Primitive extensions of rank 4 of multiply transitive permutation groups, II.

(Part II. The case where there exist non-self-paired orbits)

By Eiichi BANNAI*

Introduction.

This note is a continuation of [1] and [2]. Here we consider the primitive extensions of rank 4 with non-self-paired orbits of multiply (4-ply) transitive permutation groups. Our main result (which is of negative nature) is as follows:

THEOREM 1. There exists no primitive extension of rank 4 (3, Ω) of a 4-ply transitive permutation group (G, Δ) having non-self-paired orbits of $(S_a \ (a \in \Omega), \Delta)$

Combining this theorem with Theorem 1 given in [2], we are able to determine the primitive extensions of rank 4 of 5-ply transitive permutation groups. That is, we have

THEOREM 2. Let (G, Δ) be a 5-ply transitive permutation group. If (G, Δ) has a primitive extension of rank 4, then $|\Delta|=7$ and $G=S_7$ or A_7 (symmetric and alternating groups on 7 letters respectively.)¹⁾

The special case of Theorem 2 where $(G, \Delta) \cong (A_n, \Delta)$, $|\Delta| = n$ has been proved by S. Iwasaki [7].

The author thanks Mr. Hikoe Enomoto for pointing out an incorrect argument in the proof of the original manuscript, and for suggesting him the correct one.

§ 1. Notation and preliminary results.

We fix the following notation throughout this note. (\mathfrak{G}, Ω) is a primitive extension of rank 4 of a 4-ply transitive permutation group (G, Δ) . That is, \mathfrak{G} is primitive on Ω , and there exist 4 orbits $\{a\}$, $\Delta(a)$, $\Gamma(a)$ and $\Lambda(a)$ of $\mathfrak{G}_a(a \in \Omega)$ on Ω , and moreover \mathfrak{G}_a is faithful on an orbit $\Delta(a)$ and $(\mathfrak{G}_a, \Delta(a))$ is identified with the permutation group (G, Δ) . Henceforth we assume that there exist non-self-paired orbits of \mathfrak{G}_a . Here we take the orbits so that $\Delta(a)^g = \Delta(a^g)$, $\Gamma(a)^g = \Gamma(a^g)$ and $\Delta(a)^g = \Delta(a^g)$ for all $g \in \mathfrak{G}$ and $a \in \Omega$.

Now under the assumption of Theorem 1 that such (\mathfrak{G}, Ω) exists, we have

^{*} Supported in part by the Fujukai Foundation.

In these cases each (G, A) has indeed primitive extensions of rank 4 (9, Q) with a regular normal subgroup of order 64.

LEMMA 1. $\Delta(a)$ is not a self-paired orbit.

PROOF. Since $(\mathfrak{S}_a, \Delta(a))$ is doubly transitive, if $\Delta(a)$ is a self-paired orbit of \mathfrak{S}_a , then $(\Delta \circ \Delta)(a) = \Gamma(a)$ or A(a) and moreover $\Gamma(a)$ or A(a) is self-paired by Theorem 1 in P. J. Cameron [3], a contradiction. Here $(\Delta \circ \Delta)(a) = \{b | b \in \Delta(c) \text{ for some } c \in \Delta(a), a \neq b\}$ by definition (cf. [3]).

Thus from now on we may assume that A(a) and A(a) are paired orbits and $\Gamma(a)$ is a self-paired orbit.

Let us recall some fundamental properties about the intersection matrices due to D. G. Higman [4]. Set $\Gamma_0(a) = \{a\}$, $\Gamma_1(a) = A(a)$, $\Gamma_2(a) = \Gamma(a)$ and $\Gamma_3(a) = A(a)$ and 1, k, l, m (=k) be the length of the orbit $\Gamma_i(a)$ (i=0,1,2,3) respectively. Let us define the intersection number $\mu_{ij}^{(a)}$ by $\mu_{ij}^{(a)} = |\Gamma_a(b) \cap \Gamma_i(a)|$ for $b \in \Gamma_i(a)$. For the fundamental relations among the $\mu_{ij}^{(a)}$ and the lengths of $\Gamma_i(a)$, see D. G. Higman [4], (4.1) and (4.2). Among them, the following relations will be used later in this note: (Here we use the conventional notation that $\mu_{ij} = \mu_{ij}^{(1)}$.)

