induction.

4.3. The proof of B* (4).

Let V be an n-dimensional vector space over GF(g), and set &=GL(V). Let
p be an odd prime number prime to g(¢g—1), and let k& be the smallest positive
integer such that ¢*=1 (modp). Set t=[n/k], n==kt+r and m=t+r Set X-=
36(13,"_;11-0’,1, -, 1.

t r

(4.3) Assume that t=2. Then for any two elements z, and x, of X, there
exist elements xy, - -+, =% of ¥ such that D(x,-) N Dlx:) contains a nonidentity
p-element for i=1, - -, s.

PROOF. By (4.1), we may assume that z,=(Vy, Vy, -+, Vi), 2=(W,, Vs, -+, Vi)
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and that V,+ V,=W,+V, If cither V, or V. is one-dimensional, it follows
that m=3 and that at least one of Vi, -+, V.. is of dimension k. Since GLk, q)
contains a nonidentity p-element, we conclude that D(z,) N D(z) contains a nonidentity
p-clement. If both V, and V, are of dimension %k, we may assume Vit Wi=0 (see
(4.2)). Let wy, ---, wr be a basis of W, and write w;=e;+f; with ¢;€ V, and f; €
V.. Then clearly e, ---, e and fi, -+, fi are bases of V; and V., respectively.
There exists nonidentity p-element g in ©(z,) such that the matrix of g|V, coincides
with that of g|V,, i.c. a p-clement g in D(x,) such that e, g=2ig;;e; and fig=
S gi;fi for i=21, - -+, k with the same coefficients g,;€ GF(q). Clearly ¢ is contained
in ©(z). The proof is complete.

It is now easy to prove B* (4). We use the same notation as in (4.3). It
suffices to show that Sylow p-subgroups of & are all equivalent. We first note that
each Sylow p-subgroup of & contains a Sylow p-subgroup of T(x) for some z€X.
Let %, B be Sylow p-subgroups of 3, and suppose that B, P contain Sylow p-
subgroups of Dlz,) and Dlx), respectively. If ¢=2, then by (4.8), there exist
elements z,, -, .=z of X such that ®(x;_,)N D(x;) contains a nonidentity p-element.
Since 32, Sylow p-subgroups of ®(y) are all eguivalent in (y) for every y€X.
Therefore Po~PB. The proof is complete.

4,4, The proof of B* (2) and B* (3).

Let V be a vector space of dimension n over GF(q), and let p be an odd prime
dividing ¢—1. Let @&’ denote the special linear group SL(V), B the center of &,
and set ¥==X(1,1, ---,1). For each element z=(V,, ---, V,) of X, we define /()

= D) NG, D'(x) is an abelian group of order (¢--1)"", and 50 has a unique Sylow
p-subgroup D) (x).
4.4 Assume n=3. Then for any two elements x, and x of X, there exist

elements 2y, - -+, .o of X such that D(xi—) NDL(x)E3 for i=1, ---, 5, unless
p =3 and 9qg-—-1.
PROOF. As in the proof of (4.3), we may assume that me=A(V, V,, -, V)

and x=(W,, Vo, --+, V) with W, V,4+ V.. Let v; be a nonzero element of V;
for cach 1. The assumplion guarantees the existence of an element d in D (x,)
such that v,0=av,, v:0=avs, vsd==bvy, ---, where a and b are distinct nonzero
clements of GF(g). Clearly § is contained in ®j(z), but not in 3, g.e.d.

4.5) Let q be a prime power, and let » be an odd prime dividing gq—1.
If n=8, PSL(n, q) has no p-strongly embedded proper subgroups unless p=n=3
and 9fg--1.
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PrOOF. This is an immediate corollary of (4.4). We will show that Sylow p-
subgroups of PSL(n, ¢} are all equivalent. We use the same notation as in (4.4}.
Note that each Sylow p-subgroup of & contains T (x) for some 2€X. Let P, B
be Sylow p-subgroups of &, and suppose that P, 2D {xy) and PO Dilx). By 4.4},
there exist elements 2,, ---, 2,==2 of X such that T4 (x;. )N Djx)EF for 2=1, - -+,

s. Choose a Sylow p-subgroup B: of &' containing ®jx,) for 41, ---, s -1, and
set P,=PB. If we denote the image of P; in PSL(V} by %;, Bi-, intersects ‘i%;
nontrivially for 7==1, ---,s. Hence, il&yviﬁ, q.e.d.

In the rest of this paper, let ¢ be a prime power such that 3llg--1, i.e. 3ig—1
and 94¢g—1, and V be a 3-dimensional vector space over GFl(g). Set &=GL(V),
& =8L(V) and &’'=PSL(V). Set ¥=-¥(1,1,1). We define an equivalence relation
in X by: z,~x if and only if there exist elements x,, --- &, & of X such that, for
i=1, -+, 8, & N M(x;-) N Mx;) contains a 3-element not contained in the center 3
of ® (such an element is called a noncentral 3-element).

