Primitive extensions of rank 4 of multiply transitive

permutation groups, II.

(Part II. The case where there exist non-self-paired orbits)

By Eiichi Bannar®

Introduction.

This note is a continuation of [1] and {2]. Here we consider the primitive
extensions of rank 4 with non-self-paired orbits of multiply (4-ply) transitive per-
mutation groups. Our main result (which is of negative nature) is as follows:

THEOREM 1. There exists no primitive estension of rank 4 (%, ) of a 4-ply
transitive permutation group (G, d) having non-self-paired orbits of &, (ae ).

Combining this theorem with Theorem 1 given in [2], we are able to determine
the primitive extensions of rank 4 of 5-ply transitive permutation groups. That is,
we have

TuEOREM 2. Let (G, d) be a 5-ply transitive permutation group. If (G, d)
has a primitive extension of rank 4, then |4|=7 and G=S, or A, (symmetric
and aliernating groups on 7 letters respectively.)?

The special case of Theorem 2 where (G, 4)==(4,, 4), |d|=n has been proved by
S. Iwasaki [7].

The author thanks Mr. Hikoe Enomoto for pointing out an incorrect argument
in the proof of the original manuscript, and for suggesting him the correct one.

§1. Notation and preliminary results.

We fix the following notation throughout this note. (&, 2) is a primitive ex-
tension of rank 4 of a 4-ply transitive permutation group (G, d). Thatl is, & is
primitive on &, and there exist 4 orbits {a}, 4(a), /(@) and A(a) of G.(a€ ) on 2,
and moreover &, is faithful on an orbit 4(a) and (@,, d(a)) is identified with the
permutation group (G, 4). Henceforth we assume that there exist non-sclf-paired
orbits of &,. Here we take the orbits so that 4(a)’==4(a%), '(@)’==/"(a’) and A{a)’-=
Ha®) for all g€® and ae £.

Now under the assumption of Theorem 1 that such (&, 2) exists, we have

* Supported in part by the Fujukai Foundation.
b In these cases each (G, 4) has indeed primitive extensions of rank 4 (%, 2y with a
regular normal subgroup of order 64.
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LemMa 1. ) is not o self-paired orbit.

Proor. Since (&, 4la)) is doubly transitive, if Ha) is a self-paired orbit of &,,
then (d>a)=-1"(a) or Ala) and moreover I'(a) or A(a) is self-paired by Theorem 1
in P.J. Cameron [8], a contradiction. Here (d-d){a)={blb€ H(c} for some c€ da),
a-b} by definition (cf. [3]).

Thus from now on we may assume that J(a) and A(a) are paired orbits and /'(a)
is a self-paired orbit.

Let us recall some fundamental properties about the intersection matrices due to
D.G. Higman [4]. Set I'y(a):{a}, I'(a)-:d(a), I'a)=1"(a) and ['s(a)=1(a) and 1,
k, I, m (k) be the length of the orbit /';(a) (=0, 1,2, 8) respectively. Let us
define the interscction number /% by {%=\I.(b)" [';(a)| for be I'i@). For the
fundamental relations among the /% and the lengths of /(a), see D.G. Higman
[4], (4.1) and (4.2). Among them, the following relations will be used later in this
note: (Here we use the conventional notation that pg;=p%.)

P b ey F P s b fan b e = Lok gt prag -t pag = I, Kottty ktty =115, and more-
over (gince m==k) fo7 3= tag.

We use the following results proved in S. Iwasaki [6] and N. Ito {5].

Lemma 2 ([6], Proposition 1.3). Il=k(k—1).

LEMMA 3 ([B], Satz 3). Let (H, 2) be a triply transitive permutation group,
and let X be a subgroup of H of index |Z|, then either X is transitive on 2
or X==H, for some a€ 2.

§2. Proof of Theorem 1.

We assume that there exists a (&, £2) which satisfies the assumption of Theorem
1. Thus we may assume that k>4.

Since d(a) and A(a) are paired orbits, there exists an element z€® such that
b*==q, a*-=¢ for some be Jia) and c€ A(a). We denote by o the inner automorphism
of & induced by the element x. From the doubly (4-ply) transitivity of &, on 4(a),
we have ¢4,==0, therefore g4== !zaaw 0 and t,3=k—1. Thus we have 4} =k—1 since
(o3 = o0 and 14 b P =k, Sinee p4 = (@) N Y * N I'(a)| #0, there exist
points e€ J{a)—{b} and d€ I"(a) such that e*=d, hence ($,4..)° <&, ¢. Since (Sa.4)°
is a subgroup of index %k of the 4-ply transitive permutation group (3,, dla)), we
have either

(I (H,.)° is transitive on d(a), or

(I &, ) =G, , for some b’ € Ha),
by Lemma 3. While (8,,..)° is a subgroup of index k—1 of the group (®,.)°.
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Therefore if Case (I) holds, then (&, ,..)° is transitive on d{a) by Theorem 17.3 in
Wielandt [8]. If Case (II) holds, then either (&, ,..)7 is transitive on d{a)--{b’} or
(G, 5.0°=0,, . for some ¢’ € Ha), ¢'+b', also by Lemma 3. Thus we have ecither
v,=0, 1, 2, k—2, k—1 or k, since p.={Hd) dla)| and Jd)NHa) is a union of
orbits of ®, ; on a). The case 2,,=0 is impossible sinee 3= J;,ugsrf ky?fl)— +0.

If #.=k or k—1, then l=k--1 or k, respectively, and this contradicts a theorem
kik—1)
k—2

is not an integer.

Thus we have proved that r,=1 or r,==2. If zt,==1 then l==k{k—~1) and this
contradicts Lemma 2. Thus /4,=2. Now from the proof of Proposition 1 we im-
mediately have ®, (=0 (s.o;. Thus the action of &, on /'(a) is isomorphic to that
of &, on the set of unordered pairs of d(a). From the 4-ple transitivity of (&,,
(@)}, we immediately conclude that (&, 4, I'(@)) is of rank 3 and the subdegrees

are 1, 2(6—2) and —(k—2)(k—3).

Now ['(a)N 4{d) is a union of orbits of &, 4 on '(a) whose total length is e,
While |da)NI(@)j=IT(a)n d(d)|=1,,, since there exists an element y€® which
interchanges a¢ and d (because I'(a) is self-paired). Now we have s, 21, otherwise
.= k—2 and ,U21’:‘qi‘/132:(k~1)(kw2)>k (for k=4), a contradiction. While s
[ dayi—1day N dd)|=k—po=k—2. Thus, if k=6 we have a contradiction, since
2(k—2)>k—2 and —;—(k—~2)(k—3)>k~2 and &, ; has no union of orbits (7{d})
whose total length f, 18 1< <k—2. If k=5 (resp. k=4), then (G, 4)=x(S,, 4),

|dl=k. Since S; (resp. S,) has only one subgroup of index A (resp. 4) up to con-
jugacy, (G, da))=x(G, Ha)). Thus a transposition €S8, (=©,) (resp. S,) fixes
1+3-+3+4=11 (resp. 1+242+2==7) points on 2. While non-transpositional in-
volutive elements of S; (resp. S,) fix 1-+1--1+2=5 (resp. 1+0+4-0--2==3) points.
Thus the number of elements of & which are conjugate to t is given by

2)
10~%i~ (resp. 6-~1§5~> , and this is a contradiction, since this number must be an

integer.
Thus we have completed the proof of Theorem 1.

% For this calculation; cf. [2 bis]. [2 bis] contains serious misprints: the words “not”
in page 131, line 10; page 132, line 1 and line 17 should be omitted.
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