 $\mu_{11} + \mu_{21} + \mu_{31} = \mu_{12} + \mu_{22} + \mu_{32} = 1 + \mu_{13} + \mu_{23} + \mu_{33} = k$, $k\mu_{23} = l\mu_{12}$, $k\mu_{21} = l\mu_{32}$, and moreover (since m = k) $\mu_{11} = \mu_{13} = \mu_{33}$.

We use the following results proved in S. Iwasaki [6] and N. Ito [5].

LEMMA 2 ([6], Proposition 1.3). $l \neq k(k-1)$.

LEMMA 3 ([5], Satz 3). Let (H, Σ) be a triply transitive permutation group, and let X be a subgroup of H of index $|\Sigma|$, then either X is transitive on Σ or $X=H_a$ for some $a \in \Sigma$.

§ 2. Proof of Theorem 1.

We assume that there exists a (\mathfrak{G}, Ω) which satisfies the assumption of Theorem 1. Thus we may assume that $k \ge 4$.

Since $\Delta(a)$ and $\Lambda(a)$ are paired orbits, there exists an element $x \in \mathbb{S}$ such that $b^x = a$, $a^x = c$ for some $b \in \Delta(a)$ and $c \in \Lambda(a)$. We denote by σ the inner automorphism of (§) induced by the element x. From the doubly (4-ply) transitivity of (§) and $\Delta(a)$, we have $\mu_{11} = 0$, therefore $\mu_{13} = \mu_{33} = 0$ and $\mu_{23} = k - 1$. Thus we have $\mu_{21}^{(3)} = k - 1$ since $\mu_{11}^{(3)} = \mu_{31}^{(3)} = 0$ and $1 + \mu_{11}^{(3)} + \mu_{21}^{(3)} + \mu_{31}^{(3)} = k$. Since $\mu_{21}^{(3)} = |(\Delta(a) \cap \{b\})^x \cap \Gamma(a)| \neq 0$, there exist points $e \in \Delta(a) - \{b\}$ and $d \in \Gamma(a)$ such that $e^x = d$, hence $(\mathbb{S}_{a + b + c})^\sigma \leq \mathbb{S}_{a + d}$. Since $(\mathbb{S}_{a + b})^\sigma$ is a subgroup of index k of the 4-ply transitive permutation group $(\mathbb{S}_a, \Delta(a))$, we have either

- (I) $(\mathfrak{F}_{a,b})^{\sigma}$ is transitive on A(a), or
- (II) $(\mathfrak{G}_{a,b})^{\sigma} = \mathfrak{G}_{a,b'}$ for some $b' \in \Delta(a)$,

by Lemma 3. While $(\mathfrak{G}_{a,b,c})^{\sigma}$ is a subgroup of index k-1 of the group $(\mathfrak{G}_{a,b})^{\sigma}$.

Therefore if Case (I) holds, then $(\mathfrak{G}_{a,b,c})^{\sigma}$ is transitive on J(a) by Theorem 17.3 in Wielandt [8]. If Case (II) holds, then either $(\mathfrak{G}_{a,b,c})^{\sigma}$ is transitive on $J(a) - \{b'\}$ or $(\mathfrak{G}_{a,b,c})^{\sigma} = \mathfrak{G}_{a,b',c'}$ for some $e' \in J(a)$, $e' \neq b'$, also by Lemma 3. Thus we have either $\mu_{12} = 0$, 1, 2, k-2, k-1 or k, since $\mu_{12} = |J(d) \cap J(a)|$ and $J(d) \cap J(a)$ is a union of orbits of $\mathfrak{G}_{a,d}$ on J(a). The case $\mu_{12} = 0$ is impossible since $\mu_{12} = \frac{k}{l} \mu_{23} = \frac{k(k-1)}{l} \neq 0$. If $\mu_{12} = k$ or k-1, then l=k-1 or k, respectively, and this contradicts a theorem of Manning (cf. [3], Theorem 1). Moreover $\mu_{12} \neq k-2$ for k>4, otherwise $l=\frac{k(k-1)}{k-2}$ is not an integer.