Let Bo, B be Sylow 3-subgroups of ®’. If there exist Sylow 3-subgroups %,
oo, Pe=P of G such that P NP.#3 for i=1, ---, t, we write Po=P. Let &
denote the image in ®=8/3 of a subset & of &. Clearly, R, is equivalent to P
in ®’=PSL(V) if and only if Po=%F, for 3 is of order 3.

Since 3lg—1, B is contained in M(z) for some x€X. Let g€G. We will show
that P~ if and only if x~2xg. Assume that P~P’. By definition, there exist
Sylow 3-subgroups Be="1P, By, - -+, B.=P¢ of & such that P NP;# for i=1,2,

.., t. For each 7,15i=t—1, choose an ;€ X such that P,<PVx,) and set xp=2,
#,=xg. Then L,;CMix:) for 7=0,1, ---, ¢ Since & N Mz —) N NUz) 2B NPy,
we have x~xg. Conversely, assume that x~xg. By definition, there exist elements
Te=2, T1, X2, ***, L,=xg of X such that &N Dz;)NIMN(z;) contains a noncentral 3-
element g; for i==1,2, ---,8. Choose a Sylow 8-subgroup B;-; of & NM(x;..,) con-
taining g:, and a Sylow 3-subgroup T; of &’ NP(x;) containing g:. For each y€X,
Sylow 3-subgroups of &’NPy) contain the unique Sylow 3-subgroup of LN D(y)
which is elementary abelian of order 9. Hence P;~Q; for i==1, - -+, s—1, By~ and
0,~P¢. Since g;€Pi-1ND;—3, we conclude that P=~P’,

Thus, if we denote by ©(x) the subset of & consisting of g€ & such that z~xg,
E(x) &’ becomes one of the minimal 3-strongly embedded subgroups of &= PSL(V).
Let Mt denote the set of monomial matrices in GL(3, ¢), and N the set of all non-
singular matrices of the form:

L a b ¢
(4.6) ¢, a b, ab ceGF@.
Lb e a
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Let  be the subgroup of GL(3, ¢) generated by It and N: H=LD, T,

(4.7 Let x==(V,, Vu, V) be an element of X, and let v; be a nonzero element
of Vi for i++1,2,3. Let g be an element of &. Then x~zg if and only if the
matriz of § with respect to the basis vy, vy, ¥2 of V i8 contained in 9.

Proor. First assume that z~zg. Let G denote the matrix of g with respect
to the basis v,, v, v,. To show GeH, it suffices to consider the case that &N
M(z) N Vilxg) contains a noncentral 3-element f. Set W,=V.g and w;=uv:g. Since
f is of odd order, there are four possibilities for the action of f on V.'s and on
Wis. Namely, (i) fe D) nDieg), (i) f€Tlx) but f permutes W.'s regularly, (ii)
FfeDxg) but f permutes V,'s regularly or (iv) f acts regularly on both V.’s and
on W.s.

Case (). In this case G must be contained in M, or equivalently g€ Pi(x).
For, if one of the Wy's, say W,, differs from V.'s, w, is expressed in the form w,
v by 4 bywa-Fhyvs where at least two of the b’s, say b and b,, are not zero. Since
S leaves W, invariant, w,f>=cw, for some ¢ with ¢®==1 because f is a 3-element and
3ilg—1. Since f also leaves V.'s invariant and det (f)==1, we have v;f=a;v; for
some a; with @,a.ay==1. It follows that a,>=ay==¢ whence g;=¢ *=c¢. But this is
not the ecase, since f is noncentral.

Case (ii). Since f leaves V; invariant, we have »;f=a.v; for some a; with
a’:=1. Suppose that f permutes w, ws ws cyclically and that w,==av,-+bv,+evs.
Then G is of the form

(1, 1, 1 ,ra
(4.8) @y, 2, @3 |
i

b b
at ot ot L e

Let ¢ be a primitive cube root of unity in GFlg), and set

1,01, 01
(4.9) q e e =C.
:\ 17 521 B )

The matrix on the left in the above expression of G is obtained by multiplying C
by permutation matrices. But C is contained in %, for

[s A | e, 1,17

'1,5,1‘1-
1. . ¢ LL 1, el

[

Hence, G is contained in ©. In general case, G is obtained by multiplying a matrix
of the form (4.8) by monomial matrices.
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Case (iii). By the above argument, the matrix of g~' with respect to the basis
Wy, Ws, Wi is contained in . Hence, Ge H.

Case (iv). Suppose that f permutes both »,, v., vs and w,, w., w; cyclically,
and that wy=av,+bv,+cv;. Then G is of the form (4.6). In general case, G is
obtained by multiplying a matrix of the form (4.6) by monomial matrices.

Conversely, assume that Ge€%. As in the proof of (4.1), we may assume that
GeMUMN. If GeM, then geM(y) or z=xg. If GeN, the element of & which
permutes vy, va, v; cyclically is a noncentral 3-element in N Mx)NM(zg). The
proof is complete.

4.10) If q=4, then H=U3,2), the general unitary group.

Proor. Let C be the matrix defined in (4.9) and set

—

» L1 Tet 1, 1
s % 1 P B-= 2, 1 é;::A"‘l B

S Los

| H

A=11
1

ek
b

’

Let T be a matrix of the form (4.6) not contained in M, and set d=det(T). Then
d=(a-+b-+e)a*+b*+c*—ab—bc-—ca). In order that d:40, a, b and ¢ must be non-
zero elements of GF(4) two of which coincide. For, if =0, then d=:(b-}e)(b*+c?
—be). Since Te M, be+#0 and bs=e. If ¢=1, then d==(-+1)(B*+b-+1)==0, So s#1+¢
and c¢=b%. But then d=(b-+03)(b*-+b+1)=0, a contradiction. This implies that
Te R, A, B>. Clearly I and A are contained in GU(3,2). Comparing the order
we conclude that $=GU(S3, 2) or |9:M|==2. The latter case does not occur since

a7 T
A1 A= 1 (C.
S U R

4.11) If 3llg—1 and q-#4, then PSL(3, ¢) has no 3-strongly embedded pro-
per subgroups.

PrRooF. It has been shown that 3’ND is one of the minimal 3-strongly
embedded subgroups of PSL(V). We will derive a contradiction by assuming
& NHEPSL(V). Let » be a maximal subgroup of PSL(V) containing &1 9.
Since $ properly contains & N, ¥ satisfies the condition

(1) 2(g—1)2k=I81 and 2(g~—1)?k .

By (2.3), (2.4) and the simplicity of PSL(3, q), we have
(2) O t)=4§ .
On the other hand, candidates for the maximal subgroups of PSL(3, ¢) have been
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obtained by Mitchell [4] and Hartley [3]. Quoting their results, we see that &
must be of one of the following types.

Set ¢=p™, where p is a prime.

Type 1. k=:(p" -Lp*(p™-1)¥/3.

Type 2. k=p*™ 9™ 41

Type 3. k= @™ +Lp™(p™-1)

Type 4. S=PSL@3, p"), mi/r is a prime.

Type 5. & contains a normal subgroup of index 3.

Type 6. w~PSU@B, p"), 2r=m.

Type 7. k--36, 72 or 168, p-/2.

Type 8. k—360, p72, m is even or m is odd and pz17.
Type 9. k720 or 2520, p-5, m is even.

If & is of type 1, 2 or 3, then 3|k, contrary to (1). Assume that ¥ is of type 4.
Then k= p* (p” - 1)4p" - (p* -p -+ 1)/B, p"—1). Set m=rl. Then, (p"—1)=(p"—1)
((p")t 4 - 4-p"41). By (), we have {(p)'4 - +p +1PI(P +D P +p"+1).
Henee [==2 and (p"-- D@ 49"+ 1= (p"-+1)2~p", a contradiction. If & is of type
5, 3 does not satisfy (2). Assume that & is of type 6. Then k=p""(p"—~1)(p"+1)*
(P -p -+ 1)/ (" +1,8). Since m==2r, we have (p"—D|(p* —p"+1)=(p"~1)*+p".
This contradicts the assumption that p™+4. Assume that & is of type 7. If k=72,
then (p™--1){8 and (1) does not hold. If k=36, then (p™—1)I3 and p"=2 or 4, a
contradietion. If %=:168, then (p™—1)|2 and p™=2 or 3, a contradiction. Assume

of type 9, then (p™=-1)|6, again a contradiction. The proof is complete.

Lemma (4.11) completes the proof of Theorem B*.

REMARK. By a similar method and by using (2.5), it can be shown that
PSU@E, 2 is a maximal subgroup of PSL(, 4). Let & be a maximal subgroup of
PSL(3, 4) containing PSU@3,2). Then & is of type ¢, 1=4=6, with p"=4, or k=
|§¥1:-860. Since PSU3,2) is a 3-strongly embedded subgroup of PSL(,4), (1) and
(2) hold. If %-:360, then the index of & in PSL(3,4) is 14. This contradicts (2.5).
Hence R=PSU@3, 2).
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