Thus we have proved that $\mu_{12}=1$ or $\mu_{12}=2$. If $\mu_{12}=1$ then l=k(k-1) and this contradicts Lemma 2. Thus $\mu_{12}=2$. Now from the proof of Proposition 1 we immediately have $\mathfrak{G}_{a_1,d}=\mathfrak{G}_{a_1(b',a')}$. Thus the action of \mathfrak{G}_a on $\Gamma(a)$ is isomorphic to that of \mathfrak{G}_a on the set of unordered pairs of J(a). From the 4-ple transitivity of $(\mathfrak{G}_a, J(a))$, we immediately conclude that $(\mathfrak{G}_{a_1,d}, \Gamma(a))$ is of rank 3 and the subdegrees are 1, 2(k-2) and $\frac{1}{2}(k-2)(k-3)$.

Now $\Gamma(a)\cap J(d)$ is a union of orbits of $\mathfrak{G}_{a,d}$ on $\Gamma(a)$ whose total length is μ_{22} . While $|J(a)\cap \Gamma(d)|=|\Gamma(a)\cap J(d)|=\mu_{22}$, since there exists an element $y\in \mathfrak{G}$ which interchanges a and d (because $\Gamma(a)$ is self-paired). Now we have $\mu_{22}\geqq 1$, otherwise $\mu_{32}=k-2$ and $\mu_{21}=\frac{l}{m}\mu_{32}=(k-1)(k-2)>k$ (for $k\geqq 4$), a contradiction. While $\mu_{22}\leqq |J(a)|-|J(a)\cap J(d)|=k-\mu_{12}=k-2$. Thus, if $k\geqq 6$ we have a contradiction, since 2(k-2)>k-2 and $\frac{1}{2}(k-2)(k-3)>k-2$ and $\mathfrak{G}_{a,d}$ has no union of orbits $(\neq \{d\})$ whose total length μ_{22} is $1\leqq \mu_{22}\leqq k-2$. If k=5 (resp. k=4), then $(G,J)\cong (S_k,J)$, |J|=k. Since S_5 (resp. S_4) has only one subgroup of index 5 (resp. S_4) up to conjugacy, $(G,J(a))\cong (G,J(a))$. Thus a transposition $\tau\in S_5$ ($=\mathfrak{G}_a$) (resp. S_4) fixes 1+3+3+4=11 (resp. 1+2+2+2=7) points on Ω . While non-transpositional involutive elements of S_5 (resp. S_4) fix 1+1+1+2=5 (resp. 1+0+0+2=3) points. Thus the number of elements of \mathfrak{G} which are conjugate to τ is given by $10\cdot\frac{21}{11}\left(\text{resp. }6\cdot\frac{15}{7}\right)^2$, and this is a contradiction, since this number must be an integer.

Thus we have completed the proof of Theorem 1.

References

[1] Bannai, E., On rank 3 groups with a multiply transitive constituent, to appear in J. Math. Soc. Japan.

For this calculation, cf. [2 bis]. [2 bis] contains serious misprints: the words "not" in page 131, line 10; page 132, line 1 and line 17 should be omitted.

- [2] Bannai, E., Primitive extensions of rank 4 of multiply transitive permutation groups, I (submitted to J. Math. Soc. Japan).
- [2 bis] Bannai, E., Several remarks on transitive extensions of finite permutation groups, Osaka J. Math. 8 (1971), 131-134.
- [3] Cameron, P.J., Proofs of some theorems of W.A. Manning, Bull. London Math. Soc. 1 (1969), 349-352.
- [4] Higman, D.G., Intersection matrices for finite permutation groups, J. of Algebra 6 (1967), 22-42.
- [5] Ito, N., Über die Gruppen $PSL_n(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta. Sci. Math. Szeged, 21 (1960), 206-217.
- [6] Iwasaki, S., On finite permutation groups of rank 4., to appear.
- [7] Iwasaki, S., A note on primitive extensions of rank 4 of the alternating groups, to appear.
- [8] Wielandt, H., Finite Permutation Groups, Academic Press, New York-London, 1964.

(Received November 26, 1971)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan